1
|
Burton J, Rounge TB, Haugen TB, Wojewodzic MW. Networks of pre-diagnostic circulating RNA in testicular germ cell tumour. Sci Rep 2025; 15:1910. [PMID: 39809819 PMCID: PMC11733264 DOI: 10.1038/s41598-024-84484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Testicular germ cell tumour (TGCT) is a malignancy with known inherited risk factors, affecting young men. We have previously identified several hundred differentially abundant circulating RNAs in pre-diagnostic serum from TGCT cases compared to healthy controls. In this study, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on mRNA and miRNA data from these samples. Central genes (hub genes) enriched functional pathways, and regulatory feature prediction were identified for all TGCT subtypes together and according to histology. The TGCT susceptibility genes TEX14, NARS2, and G3BP2, were identified as hub genes in both seminoma and non-seminoma networks. We also identified UBCA1, RCC1, FMR1, OAS3, and UBE2W as hub genes associated with TGCT. The genes OAS3 and UBE2W have previously been associated with testicular dysgenesis. Furthermore, network module analysis indicated transcription factors for oestrogen-related receptors to have a potential role during development of TGCT. The overlap between mRNA network hub genes and TGCT susceptibility genes indicates a common role in TGCT development.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B Rounge
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Haugen
- Department of Life Sciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Marcin W Wojewodzic
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
2
|
Ibeh N, Feigin CY, Frankenberg SR, McCarthy DJ, Pask AJ, Gallego Romero I. De novo transcriptome assembly and genome annotation of the fat-tailed dunnart ( Sminthopsis crassicaudata). GIGABYTE 2024; 2024:gigabyte118. [PMID: 38746537 PMCID: PMC11091235 DOI: 10.46471/gigabyte.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/13/2024] [Indexed: 01/06/2025] Open
Abstract
Marsupials exhibit distinctive modes of reproduction and early development that set them apart from their eutherian counterparts and render them invaluable for comparative studies. However, marsupial genomic resources still lag far behind those of eutherian mammals. We present a series of novel genomic resources for the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-like marsupial that, due to its ease of husbandry and ex-utero development, is emerging as a laboratory model. We constructed a highly representative multi-tissue de novo transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. The transcriptome includes 2,093,982 assembled transcripts and has a mammalian transcriptome BUSCO completeness score of 93.3%, the highest amongst currently published marsupial transcriptomes. This global transcriptome, along with ab initio predictions, supported annotation of the existing dunnart genome, revealing 21,622 protein-coding genes. Altogether, these resources will enable wider use of the dunnart as a model marsupial and deepen our understanding of mammalian genome evolution.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Human Genomics and Evolution, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Charles Y. Feigin
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, Australia
| | | | - Davis J. McCarthy
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J. Pask
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Irene Gallego Romero
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- Human Genomics and Evolution, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
3
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Profile of Jennifer Marshall Graves. Proc Natl Acad Sci U S A 2021; 118:2116850118. [PMID: 34686610 DOI: 10.1073/pnas.2116850118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
|
5
|
Cook LE, Newton AH, Hipsley CA, Pask AJ. Postnatal development in a marsupial model, the fat-tailed dunnart (Sminthopsis crassicaudata; Dasyuromorphia: Dasyuridae). Commun Biol 2021; 4:1028. [PMID: 34475507 PMCID: PMC8413461 DOI: 10.1038/s42003-021-02506-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Marsupials exhibit unique biological features that provide fascinating insights into many aspects of mammalian development. These include their distinctive mode of reproduction, altricial stage at birth, and the associated heterochrony that is required for their crawl to the pouch and teat attachment. Marsupials are also an invaluable resource for mammalian comparative biology, forming a distinct lineage from the extant placental and egg-laying monotreme mammals. Despite their unique biology, marsupial resources are lagging behind those available for placentals. The fat-tailed dunnart (Sminthopsis crassicaudata) is a laboratory based marsupial model, with simple and robust husbandry requirements and a short reproductive cycle making it amenable to experimental manipulations. Here we present a detailed staging series for the fat-tailed dunnart, focusing on their accelerated development of the forelimbs and jaws. This study provides the first skeletal developmental series on S. crassicaudata and provides a fundamental resource for future studies exploring mammalian diversification, development and evolution.
Collapse
Affiliation(s)
- Laura E Cook
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel H Newton
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Christy A Hipsley
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Sciences, Museums Victoria, Carlton, VIC, Australia
| | - Andrew J Pask
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia.
- Department of Sciences, Museums Victoria, Carlton, VIC, Australia.
| |
Collapse
|
6
|
Gust KA, Lotufo GR, Thiyagarajah A, Barker ND, Ji Q, Marshall K, Wilbanks MS, Chappell P. Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105204. [PMID: 31185427 DOI: 10.1016/j.aquatox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Previous toxicological investigations of the insensitive munition (IM), 3-nitro-1,2,4-triazol-5-one (NTO), demonstrated histopathological and physiological impacts in mammalian testes. The implications of these findings for fish was unknown, therefore we investigated the effects of chronic (21 day) exposures to NTO and an NTO-containing IM formulation called IMX-101 (composed of 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and NTO) in adult male fathead minnows to assess if impacts on testes were conserved. The NTO exposure caused no significant mortality through the maximum exposure concentration (720 mg/L, measured), however NTO elicited testicular impacts causing significant asynchrony in spermatogenesis and necrosis in secondary spermatocytes at the two highest exposure concentrations (383 mg/L and 720 mg/L) and testicular degeneration at the highest exposure. Microarray-based transcriptomics analysis identified significant enrichment of steroid metabolism pathways and mTORC-signal control of spermatogonia differentiation in NTO exposures each having logical connections to observed asynchronous spermatogenesis. Additionally, NTO impaired transcriptional expression for genes supporting sperm structural and flagellar development including sperm-associated antigen 6 (Spag6). These functional transcriptomic responses are hypothesized contributors to impacted reproductive physiology in NTO exposures that ultimately lead to reductions in spermatozoa. In contrast to NTO, the IMX-101 formulation elicited significant mortality at the two highest exposure concentrations of 25.2 and 50.9 mg/L (DNAN nominal + NTO measured + NQ measured). Unlike NTO and NQ, the DNAN component of the IMX-101 formulation underwent significant transformation in the 21d exposure. From previous investigations, neither NTO nor NQ caused mortality in fish at >1000 mg/L suggesting that mortality in the present study arose from DNAN / DNAN-attributable transformation products. The 12.6 mg/L IMX-101 exposure caused significant sublethal impacts on testes including sperm necrosis, interstitial fibrosis, and Sertoli-like cell hyperplasia. Transcriptional profiles for IMX-101 indicated significant enrichment on multiple signaling pathways supporting spermatogenesis, mitosis / meiosis, and flagellar structure, all logically connected to observed sperm necrosis. Additionally, pronounced transcriptional increases within the PPARα-RXRα pathway, a known DNAN target, has been hypothesized to correspond to Sertoli cell hyperplasia, presumably as a compensatory response to fulfill the nurse-function of Sertoli cells during spermatogenesis. Overall, the transcriptional results indicated unique molecular responses for NTO and IMX-101. Regarding chemical hazard, NTO impacted testes and impaired spermatogenesis, but at high exposure concentrations (≥ 192 mg/L), whereas the IMX-101 formulation, elicited mortality and impacts on reproductive physiology likely caused by DNAN and its transformation products present at concentrations well below the NTO-component concentration within the IMX-101 mixture formulation.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | | | | - Qing Ji
- Bennett Aerospace, Cary, NC, 27511, USA.
| | | | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | |
Collapse
|
7
|
Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep 2018; 8:17882. [PMID: 30552368 PMCID: PMC6294749 DOI: 10.1038/s41598-018-36209-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.
Collapse
|
8
|
Graves JAM. Marsupial genomics meet marsupial reproduction. Reprod Fertil Dev 2018; 31:1181-1188. [PMID: 30482268 DOI: 10.1071/rd18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
We came from very different backgrounds, with different skills and interests. Marilyn Renfree was recognised as 'a giant of marsupial embryology'; I had spent my working life studying genes and chromosomes. We teamed up out of mutual respect (awe on my side) to form, with Des Cooper, the ARC Centre of Excellence in Kangaroo Genomics. This is the story of how our collaboration came to be, and what it has produced for our knowledge of some of the world's most remarkable animals.
Collapse
|
9
|
Abstract
Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.
Collapse
Affiliation(s)
- Jennifer A. Marshall Graves
- School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Australia Institute of Applied Ecology, University of Canberra, ACT 2617, Australia
| |
Collapse
|
10
|
Miao N, Wang X, Feng Y, Gong Y. Male-biased miR-92 from early chicken embryonic gonads directly targets ATRX and DDX3X. Gene 2017; 626:326-336. [PMID: 28554548 DOI: 10.1016/j.gene.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
MiR-17-92 cluster consists of multifunctional miRNAs related to gonadal development in mammals. Our preliminary data showed that gga-miR-92 was male-biased in chicken embryonic gonads at E5.5 and E6.5. MiR-92(a-2) and two putative targets (ATRX and DDX3X) were highly conserved and located on mammalian Chromosome X but on autosomes in chicken. Here, we studied the expression and interaction of miR-92 and the targets (ATRX and DDX3X) in chicken embryonic gonads. What's more, male-biased miR-92 shows an opposite expression tendency with ATRX and DDX3X in eight embryonic stages and different tissues at E10.5 by qRT-PCR. To verify the regulation relationship between miR-92 and two targets, we performed dual-luciferase reporter assay in DF1, overexpression and inhibition of miR-92 in chicken embryonic fibroblasts (CEFs). The results show that miR-92 directly targets ATRX and DDX3X by binding the 3' un-translated region (3'-UTR), and the over-expression and inhibition of miR-92 negatively regulates ATRX and DDX3X. After the identification of the expression of their downstream genes (AMH and WNT4) in mRNA level, we found that there is no regulatory relationship between ATRX and DDX3X. The overall results indicate that miR-92 may perform roles in early chicken gonadogenesis by regulating the expressions of ATRX and DDX3X, respectively.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Institute of Genomics, College of Biomedical, Huaqiao University, 668 Jimei Road, Xiamen 361021, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
11
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
12
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
13
|
Graves JAM. How Australian mammals contributed to our understanding of sex determination and sex chromosomes. AUST J ZOOL 2016. [DOI: 10.1071/zo16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well illustrates the value of comparing distantly related animals and the folly of relying on humans and mice for an understanding of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time to review the contributions of Australian mammals to these discoveries.
The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works. Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved, and what might befall this gene and the Y chromosome it defines.
Collapse
|
14
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
15
|
Graves JAM. Kangaroo gene mapping and sequencing: insights into mammalian genome evolution. AUST J ZOOL 2013. [DOI: 10.1071/zo13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The deep divergence of marsupials and eutherian mammals 160 million years ago provides genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. Following the pioneering work of Professor Desmond W. Cooper, emerging techniques in cytogenetics and molecular biology have been adapted to characterise the genomes of kangaroos and other marsupials. In particular, genetic and genomic work over four decades has shown that marsupial sex chromosomes differ significantly from the eutherian XY chromosome pair in their size, gene content and activity. These differences can be exploited to deduce how mammalian sex chromosomes, sex determination and epigenetic silencing evolved.
Collapse
|
16
|
Graves JAM. How to evolve new vertebrate sex determining genes. Dev Dyn 2012; 242:354-9. [PMID: 23074164 DOI: 10.1002/dvdy.23887] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 02/01/2023] Open
Abstract
Sex determination in vertebrates is accomplished by gonad differentiation in the embryo, which unleashes a cascade of hormones that control sexual phenotype. The pathway by which gonad (testis or ovary) is differentiated is highly conserved in all vertebrates, but the trigger (genetic or environmental) that initiates the whole process may be quite different between lineages. Among species with genetic sex determination, the trigger gene, and its mode of action as a male- or female-dominant, or a dosage sensitive, is known in only a few species. Patterns are starting to emerge that hint at ways in which an autosomal gene may acquire ways of regulating genes at the head of the gonad differentiating pathway, usurp the sex determining function and define new sex chromosomes. The raw material for new sex-determining genes may be genes in the sex differentiating pathway, related genes, or even genes with no known role in sex. The changes that make these genes sex determining can be as simple as a change in the timing or tissue of expression. Intriguingly, certain genes (such as DMRT1 and SOX3) seem to have been independently pressed into service in different ways in distantly related lineages.
