1
|
Gómez-Serrano MÁ. Improving beach natural debris management for biodiversity conservation. Trends Ecol Evol 2024; 39:1063-1065. [PMID: 39424532 DOI: 10.1016/j.tree.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Natural debris deposited by the sea is essential for the functioning of the beach ecosystem. As tourist demands on the coast grow, aesthetic values become more important, and the indiscriminate cleaning of debris spreads from urban to natural beaches. A change in beach debris management is needed to ensure that organic debris plays its role where the sea has deposited it.
Collapse
Affiliation(s)
- Miguel Ángel Gómez-Serrano
- Department of Microbiology and Ecology, Faculty of Biological Sciences, University of Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Vagnon C, Olden JD, Boulêtreau S, Bruel R, Chevalier M, Garcia F, Holtgrieve G, Jackson M, Thebault E, Tedesco PA, Cucherousset J. Ecosystem synchrony: an emerging property to elucidate ecosystem responses to global change. Trends Ecol Evol 2024; 39:1080-1089. [PMID: 39217060 DOI: 10.1016/j.tree.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Understanding ecosystem responses to global change have long challenged scientists due to notoriously complex properties arising from the interplay between biological and environmental factors. We propose the concept of ecosystem synchrony - that is, similarity in the temporal fluctuations of an ecosystem function between multiple ecosystems - to overcome this challenge. Ecosystem synchrony can manifest due to spatially correlated environmental fluctuations (Moran effect), exchange of energy, nutrients, and organic matter and similarity in biotic characteristics across ecosystems. By taking advantage of long-term surveys, remote sensing and the increased use of high-frequency sensors to assess ecosystem functions, ecosystem synchrony can foster our understanding of the coordinated ecosystem responses at unexplored spatiotemporal scales, identify emerging portfolio effects among ecosystems, and deliver signals of ecosystem perturbations.
Collapse
Affiliation(s)
- Chloé Vagnon
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stéphanie Boulêtreau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Rosalie Bruel
- OFB, DRAS, Service EcoAqua, Aix-en-Provence, France; Pôle R&D ECLA, Aix-en-Provence, France
| | - Mathieu Chevalier
- IFREMER-DYNECO-LEBCO, Centre de Bretagne, CS 10070, 29280 Plouzané, France
| | - Flavien Garcia
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Gordon Holtgrieve
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Michelle Jackson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Elisa Thebault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Science (iEES), Paris, France
| | - Pablo A Tedesco
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Julien Cucherousset
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
3
|
Campbell LP, Bauer AM, Tavares Y, Guralnick RP, Reuman D. Broadscale spatial synchrony in a West Nile virus mosquito vector across multiple timescales. Sci Rep 2024; 14:12479. [PMID: 38816487 PMCID: PMC11139987 DOI: 10.1038/s41598-024-62384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Insects often exhibit irruptive population dynamics determined by environmental conditions. We examine if populations of the Culex tarsalis mosquito, a West Nile virus (WNV) vector, fluctuate synchronously over broad spatial extents and multiple timescales and whether climate drives synchrony in Cx. tarsalis, especially at annual timescales, due to the synchronous influence of temperature, precipitation, and/or humidity. We leveraged mosquito collections across 9 National Ecological Observatory Network (NEON) sites distributed in the interior West and Great Plains region USA over a 45-month period, and associated gridMET climate data. We utilized wavelet phasor mean fields and wavelet linear models to quantify spatial synchrony for mosquitoes and climate and to calculate the importance of climate in explaining Cx. tarsalis synchrony. We also tested whether the strength of spatial synchrony may vary directionally across years. We found significant annual synchrony in Cx. tarsalis, and short-term synchrony during a single period in 2018. Mean minimum temperature was a significant predictor of annual Cx. tarsalis spatial synchrony, and we found a marginally significant decrease in annual Cx. tarsalis synchrony. Significant Cx. tarsalis synchrony during 2018 coincided with an anomalous increase in precipitation. This work provides a valuable step toward understanding broadscale synchrony in a WNV vector.
Collapse
Affiliation(s)
- Lindsay P Campbell
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA.
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA.
| | - Amely M Bauer
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA
| | - Yasmin Tavares
- Department of Ecology, Evolution, and Environmental Biology, Graduate School of Arts and Sciences, Columbia University, New York, NY, 10025, USA
| | | | - Daniel Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
4
|
Wanner MS, Walter JA, Reuman DC, Bell TW, Castorani MCN. Dispersal synchronizes giant kelp forests. Ecology 2024; 105:e4270. [PMID: 38415343 DOI: 10.1002/ecy.4270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Spatial synchrony is the tendency for population fluctuations to be correlated among different locations. This phenomenon is a ubiquitous feature of population dynamics and is important for ecosystem stability, but several aspects of synchrony remain unresolved. In particular, the extent to which any particular mechanism, such as dispersal, contributes to observed synchrony in natural populations has been difficult to determine. To address this gap, we leveraged recent methodological improvements to determine how dispersal structures synchrony in giant kelp (Macrocystis pyrifera), a global marine foundation species that has served as a useful system for understanding synchrony. We quantified population synchrony and fecundity with satellite imagery across 11 years and 880 km of coastline in southern California, USA, and estimated propagule dispersal probabilities using a high-resolution ocean circulation model. Using matrix regression models that control for the influence of geographic distance, resources (seawater nitrate), and disturbance (destructive waves), we discovered that dispersal was an important driver of synchrony. Our findings were robust to assumptions about propagule mortality during dispersal and consistent between two metrics of dispersal: (1) the individual probability of dispersal and (2) estimates of demographic connectivity that incorporate fecundity (the number of propagules dispersing). We also found that dispersal and environmental conditions resulted in geographic clusters with distinct patterns of synchrony. This study is among the few to statistically associate synchrony with dispersal in a natural population and the first to do so in a marine organism. The synchronizing effects of dispersal and environmental conditions on foundation species, such as giant kelp, likely have cascading effects on the spatial stability of biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Miriam S Wanner
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan A Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Center for Watershed Sciences, University of California, Davis, California, USA
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|