1
|
Virgolino R, Siqueira A, Cassoli J, Aguiar D, Gonçalves E. Insilico molecular characterization of a cyanobacterial lytic polysaccharide monooxygenase. J Mol Graph Model 2025; 136:108970. [PMID: 39904117 DOI: 10.1016/j.jmgm.2025.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of β(1-4) glycosidic bonds and have attracted considerable attention because of their potential for enhancing efficiency in degrading recalcitrant polymeric substrates, in synergism with hydrolytic enzymes. Fungal-derived LPMOs are the most prevalent type, while other taxonomic groups have been described as potential alternative sources of these enzymes. In the present study, we aimed to identify and characterize in silico a LPMO of cyanobacterial origin with putative functions in chitin depolymerization. A similarity search of sequences and conservation of domains with characterized LPMOs identified a 289 amino acid protein from the cyanobacterium Mastigocoleus testarum (Order Nostocales), likely belonging to the CAZy-AA10 class. This protein is referred to as MtLPMO10. Phylogenetic analysis revealed that MtLPMO10 is homologous to the protein Tma12 from the fern Tectaria macrodonta, with 52.11 % sequence identity, which was the first LPMO characterized as originating from the plant kingdom. The protein tertiary structure predicted by the AlphaFold server indicates structural features common to LPMOs, such as a histidine brace formed by His31 and His132 and an immunoglobulin-like domain composed of antiparallel beta strands. Molecular dynamics (MD) simulation allowed the assessment of the enzyme-substrate affinity, using an initial pose based on literature data. The MtLPMO10-chitin complex remained stable during 100ns of MD, while the MtLPMO10-cellulose complex dissociated within 30ns of MD. Additionally, there was a shorter Cu(I)-H4 distance in the protein-substrate complex compared to the Cu(I)-H1 distance (averages of 6.0 ± 0.7 Å and 7.9 ± 0.7 Å, respectively), suggesting a C4 regioselectivity. This study highlights the existence of lytic polysaccharide monooxygenases in cyanobacteria and paves the way for further investigations related to this enigmatic class of enzymes and their potential use in biotechnological applications.
Collapse
Affiliation(s)
- Rodrigo Virgolino
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| | - Andrei Siqueira
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Juliana Cassoli
- Laboratory of Omics Science, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Délia Aguiar
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Evonnildo Gonçalves
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
2
|
Zhu F, Qin R, Ma S, Zhou Z, Tan C, Yang H, Zhang P, Xu Y, Luo Y, Chen J, Pan P. Designing a multi-epitope vaccine against Pseudomonas aeruginosa via integrating reverse vaccinology with immunoinformatics approaches. Sci Rep 2025; 15:10425. [PMID: 40140433 PMCID: PMC11947098 DOI: 10.1038/s41598-025-90226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
Pseudomonas aeruginosa is a typically opportunistic pathogen responsible for a wide range of nosocomial infections. In this study, we designed two multi-epitope vaccines targeting P. aeruginosa proteins, incorporating cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and linear B lymphocyte (LBL) epitopes identified using reverse vaccinology and immunoinformatics approaches. The vaccines exhibited favorable physicochemical properties, including stability, solubility, and optimal molecular weight, suggesting their potential as viable candidates for vaccine development. Molecular docking studies revealed strong binding affinity to Toll-like receptors 1 (TLR1) and 2 (TLR2). Furthermore, molecular dynamics simulations confirmed the stability of the vaccine-TLR complexes over time. Immune simulation analyses indicated that the vaccines could induce robust humoral and cellular immune responses, providing a promising new approach for combating P. aeruginosa infections, particularly in the face of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, 410008, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Santamarina-Fernández R, Fuentes-Valverde V, Silva-Rodríguez A, García P, Moscoso M, Bou G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int J Mol Sci 2025; 26:2012. [PMID: 40076637 PMCID: PMC11900337 DOI: 10.3390/ijms26052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Rebeca Santamarina-Fernández
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Víctor Fuentes-Valverde
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Medicamentos Biológicos, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 28022 Madrid, Spain
| | - Alis Silva-Rodríguez
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Patricia García
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Moscoso
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Universidad de A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Montserrat-Canals M, Bjerregaard-Andersen K, Sørensen HV, Kommedal E, Cordara G, Vaaje-Kolstad G, Krengel U. Calcium-binding site in AA10 LPMO from Vibrio cholerae suggests modulating effects during environmental survival and infection. QRB DISCOVERY 2024; 5:e12. [PMID: 39811092 PMCID: PMC11729483 DOI: 10.1017/qrd.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/16/2025] Open
Abstract
Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, Vibrio cholerae, survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. N-acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides V. cholerae with nutrients. In addition, GbpA is an important colonization factor associated with bacterial pathogenicity, allowing the binding to mucins in the host intestine. Here, we report the discovery of a cation-binding site in proximity of the GbpA active site, which allows Ca2+, Mg2+, or K+ binding close to its carbohydrate-binding surface. In addition to the X-ray crystal structures of cation-LPMO complexes (to 1.5 Å resolution), we explored how the presence of ions affects the stability and activity of the protein. Calcium and magnesium ions were found to bind to GbpA specifically, with calcium ions - abundant in natural sources of chitin - having the strongest effect on protein stability. When the cation-binding site was rendered non-functional, a decrease in activity was observed, highlighting the importance of the structural elements stabilized by calcium. Our findings suggest a cation-binding site specific to GbpA and related LPMOs that may fine-tune binding and activity for its substrates during environmental survival and host infection.