Collapse
|
17
|
Katsura Y, Satta Y. No evidence for a second evolutionary stratum during the early evolution of mammalian sex chromosomes. PLoS One 2012; 7:e45488. [PMID: 23094017 PMCID: PMC3477149 DOI: 10.1371/journal.pone.0045488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/20/2012] [Indexed: 11/19/2022] Open
Abstract
Mammalian sex chromosomes originated from a pair of autosomes, and homologous genes on the sex chromosomes (gametologs) differentiated through recombination arrest between the chromosomes. It was hypothesized that this differentiation in eutherians took place in a stepwise fashion and left a footprint on the X chromosome termed "evolutionary strata." The evolutionary stratum hypothesis claims that strata 1 and 2 (which correspond to the first two steps of chromosomal differentiation) were generated in the stem lineage of Theria or before the divergence between eutherians and marsupials. However, this prediction relied solely on the molecular clock hypothesis between pairs of human gametologs, and molecular evolution of marsupial sex chromosomal genes has not yet been investigated. In this study, we analyzed the following 7 pairs of marsupial gametologs, together with their eutherian orthologs that reside in stratum 1 or 2: SOX3/SRY, RBMX/Y, RPS4X/Y, HSFX/Y, XKRX/Y, SMCX/Y (KDM5C/D, JARID1C/D), and UBE1X/Y (UBA1/UBA1Y). Phylogenetic analyses and estimated divergence time of these gametologs reveal that they all differentiated at the same time in the therian ancestor. We have also provided strong evidence for gene conversion that occurred in the 3' region of the eutherian stratum 2 genes (SMCX/Y and UBE1X/Y). The results of the present study show that (1) there is no compelling evidence for the second stratum in the stem lineage of Theria; (2) gene conversion, which may have occurred between SMCX/Y and UBE1X/Y in the eutherian lineage, potentially accounts for their apparently lower degree of overall divergence.
Collapse
Affiliation(s)
| | - Yoko Satta
- Department of Evolutionary Study of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
18
|
Deakin JE. Marsupial genome sequences: providing insight into evolution and disease. SCIENTIFICA 2012; 2012:543176. [PMID: 24278712 PMCID: PMC3820666 DOI: 10.6064/2012/543176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
Collapse
Affiliation(s)
- Janine E. Deakin
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
- *Janine E. Deakin:
| |
Collapse
|
19
|
Murtagh VJ, O'Meally D, Sankovic N, Delbridge ML, Kuroki Y, Boore JL, Toyoda A, Jordan KS, Pask AJ, Renfree MB, Fujiyama A, Graves JAM, Waters PD. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution. Genome Res 2011; 22:498-507. [PMID: 22128133 DOI: 10.1101/gr.120790.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.
Collapse
Affiliation(s)
- Veronica J Murtagh
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Al Nadaf S, Deakin JE, Gilbert C, Robinson TJ, Graves JAM, Waters PD. A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma 2011; 121:71-8. [PMID: 21947602 PMCID: PMC3260438 DOI: 10.1007/s00412-011-0343-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022]
Abstract
Sex chromosome dosage compensation in both eutherian and marsupial mammals is achieved by X chromosome inactivation (XCI)--transcriptional repression that silences one of the two X chromosomes in the somatic cells of females. We recently used RNA fluorescent in situ hybridization (FISH) to show, in individual nuclei, that marsupial X inactivation (in the absence of XIST) occurs on a gene-by-gene basis, and that escape from inactivation is stochastic and independent of gene location. In the absence of similar data from fibroblast cell lines of eutherian representatives, a meaningful comparison is lacking. We therefore used RNA-FISH to examine XCI in fibroblast cell lines obtained from three distantly related eutherian model species: African savannah elephant (Loxodonta africana), mouse (Mus musculus) and human (Homo sapiens). We show that, unlike the orthologous marsupial X, inactivation of the X conserved region (XCR) in eutherians generally is complete. Two-colour RNA-FISH on female human, mouse and elephant interphase nuclei showed that XCR loci have monoallelic expression in almost all nuclei. However, we found that many loci located in the evolutionarily distinct recently added region (XAR) displayed reproducible locus-specific frequencies of nuclei with either one or two active X alleles. We propose that marsupial XCI retains features of an ancient incomplete silencing mechanism that was augmented by the evolution of the XIST gene that progressively stabilized the eutherian XCR. In contrast, the recently added region of the eutherian X displays an incomplete inactivation profile similar to that observed on the evolutionarily distinct marsupial X and the independently evolved monotreme X chromosomes.
Collapse
Affiliation(s)
- Shafagh Al Nadaf
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, ACT 2601, Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, Rens W, Waters PD, Pharo EA, Shaw G, Wong ESW, Lefèvre CM, Nicholas KR, Kuroki Y, Wakefield MJ, Zenger KR, Wang C, Ferguson-Smith M, Nicholas FW, Hickford D, Yu H, Short KR, Siddle HV, Frankenberg SR, Chew KY, Menzies BR, Stringer JM, Suzuki S, Hore TA, Delbridge ML, Mohammadi A, Schneider NY, Hu Y, O'Hara W, Al Nadaf S, Wu C, Feng ZP, Cocks BG, Wang J, Flicek P, Searle SMJ, Fairley S, Beal K, Herrero J, Carone DM, Suzuki Y, Sugano S, Toyoda A, Sakaki Y, Kondo S, Nishida Y, Tatsumoto S, Mandiou I, Hsu A, McColl KA, Lansdell B, Weinstock G, Kuczek E, McGrath A, Wilson P, Men A, Hazar-Rethinam M, Hall A, Davis J, Wood D, Williams S, Sundaravadanam Y, Muzny DM, Jhangiani SN, Lewis LR, Morgan MB, Okwuonu GO, Ruiz SJ, Santibanez J, Nazareth L, Cree A, Fowler G, Kovar CL, Dinh HH, Joshi V, Jing C, Lara F, Thornton R, Chen L, Deng J, Liu Y, Shen JY, Song XZ, Edson J, Troon C, Thomas D, Stephens A, Yapa L, Levchenko T, Gibbs RA, Cooper DW, Speed TP, Fujiyama A, M Graves JA, O'Neill RJ, Pask AJ, Forrest SM, Worley KC. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 2011; 12:R81. [PMID: 21854559 PMCID: PMC3277949 DOI: 10.1186/gb-2011-12-8-r81] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/22/2011] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
Collapse
Affiliation(s)
- Marilyn B Renfree
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anthony T Papenfuss
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Janine E Deakin
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - James Lindsay
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Thomas Heider
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Katherine Belov
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Willem Rens
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Paul D Waters
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Elizabeth A Pharo
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Geoff Shaw
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Emily SW Wong
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe M Lefèvre
- Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria, 3214, Australia
| | - Kevin R Nicholas
- Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria, 3214, Australia
| | - Yoko Kuroki
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Matthew J Wakefield
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Kyall R Zenger
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | - Chenwei Wang
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Malcolm Ferguson-Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Frank W Nicholas
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Danielle Hickford
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hongshi Yu
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hannah V Siddle
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen R Frankenberg
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Keng Yih Chew
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brandon R Menzies
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, Berlin 10315, Germany
| | - Jessica M Stringer
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shunsuke Suzuki
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Timothy A Hore
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Margaret L Delbridge
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Amir Mohammadi
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Nanette Y Schneider
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Molecular Genetics, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yanqiu Hu
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - William O'Hara
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Shafagh Al Nadaf
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Chen Wu
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi-Ping Feng
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin G Cocks
- Biosciences Research Division, Department of Primary Industries, Victoria, 1 Park Drive, Bundoora 3083, Australia
| | - Jianghui Wang
- Biosciences Research Division, Department of Primary Industries, Victoria, 1 Park Drive, Bundoora 3083, Australia
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephen MJ Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Susan Fairley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kathryn Beal
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Javier Herrero
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Dawn M Carone
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8560, Japan
| | - Sumio Sugano
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8560, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshiyuki Sakaki
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shinji Kondo
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuichiro Nishida
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shoji Tatsumoto
- RIKEN Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ion Mandiou
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Arthur Hsu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kaighin A McColl
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Benjamin Lansdell
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - George Weinstock
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth Kuczek
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
- Westmead Institute for Cancer Research, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Annette McGrath
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter Wilson
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Artem Men
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mehlika Hazar-Rethinam
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Allison Hall
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - John Davis
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - David Wood
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sarah Williams
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yogi Sundaravadanam
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret B Morgan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Geoffrey O Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - San Juana Ruiz
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lynne Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald Fowler
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandita Joshi
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Chyn Jing
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Fremiet Lara
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Thornton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Jixin Deng
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Y Shen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Xing-Zhi Song
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Janette Edson
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Carmen Troon
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Daniel Thomas
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amber Stephens
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lankesha Yapa
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tanya Levchenko
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| | - Desmond W Cooper
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Terence P Speed
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Jennifer A M Graves
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Pask
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Department of Zoology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Molecular and Cell Biology, Center for Applied Genetics and Technology, University of Connecticut, Storrs, CT 06269, USA
| | - Susan M Forrest
- The Australian Research Council Centre of Excellence in Kangaroo Genomics, Australia
- Australian Genome Research Facility, Melbourne, Victoria, 3052 and the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Huyhn K, Renfree MB, Graves JA, Pask AJ. ATRX has a critical and conserved role in mammalian sexual differentiation. BMC DEVELOPMENTAL BIOLOGY 2011; 11:39. [PMID: 21672208 PMCID: PMC3133603 DOI: 10.1186/1471-213x-11-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/14/2011] [Indexed: 01/08/2023]
Abstract
Background X-linked alpha thalassemia, mental retardation syndrome in humans is a rare recessive disorder caused by mutations in the ATRX gene. The disease is characterised by severe mental retardation, mild alpha-thalassemia, microcephaly, short stature, facial, skeletal, genital and gonadal abnormalities. Results We examined the expression of ATRX and ATRY during early development and gonadogenesis in two distantly related mammals: the tammar wallaby (a marsupial) and the mouse (a eutherian). This is the first examination of ATRX and ATRY in the developing mammalian gonad and fetus. ATRX and ATRY were strongly expressed in the developing male and female gonad respectively, of both species. In testes, ATRY expression was detected in the Sertoli cells, germ cells and some interstitial cells. In the developing ovaries, ATRX was initially restricted to the germ cells, but was present in the granulosa cells of mature ovaries from the primary follicle stage onwards and in the corpus luteum. ATRX mRNA expression was also examined outside the gonad in both mouse and tammar wallaby whole embryos. ATRX was detected in the developing limbs, craniofacial elements, neural tissues, tail and phallus. These sites correspond with developmental deficiencies displayed by ATR-X patients. Conclusions There is a complex expression pattern throughout development in both mammals, consistent with many of the observed ATR-X syndrome phenotypes in humans. The distribution of ATRX mRNA and protein in the gonads was highly conserved between the tammar and the mouse. The expression profile within the germ cells and somatic cells strikingly overlaps with that of DMRT1, suggesting a possible link between these two genes in gonadal development. Taken together, these data suggest that ATRX has a critical and conserved role in normal development of the testis and ovary in both the somatic and germ cells, and that its broad roles in early mammalian development and gonadal function have remained unchanged for over 148 million years of mammalian evolution.
Collapse
Affiliation(s)
- Kim Huyhn
- ARC Centre of Excellence for Kangaroo Genomics, Australia
| | | | | | | |
Collapse
|
23
|
Heider TN, Lindsay J, Wang C, O'Neill RJ, Pask AJ. Enhancing genome assemblies by integrating non-sequence based data. BMC Proc 2011; 5 Suppl 2:S7. [PMID: 21554765 PMCID: PMC3090765 DOI: 10.1186/1753-6561-5-s2-s7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. Methods The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Results Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total) but a 35% increase in N50 scaffold size over the use of sequence-based data alone. Conclusions We provide a relatively simple pipeline utilizing existing bioinformatics tools to integrate map data into a genome assembly which is available at http://www.mcb.uconn.edu/fac.php?name=paska. While the map data only contributed minimally to assigning the initial contigs to scaffolds in the new assembly, it greatly increased the N50 size. This process added structure to our low coverage assembly, greatly increasing its utility in further analyses.
Collapse
Affiliation(s)
- Thomas N Heider
- Department of Molecular and Cellular Biology, University of Connecticut, 06269, Storrs CT, USA.
| | | | | | | | | |
Collapse
|
24
|
Al Nadaf S, Waters PD, Koina E, Deakin JE, Jordan KS, Graves JA. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol 2010; 11:R122. [PMID: 21182760 PMCID: PMC3046482 DOI: 10.1186/gb-2010-11-12-r122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
Background X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. Results We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. Conclusions In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center.
Collapse
Affiliation(s)
- Shafagh Al Nadaf
- Research School of Biology, The Australian National University, Biology Place, Canberra 0200, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan, and therefore, for maintenance of practically all multicellular organisms. In sex development, we can distinguish two different processes, sex determination, that is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, that is, patients affected by disorders of sex development (DSDs). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on these factors and whenever possible, references regarding the 'prismatic' clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Division of Endocrinology/Diabetology, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| |
Collapse
|
26
|
|
27
|
Waters PD, Marshall Graves JA. Monotreme sex chromosomes--implications for the evolution of amniote sex chromosomes. Reprod Fertil Dev 2010; 21:943-51. [PMID: 19874718 DOI: 10.1071/rd09250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/13/2009] [Indexed: 01/24/2023] Open
Abstract
In vertebrates, a highly conserved pathway of genetic events controls male and female development, to the extent that many genes involved in human sex determination are also involved in fish sex determination. Surprisingly, the master switch to this pathway, which intuitively could be considered the most critical step, is inconsistent between vertebrate taxa. Interspersed in the vertebrate tree there are species that determine sex by environmental cues such as the temperature at which eggs are incubated, and then there are genetic sex-determination systems, with male heterogametic species (XY systems) and female heterogametic species (ZW systems), some of which have heteromorphic, and others homomorphic, sex chromosomes. This plasticity of sex-determining switches in vertebrates has made tracking the events of sex chromosome evolution in amniotes a daunting task, but comparative gene mapping is beginning to reveal some striking similarities across even distant taxa. In particular, the recent completion of the platypus genome sequence has completely changed our understanding of when the therian mammal X and Y chromosomes first arose (they are up to 150 million years younger than previously thought) and has also revealed the unexpected insight that sex determination of the amniote ancestor might have been controlled by a bird-like ZW system.