Collapse
Affiliation(s)
- Mateu Montserrat-Canals
- Centre for Molecular Medicine Norway, University of Oslo, NO-0318Oslo, Norway
- Department of Chemistry, University of Oslo, NO-0315Oslo, Norway
| | | | | | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1433Ås, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, NO-0315Oslo, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1433Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315Oslo, Norway
| |
Collapse
|
5
|
Tsai CM, Hajam IA, Caldera JR, Chiang AW, Gonzalez C, Du X, Choudhruy B, Li H, Suzuki E, Askarian F, Clark T, Lin B, Wierzbicki IH, Riestra AM, Conrad DJ, Gonzalez DJ, Nizet V, Lewis NE, Liu GY. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J Clin Invest 2024; 134:e179563. [PMID: 39680460 DOI: 10.1172/jci179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Austin Wt Chiang
- Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Cesia Gonzalez
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Xin Du
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Biswa Choudhruy
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Haining Li
- Department of Bioengineering, University of California, La Jolla, California, USA
| | - Emi Suzuki
- Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
- Division of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Ty'Tianna Clark
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brian Lin
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Igor H Wierzbicki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Angelica M Riestra
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
6
|
Edvardsen PKT, Askarian F, Zurich R, Nizet V, Vaaje-Kolstad G. Exploring roles of the chitinase ChiC in modulating Pseudomonas aeruginosa virulence phenotypes. Microbiol Spectr 2024; 12:e0054624. [PMID: 38819151 PMCID: PMC11218509 DOI: 10.1128/spectrum.00546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Chitinases are ubiquitous enzymes involved in biomass degradation and chitin turnover in nature. Pseudomonas aeruginosa (PA), an opportunistic human pathogen, expresses ChiC, a secreted glycoside hydrolase 18 family chitinase. Despite speculation about ChiC's role in PA disease pathogenesis, there is scant evidence supporting this hypothesis. Since PA cannot catabolize chitin, we investigated the potential function(s) of ChiC in PA pathophysiology. Our findings show that ChiC exhibits activity against both insoluble (α- and β-chitin) and soluble chitooligosaccharides. Enzyme kinetics toward (GlcNAc)4 revealed a kcat of 6.50 s-1 and a KM of 1.38 mM, the latter remarkably high for a canonical chitinase. In our label-free proteomics investigation, ChiC was among the most abundant proteins in the Pel biofilm, suggesting a potential contribution to PA biofilm formation. Using an intratracheal challenge model of PA pneumonia, the chiC::ISphoA/hah transposon insertion mutant paradoxically showed slightly increased virulence compared to the wild-type parent strain. Our results indicate that ChiC is a genuine chitinase that contributes to a PA pathoadaptive pathway.IMPORTANCEIn addition to performing chitin degradation, chitinases from the glycoside hydrolase 18 family have been found to play important roles during pathogenic bacterial infection. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing pneumonia in immunocompromised individuals. Despite not being able to grow on chitin, the bacterium produces a chitinase (ChiC) with hitherto unknown function. This study describes an in-depth characterization of ChiC, focusing on its potential contribution to the bacterium's disease-causing ability. We demonstrate that ChiC can degrade both polymeric chitin and chitooligosaccharides, and proteomic analysis of Pseudomonas aeruginosa biofilm revealed an abundance of ChiC, hinting at a potential role in biofilm formation. Surprisingly, a mutant strain incapable of ChiC production showed higher virulence than the wild-type strain. While ChiC appears to be a genuine chitinase, further investigation is required to fully elucidate its contribution to Pseudomonas aeruginosa virulence, an important task given the evident health risk posed by this bacterium.
Collapse
Affiliation(s)
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Raymond Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Kracher D, Lanzmaier T, Carneiro LV. Active roles of lytic polysaccharide monooxygenases in human pathogenicity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141012. [PMID: 38492831 DOI: 10.1016/j.bbapap.2024.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes widely studied for their involvement in microbial and fungal biomass degradation. The catalytic versatility of these enzymes is demonstrated by the recent discovery of LPMOs in arthropods, viruses, insects and ferns, where they fulfill diverse functions beyond biomass conversion. This mini-review puts a spotlight on a recently recognized aspect of LPMOs: their role in infectious processes in human pathogens. It discusses the occurrence and potential biological mechanisms of LPMOs associated with human pathogens and provides an outlook on future avenues in this emerging and exciting research field.
Collapse
Affiliation(s)
- Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Tina Lanzmaier
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Leonor Vieira Carneiro
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
8
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
9
|
Tamburrini KC, Kodama S, Grisel S, Haon M, Nishiuchi T, Bissaro B, Kubo Y, Longhi S, Berrin JG. The disordered C-terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration. Proc Natl Acad Sci U S A 2024; 121:e2319998121. [PMID: 38513096 PMCID: PMC10990093 DOI: 10.1073/pnas.2319998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.
Collapse
Affiliation(s)
- Ketty C. Tamburrini
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sacha Grisel
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Mireille Haon
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa920-1164, Japan
| | - Bastien Bissaro
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sonia Longhi
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
| | - Jean-Guy Berrin
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| |
Collapse
|
10
|
Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. IUCRJ 2024; 11:260-274. [PMID: 38446458 PMCID: PMC10916295 DOI: 10.1107/s2052252524001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Collapse
Affiliation(s)
- Badri S. Rajagopal
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nick Yates
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jake Smith
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Catherine Tétard-Jones
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - William G. T. Willats
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Susan Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gideon J. Davies
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|