Collapse
Affiliation(s)
- Paul D Waters
- Comparative Genomics Group, Research School of Biological Sciences, School of Biology, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | | |
Collapse
|
28
|
Tang P, Argentaro A, Pask AJ, O'Donnell L, Marshall-Graves J, Familari M, Harley VR. Localization of the chromatin remodelling protein, ATRX in the adult testis. J Reprod Dev 2009; 57:317-21. [PMID: 19444003 DOI: 10.1262/jrd.20221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes. The granular pattern of ATRX staining is consistent with that observed in other cell-types and suggests a role in chromatin regulation. The findings suggest that ATRX in humans may play a role in adult spermatogenesis as well as in testicular development.
Collapse
Affiliation(s)
- Paisu Tang
- Prince Henry's Institute of Medical Research, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Tsend-Ayush E, Lim SL, Pask AJ, Hamdan DDM, Renfree MB, Grützner F. Characterisation of ATRX, DMRT1, DMRT7 and WT1 in the platypus (Ornithorhynchus anatinus). Reprod Fertil Dev 2009; 21:985-91. [DOI: 10.1071/rd09090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022] Open
Abstract
One of the most puzzling aspects of monotreme reproductive biology is how they determine sex in the absence of the SRY gene that triggers testis development in most other mammals. Although monotremes share a XX female/XY male sex chromosome system with other mammals, their sex chromosomes show homology to the chicken Z chromosome, including the DMRT1 gene, which is a dosage-dependent sex determination gene in birds. In addition, monotremes feature an extraordinary multiple sex chromosome system. However, no sex determination gene has been identified as yet on any of the five X or five Y chromosomes and there is very little knowledge about the conservation and function of other known genes in the monotreme sex determination and differentiation pathway. We have analysed the expression pattern of four evolutionarily conserved genes that are important at different stages of sexual development in therian mammals. DMRT1 is a conserved sex-determination gene that is upregulated in the male developing gonad in vertebrates, while DMRT7 is a mammal-specific spermatogenesis gene. ATRX, a chromatin remodelling protein, lies on the therian X but there is a testis-expressed Y-copy in marsupials. However, in monotremes, the ATRX orthologue is autosomal. WT1 is an evolutionarily conserved gene essential for early gonadal formation in both sexes and later in testis development. We show that these four genes in the adult platypus have the same expression pattern as in other mammals, suggesting that they have a conserved role in sexual development independent of genomic location.
Collapse
|
30
|
|
31
|
Deakin JE, Koina E, Waters PD, Doherty R, Patel VS, Delbridge ML, Dobson B, Fong J, Hu Y, van den Hurk C, Pask AJ, Shaw G, Smith C, Thompson K, Wakefield MJ, Yu H, Renfree MB, Graves JAM. Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model mammals. Chromosome Res 2008; 16:1159-75. [PMID: 18987984 DOI: 10.1007/s10577-008-1266-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 01/20/2023]
Abstract
Marsupials are especially valuable for comparative genomic studies of mammals. Two distantly related model marsupials have been sequenced: the South American opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii), which last shared a common ancestor about 70 Mya. The six-fold opossum genome sequence has been assembled and assigned to chromosomes with the help of a cytogenetic map. A good cytogenetic map will be even more essential for assembly and anchoring of the two-fold wallaby genome. As a start to generating a physical map of gene locations on wallaby chromosomes, we focused on two chromosomes sharing homology with the human X, wallaby chromosomes X and 5. We devised an efficient strategy for mapping large conserved synteny blocks in non-model mammals, and applied this to generate dense maps of the X and 'neo-X' regions and to determine the arrangement of large conserved synteny blocks on chromosome 5. Comparisons between the wallaby and opossum chromosome maps revealed many rearrangements, highlighting the need for comparative gene mapping between South American and Australian marsupials. Frequent rearrangement of the X, along with the absence of a marsupial XIST gene, suggests that inactivation of the marsupial X chromosome does not depend on a whole-chromosome repression by a control locus.
Collapse
Affiliation(s)
- Janine E Deakin
- ARC Centre of Excellence for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JAM. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res 2008; 15:949-59. [PMID: 18185981 DOI: 10.1007/s10577-007-1185-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
Abstract
In eutherian ('placental') mammals, sex is determined by the presence or absence of the Y chromosome-borne gene SRY, which triggers testis determination. Marsupials also have a Y-borne SRY gene, implying that this mechanism is ancestral to therians, the SRY gene having diverged from its X-borne homologue SOX3 at least 180 million years ago. The rare exceptions have clearly lost and replaced the SRY mechanism recently. Other vertebrate classes have a variety of sex-determining mechanisms, but none shares the therian SRY-driven XX female:XY male system. In monotreme mammals (platypus and echidna), which branched from the therian lineage 210 million years ago, no orthologue of SRY has been found. In this study we show that its partner SOX3 is autosomal in platypus and echidna, mapping among human X chromosome orthologues to platypus chromosome 6, and to the homologous chromosome 16 in echidna. The autosomal localization of SOX3 in monotreme mammals, as well as non-mammal vertebrates, implies that SRY is absent in Prototheria and evolved later in the therian lineage 210-180 million years ago. Sex determination in platypus and echidna must therefore depend on another male-determining gene(s) on the Y chromosomes, or on the different dosage of a gene(s) on the X chromosomes.
Collapse
Affiliation(s)
- M C Wallis
- Comparative Genomics Group, Research School of Biological Sciences, the Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Waters PD, Marshall Graves JA, Thompson K, Sankovic N, Ezaz T. Identification of cryptic sex chromosomes and isolation of X- and Y-borne genes. Methods Mol Biol 2008; 422:239-251. [PMID: 18629671 DOI: 10.1007/978-1-59745-581-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Comparative molecular cytogenetics provides a powerful tool for deciphering the evolutionary history of vertebrate sex chromosomes. We have adapted cell culture and molecular cytogenetic techniques to study the sex chromosomes of many exotic mammals, birds, and reptiles. Here we describe differential chromosome banding and staining techniques that distinguish sex chromosomes in species with no morphologically distinct XY or ZW chromosome pairs. We describe a method to isolate, identify, and map genomic BAC clones from the Y chromosome, and we also identify strategies for isolating candidate sex chromosome genes.
Collapse
Affiliation(s)
- Paul D Waters
- Research School of Biological Sciences, The Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
34
|
King V, Goodfellow PN, Pearks Wilkerson AJ, Johnson WE, O'Brien SJ, Pecon-Slattery J. Evolution of the male-determining gene SRY within the cat family Felidae. Genetics 2007; 175:1855-67. [PMID: 17277366 PMCID: PMC1855139 DOI: 10.1534/genetics.106.066779] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/16/2007] [Indexed: 11/18/2022] Open
Abstract
In most placental mammals, SRY is a single-copy gene located on the Y chromosome and is the trigger for male sex determination during embryonic development. Here, we present comparative genomic analyses of SRY (705 bp) along with the adjacent noncoding 5' flank (997 bp) and 3' flank (948 bp) in 36 species of the cat family Felidae. Phylogenetic analyses indicate that the noncoding genomic flanks and SRY closely track species divergence. However, several inconsistencies are observed in SRY. Overall, the gene exhibits purifying selection to maintain function (omega = 0.815) yet SRY is under positive selection in two of the eight felid lineages. SRY has low numbers of nucleotide substitutions, yet most encode amino acid changes between species, and four different species have significantly altered SRY due to insertion/deletions. Moreover, fixation of nonsynonymous substitutions between sister taxa is not consistent and may occur rapidly, as in the case of domestic cat, or not at all over long periods of time, as observed within the Panthera lineage. The former resembles positive selection during speciation, and the latter purifying selection to maintain function. Thus, SRY evolution in cats likely reflects the different phylogeographic histories, selection pressures, and patterns of speciation in modern felids.
Collapse
Affiliation(s)
- V King
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex--Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol 2007; 18:389-400. [PMID: 17400006 DOI: 10.1016/j.semcdb.2007.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/16/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.
Collapse
Affiliation(s)
- Paul D Waters
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 2601, Canberra, Australia.
| | | | | |
Collapse
|
36
|
Yu H, Pask AJ, Shaw G, Renfree MB. Differential expression of WNT4 in testicular and ovarian development in a marsupial. BMC DEVELOPMENTAL BIOLOGY 2006; 6:44. [PMID: 17014734 PMCID: PMC1609105 DOI: 10.1186/1471-213x-6-44] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 12/14/2022]
Abstract
Background WNT4 is a key regulator of gonadal differentiation in humans and mice, playing a pivotal role in early embryogenesis. Using a marsupial, the tammar wallaby, in which most gonadal differentiation occurs after birth whilst the young is in the pouch, we show by quantitative PCR during early testicular and ovarian development that WNT4 is differentially expressed ingonads. Results Before birth, WNT4 mRNA expression was similar in indifferent gonads of both sexes. After birth, in females WNT4 mRNA dramatically increased during ovarian differentiation, reaching a peak by day 9–13 post partum (pp) when the ovarian cortex and medulla are first distinguishable. WNT4 protein was localised in the ovarian cortex and at the medullary boundary. WNT4 mRNA then steadily decreased to day 49, by which time all the female germ cells have entered meiotic arrest. In males, WNT4 mRNA was down-regulated in testes immediately after birth, coincident with the time that seminiferous cords normally form, and rose gradually after day 8. By day 49, when testicular androgen production normally declines, WNT4 protein was restricted to the Leydig cells. Conclusion This is the first localisation of WNT4 protein in developing gonads and is consistent with a role for WNT4 in steroidogenesis. Our data provide strong support for the suggestion that WNT4 not only functions as an anti-testis gene during early development, but is also necessary for later ovarian and testicular function.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA/genetics
- DNA/isolation & purification
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/genetics
- Immunohistochemistry
- Macropodidae/embryology
- Macropodidae/genetics
- Macropodidae/growth & development
- Male
- Molecular Sequence Data
- Ovary/embryology
- Ovary/growth & development
- Ovary/metabolism
- Phylogeny
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Testis/embryology
- Testis/growth & development
- Testis/metabolism
- Time Factors
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt4 Protein
Collapse
Affiliation(s)
- Hongshi Yu
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Pask
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Geoffrey Shaw
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| | - Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
37
|
Sankovic N, Delbridge ML, Grützner F, Ferguson-Smith MA, O'Brien PCM, Marshall Graves JA. Construction of a highly enriched marsupial Y chromosome-specific BAC sub-library using isolated Y chromosomes. Chromosome Res 2006; 14:657-64. [PMID: 16964572 DOI: 10.1007/s10577-006-1076-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/13/2006] [Accepted: 05/13/2006] [Indexed: 12/26/2022]
Abstract
The Y chromosome is perhaps the most interesting element of the mammalian genome but comparative analysis of the Y chromosome has been impeded by the difficulty of assembling a shotgun sequence of the Y. BAC-based sequencing has been successful for the human and chimpanzee Y but is difficult to do efficiently for an atypical mammalian model species (Skaletsky et al. 2003, Kuroki et al. 2006). We show how Y-specific sub-libraries can be efficiently constructed using DNA amplified from microdissected or flow-sorted Y chromosomes. A Bacterial Artificial Chromosome (BAC) library was constructed from the model marsupial, the tammar wallaby (Macropus eugenii). We screened this library for Y chromosome-derived BAC clones using DNA from both a microdissected Y chromosome and a flow-sorted Y chromosome in order to create a Y chromosome-specific sub-library. We expected that the tammar wallaby Y chromosome should detect approximately 100 clones from the 2.2 times redundant library. The microdissected Y DNA detected 85 clones, 82% of which mapped to the Y chromosome and the flow-sorted Y DNA detected 71 clones, 48% of which mapped to the Y chromosome. Overall, this represented a approximately 330-fold enrichment for Y chromosome clones. This presents an ideal method for the creation of highly enriched chromosome-specific sub-libraries suitable for BAC-based sequencing of the Y chromosome of any mammalian species.
Collapse
Affiliation(s)
- N Sankovic
- Comparative Genomics Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
In this work, a ligation-independent, fully gene-specific, nested polymerase chain reaction (PCR) method for the elucidation of 5' cDNA sequence is described and demonstrated for the first time. Two manifestations of the method, rapid amplification of cDNA ends (RACE) by lariat-dependent nested PCR 5' (RACE LaNe), at least as simple to perform as conventional RACE, were successfully applied to the murine housekeeping genes phosphoglycerate kinase 1 (PGK1), beta-actin (beta-ACT), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the alpha thalassemia mental retardation Y homolog (ATRY) gene of the marsupial, Macropus eugenii. Significantly, a new murine GAPDH 5' exon, separated by 365 kb of intronic sequence from previously annotated GAPDH sequence, was discovered using 5'RACE LaNe.
Collapse
Affiliation(s)
- Daniel Jonathan Park
- Department of Zoology, The University of Melbourne, 22 Rutland Street, Clifton Hill, Melbourne, Vic., 3068, Australia.
| |
Collapse
|
39
|
Abstract
Sex chromosomes--particularly the human Y--have been a source of fascination for decades because of their unique transmission patterns and their peculiar cytology. The outpouring of genomic data confirms that their atypical structure and gene composition break the rules of genome organization, function, and evolution. The X has been shaped by dosage differences to have a biased gene content and to be subject to inactivation in females. The Y chromosome seems to be a product of a perverse evolutionary process that does not select the fittest Y, which may cause its degradation and ultimate extinction.
Collapse
Affiliation(s)
- Jennifer A Marshall Graves
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
40
|
Abstract
In eutherian mammals sexual differentiation occurs during fetal development, making experimental manipulation difficult, unlike in marsupials. We are investigating the roles of several key genes and hormones whose exact role in gonadal differentiation is still unclear using the tammar wallaby (Macropus eugenii) as a model. As in humans, unlike in mice, the testis-determining gene SRY is expressed in male tammar fetuses in many tissues over an extended period. Not all sexual differentiation depends on testicular hormones. Scrotum and mammary glands are under the control of X-linked gene(s). Our demonstration of DMRT1 expression in tammar and mouse ovaries suggests it has a wider role than previously thought. The Y-borne copy of ATRX (ATRY) is coexpressed with DMRT1 in developing testis. Gonadal sex reversal can be induced in males by neonatal oestrogen treatment and in females by grafting developing ovaries to males or culturing them in minimal medium. Treatments of developing young with various androgens, and studies of steroid metabolism have shown that the steroid androstenediol may have a previously unrecognised role in virilisation. Our studies using a marsupial model have given some surprising insights into the evolution and control of sexual development in all mammals.
Collapse
|
41
|
Park DJ, Pask AJ, Huynh K, Harley VR, Renfree MB, Graves JAM. Characterisation of the marsupial-specific ATRY gene: Implications for the evolution of male-specific function. Gene 2005; 362:29-36. [PMID: 16209912 DOI: 10.1016/j.gene.2005.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/19/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
Many or most genes on the mammal Y chromosome evolved a testis-specific function after diverging from an X-borne copy with a general function in both sexes. In marsupial but not eutherian mammals, a testis-specific orthologue (ATRY) of the widely expressed X-borne ATRX gene lies on the Y chromosome. Since mutations in human ATRX cause sex reversal, it is possible that one function of ATRY in marsupials is testicular differentiation. We report here the isolation and sequencing of the tammar wallaby (Macropus eugenii) ATRY cDNA, and comparison of its sequence with that of tammar ATRX. The evolution of a testis-specific function for the ATRY protein distinct from the general role of ATRX in both sexes has been accompanied by sequence changes in many protein domains that would alter protein binding partners. A large open reading frame encodes a 1771 amino acid ATRY protein that has diverged extensively from ATRX. The conservation and loss of particular motifs identify those required for testicular function (ATRY) and function in other tissues (ATRX).
Collapse
Affiliation(s)
- Daniel J Park
- Department of Zoology, The University of Melbourne, Melbourne Vic. 3010, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The elucidation of cDNA sequence remains problematic in cases such as genes possessing long coding regions, low expression levels, or poor library coverage. The recently described Universal Fast Walk (UFW) procedure offers a means of determining DNA sequence adjacent to characterised regions. To date, however, the approach has been applied only to genomic DNA. We demonstrate the first successful application of the UFW procedure to the elucidation of cDNA sequence, a previously unknown region of the large tammar wallaby ATRX gene in the theoretically more challenging 3' direction. To do this, we modified the previously published method by including an initial linear amplification and a final, fully nested PCR. We also exchanged buffers between preparative enzyme reactions to ensure optimal conditions for successive steps. These additional steps ensured a product not observed in their absence. UFW, therefore, represents a powerful alternative mechanism for the cloning and sequencing of cDNA, harnessing the exquisite sensitivity and specificity of fully nested PCR in challenging cloning scenarios where conventional 5' or 3' RACE may fail.
Collapse
Affiliation(s)
- Daniel J Park
- Department of Zoology, Melbourne University, Victoria, Australia.
| | | | | |
Collapse
|
43
|
Park DJ, Pask AJ, Huynh K, Renfree MB, Harley VR, Graves JAM. Comparative analysis of ATRX, a chromatin remodeling protein. Gene 2004; 339:39-48. [PMID: 15363844 DOI: 10.1016/j.gene.2004.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/08/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
The ATRX protein, associated with X-linked alpha-thalassaemia, mental retardation and developmental abnormalities including genital dysgenesis, has been proposed to function as a global transcriptional regulator within a multi-protein complex. However, an understanding of the composition and mechanics of this machinery has remained elusive. We applied inter-specific comparative analysis to identify conserved elements which may be involved in regulating the conformation of chromatin. As part of this study, we cloned and sequenced the entire translatable coding region (7.4 kb) of the ATRX gene from a model marsupial (tammar wallaby, Macropus eugenii). We identify an ATRX ancestral core, conserved between plants, fish and mammals, comprising the cysteine-rich and SWI2/SNF2 helicase-like regions and protein interaction domains. Our data are consistent with the model of the cysteine-rich region as a DNA-binding zinc finger adjacent to a protein-binding (plant homeodomain-like) domain. Alignment of vertebrate ATRX sequences highlights other conserved elements, including a negatively charged mammalian sequence which we propose to be involved in binding of positively charged histone tails.
Collapse
Affiliation(s)
- Daniel J Park
- Department of Zoology, The University of Melbourne, Gate 12 Royal Parade, Melbourne 3010, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Carvalho-Silva DR, O'Neill RJW, Brown JD, Huynh K, Waters PD, Pask AJ, Delbridge ML, Graves JAM. Molecular characterization and evolution of X and Y-borne ATRX homologues in American marsupials. Chromosome Res 2004; 12:795-804. [PMID: 15702418 DOI: 10.1007/s10577-005-5376-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Accepted: 09/25/2004] [Indexed: 12/01/2022]
Abstract
In eutherians, the sex-reversing ATRX gene on the X has no homologue on the Y chromosome. However, testis-specific and ubiquitously expressed X-borne genes have been identified in Australian marsupials. We studied nucleotide sequence and chromosomal location of ATRX homologues in two American marsupials, the opossums Didelphis virginiana and Monodelphis domestica. A PCR fragment of M. domestica ATRX was used to probe Southern blots and to screen male genomic libraries. Southern analysis demonstrated ATRX homologues on both X and Y in D. virginiana, and two clones were isolated which hybridized to a single position on the Y chromosome in male-derived cells but to multiple sites of the X in female cells. In M. domestica, there was a single clone that mapped to the X but not to the Y, suggesting that it represents the M. domestica ATRX. However a male-specific band was detected in Southern blots probed with the D. virginiana ATRY and with a mouse ATRX clone, which implies that the Y copy in M. domestica has diverged further from other ATRX homologues. Thus there appears to be a Y-borne copy of ATRY in American, as well as Australian marsupials, although it has diverged in sequence, as have other Y genes that are testis-specific in both eutherian and marsupial lineages.
Collapse
Affiliation(s)
- Denise R Carvalho-Silva
- Research School of Biological Science, Australian National University, ACT 0200, Canberra, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Park DJ. 3' RACE LaNe: a simple and rapid fully nested PCR method to determine 3'-terminal cDNA sequence. Biotechniques 2004; 36:586-8, 590. [PMID: 15088375 DOI: 10.2144/04364bm04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Daniel J Park
- Dept. of Zoology, Melbourne University, VIC 3010, Australia.
| |
Collapse
|
46
|
Abstract
The human Y chromosome is running out of time. In the last 300 million years, it has lost 1393 of its original 1438 genes, and at this rate it will lose the last 45 in a mere 10 million years. But there has been a proposal that perhaps rescue is at hand in the form of recently discovered gene conversion within palindromes. However, I argue here that although conversion will increase the frequency of variation of the Y (particularly amplification) between Y chromosomes in a population, it will not lead to a drive towards a more functional Y. The forces of evolution have made the Y a genetically isolated, non-recombining entity, vulnerable to genetic drift and selection for favourable new variants sharing the Y with damaging mutations. Perhaps it will even speed up the decline of the Y chromosome and the onset of a new round of sex-chromosome differentiation. The struggle to preserve males may perhaps lead to hominid speciation.
Collapse
|
47
|
Santucciu C, Grützner F, Carvalho-Silva DR, Graves JAM. Isolation of chromosomal regions controlling intersex development in a marsupial. Cytogenet Genome Res 2003; 101:224-8. [PMID: 14684987 DOI: 10.1159/000074341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/22/2003] [Indexed: 11/19/2022] Open
Abstract
A marsupial (Sminthopsis douglasi) with bilateral intersexuality had a hemiscrotum on the right side and a hemi-pouch with nipples on the left. A normal female karyotype (2n = 14, XX) was present in cells from the right (male) side, while cells from the left (female) side initially had a female karyotype plus two dot-like chromosomes (2n = 14, XX + 2B). It is proposed that the dots represented a region deleted from the X chromosome that contains the "pouch-mammary/scrotum" (PMS) switch gene whose dosage determines development of a pouch and teats (two doses) or a scrotum (one dose). Mis-segregation early in embryonic development produced a lineage with one normal X and one deleted X (male side), and a lineage with a normal and deleted X, plus two copies of the deleted region (female side). The origin of the supernumerary elements was therefore investigated in the expectation that they may contain the long-sought pouch-mammary/scrotum switch gene. Several elements were microdissected, and amplified DNA was used for in situ hybridization, producing signals in five different chromosome regions including the X. This could represent a region of the X that contains, as well as PMS, repetitive DNA that is present also at other chromosomal sites.
Collapse
Affiliation(s)
- C Santucciu
- Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
48
|
Abstract
Weird mammals are of two types. Highly divergent mammals, such as the marsupials and monotremes, have informed us of the evolutionary history of the Y chromosome and sex-determining gene, and the recently specialized rodents can help us predict its future. The Y chromosome has had a short but eventful history, and is already heading briskly for oblivion. It originated as a homologous partner of the X when it acquired a sex-determining gene (not necessarily SRY). Most of the genes on the Y, even those with a male-specific function, evolved from genes now on the X. At the mercy of a high rate of variability and the forces of drift and selection, the Y has lost genes at a rate of 3-6 genes/million years, sparing those that acquired critical male-specific functions. Even these genes have disappeared from one mammalian lineage or another as their functions were usurped by genes elsewhere in the genome. The mammalian testis-determining gene, SRY, is a typical Y-borne gene. It arose by truncation of a gene (SOX3) on the X that is expressed in brain development, and it may work by interacting with (inhibiting?) related genes, including SOX9. Variant sex-determining systems in rodents show that the action of SRY can change, as it evidently has in the mouse, and SRY can be inactivated, as in akodont rodents, or even completely superseded, as in mole voles.
Collapse
Affiliation(s)
- J A Marshall Graves
- Research School of Biological Science, Australian National University, Canberra, Australia.
| |
Collapse
|
49
|
Pask AJ, Harry JL, Graves JAM, O'Neill RJW, Layfield SL, Shaw G, Renfree MB. SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis 2002; 33:131-9. [PMID: 12124946 DOI: 10.1002/gene.10096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to an essential role in chondrogenesis, SOX9 is a highly conserved and integral part of the testis determining pathway in human and mouse. To determine whether SOX9 is involved in sex determination in noneutherian mammals we cloned a marsupial orthologue and studied its expression. The tammar wallaby SOX9 gene proved to be highly conserved, and maps to a region of the tammar genome syntenic to human chromosome 17. Marsupial SOX9 transcripts were detected by RT-PCR in the developing limb buds and both the developing ovary and testis from the first sign of gonadal development through to adulthood. Northern blot, in situ hybridisation, and immunohistochemical analyses showed that SOX9 reaches high levels of expression in the developing testis, where it is confined to the Sertoli cell nuclei, and the brain. This is similar to the expression pattern seen in human and mouse embryos and is consistent with a conserved role for SOX9 in vertebrate brain, skeletal, and gonadal development. In addition, SOX9 was expressed in the developing scrotum and mammary gland primordium regions of the tammar up to the time of birth. SOX9 protein was also detected in the developing Wolffian duct epithelium in the male mesonephros. These previously undescribed locations of SOX9 expression suggest that SOX9 may play additional roles in the differentiation of the marsupial reproductive system.
Collapse
Affiliation(s)
- Andrew J Pask
- Department of Zoology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Comparisons between species reveal when and how SRY, the testis-determining gene, evolved. SRY is younger than the Y chromosome, and so was probably not the original mammal sex-determining gene that defined the Y. SRY is typical of genes on the Y chromosome. It arose from a gene on the proto-sex chromosome pair with a function (possibly brain-determination) in both sexes. It has been buffeted in evolution, and shows variation in copy number, structure and expression. And it is dispensable, having been lost at least twice independently in different rodent lineages. At the observed rate of attrition, the human Y chromosome will be gone in 5-10 million years. This could lead to the extinction of our species or to a burst of hominid speciation.
Collapse
|