1
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Wan D, Zhao S, Zhang C, Xu F, Wang H, Tao S, Qiu Z, Jiang H, Li D, Wang F, Li D, Chen J, Wang Y, Yan Y, Zhao Y, Gao X, Jin B, Liu D, Zhang M, Feng J, Hou S, Wang M, Chen T, Lin M, Han J, Wen X, Jiang W, Liu L, Long Y, Zhao Y, Kira JI, Liu Z, Chai G, Hao J. Novel Meningoencephalomyelitis Associated With Vimentin IgG Autoantibodies. JAMA Neurol 2025:2828930. [PMID: 39836414 DOI: 10.1001/jamaneurol.2024.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Importance Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies. Objective To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody. Design, Setting, and Participants This retrospective case series study included samples collected from April 2021 to May 2024 at a tertiary referral hospital among patients with uncharacterized CNS autoimmune disorders and similar clinical and radiological features. Single-cell RNA sequencing (scRNA-seq) was performed on cerebrospinal fluid (CSF) cells of 2 index patients to identify the putative target antigen of the clonally expanded B cells. A comprehensive screening for additional patients was conducted using blinded cell-based and tissue-based assay. Candidate patients were followed up for a median (range) duration of 23 (5-31) months. Exposures scRNA-seq, autoantibody characterization, and testing. Main Outcomes and Measures Detection of the autoantibody and characterization of the associated autoimmune meningoencephalomyelitis. Results Fourteen candidate patients (10 [71%] female; median [IQR] age, 33 [23-41] years) were identified. Initially, CSF from 2 female patients with unknown encephalomyelitis showed astrocytic reactivity on rat tissue but was negative for GFAP IgG. A total of 17 of 37 clonally expanded B cell clonotypes (46%) in their CSF expressed IgG autoantibodies targeting the astrocytic intermediate filament protein vimentin. Subsequent screening identified 12 additional patients. These 14 patients shared a unique clinical profile characterized by relapsing courses and symptoms prominently involving the cerebellum, brainstem, and corticospinal tract (CST). All patients also exhibited elevated CSF protein and cells, intrathecal immunoglobulin synthesis, and magnetic resonance imaging (MRI) showing bilateral lesions on CST. Notably, 8 of 12 patients (67%) who received first-line immunotherapy at their first episode responded well. At the last follow-up, 11 patients (79%) experienced significant disability (modified Rankin Scale ≥3). Conclusions and Relevance In this case series, autoantibodies targeting the astrocytic intermediate filament protein vimentin were identified in patients with previously undifferentiated meningoencephalomyelitis and common radiographic features.
Collapse
Affiliation(s)
- Dongshan Wan
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Chen Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Fang Xu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Huizi Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Shaoxin Tao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Zhandong Qiu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Hao Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Dawei Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Fei Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Dong Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jiahao Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yan Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yao Yan
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yan Zhao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Xiaohan Gao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Bingxue Jin
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Di Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Mengyao Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jingjing Feng
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Shiyue Hou
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Mingyang Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Teng Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Ming Lin
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Wei Jiang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yinan Zhao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jun-Ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, International University of Health and Welfare, Okawa, Japan
| | - Zheng Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
3
|
Sun B, Fernandes D, Kienzler AK, Paneva S, Harrison R, Ramanathan S, Harrison AL, Makuch M, Fichtner ML, Donat RF, Akdeniz D, Bayuangga H, Im MG, Williams R, Vasconcelos A, Thomsen S, Fower A, Sun R, Fox H, Mgbachi V, Davies A, Tseng M, Handel A, Kelly M, Zhao M, Bancroft J, Bashford-Rogers R, Pluvinage JV, Dandekar R, Alvarenga BD, Dustin L, Rinaldi S, Owens R, Anthony D, Bennett DL, Waters P, Davis SJ, Wilson MR, O'Connor KC, Soltys J, Carvalho AL, Irani SR. Permissive central tolerance plus defective peripheral checkpoints licence pathogenic memory B cells in CASPR2-antibody encephalitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.631703. [PMID: 39868113 PMCID: PMC11760777 DOI: 10.1101/2025.01.14.631703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood. We address this concept in patients with CASPR2-autoantibody encephalitis and healthy controls. In both groups, comparable and high (~0.5%) frequencies of unmutated CASPR2-reactive naïve B cells were identified. By contrast, CASPR2-reactive memory B cells were exclusive to patients, and their B cell receptors demonstrated affinity-enhancing somatic mutations with heterogenous binding kinetics. These effector molecules possessed epitope-dependent pathogenic effects in vitro neuronal cultures and in vivo. The unmutated common ancestors of these memory B cells showed a distinctive balance between strong CASPR2 reactivity and very limited binding across the remaining human proteome. Our results are the first to propose mechanisms underlying autoantigen-specific tolerance in humans. We identify permissive central tolerance, defective peripheral tolerance and heterogenous autoantibody binding properties as sequential pathogenic steps which licence CASPR2-directed pathology. By leveraging the basic immunobiology, we rationally direct tolerance-restoring approaches in CASPR2-antibody diseases. This paradigm is applicable across autoimmune conditions.
Collapse
Affiliation(s)
- Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Dominique Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Anne-Kathrin Kienzler
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sofija Paneva
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruby Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Sudarshini Ramanathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney; Department of Neurology, Concord Hospital, Sydney, Australia
| | - Anna L Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mateusz Makuch
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Miriam L Fichtner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Robert F Donat
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Deniz Akdeniz
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Halwan Bayuangga
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Min Gyu Im
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Robyn Williams
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Vasconcelos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Selina Thomsen
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew Fower
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ruyue Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Hannah Fox
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Victor Mgbachi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Alexander Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Adam Handel
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
| | - Mark Kelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Meng Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - John V Pluvinage
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bonny D Alvarenga
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lynn Dustin
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Ray Owens
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, United Kingdom
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Michael R Wilson
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06511, USA
| | - John Soltys
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, OX3 9DU, Oxford, United Kingdom
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
4
|
Binks SNM. mAbsolutely FABulous: From a case of mistaken identity to pinpoint precision in the antibodies formerly known as 'VGKC'. Brain Behav Immun 2025; 123:838-839. [PMID: 39477078 DOI: 10.1016/j.bbi.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Sophie N M Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK.
| |
Collapse
|
5
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Leypoldt F. Strategies to improve autoimmune neurological diseases treatment. Rev Neurol (Paris) 2024; 180:888-894. [PMID: 39299843 DOI: 10.1016/j.neurol.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
There is a need to improve therapies in autoimmune neurologic conditions. Yet which strategic objectives are required, what are the barriers that stand before reaching them, and what are the options to address them? This article tries to summarize these objectives and their respective barriers. It discusses the difficulties in identifying molecular targets, biomarker-defined subgroups, the merits of upstream and downstream-targeted therapies, the need to develop autoreactivity-specific treatments in contrast to cell-type specific therapies, and the "evidence-bottleneck". Its focus is on autoantigen-specific autoimmunopathies in neurology. It also discusses the role of B- and T-cells in autoimmune neurology and how these can be exploited therapeutically. Finally, it argues for improved training of present and future neuroimmunologists.
Collapse
Affiliation(s)
- F Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel and Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
8
|
van Hoof S, Kreye J, Cordero-Gómez C, Hoffmann J, Momsen Reincke S, Sánchez-Sendin E, Duong SL, Upadhya M, Dhangar D, Michór P, Woodhall GL, Küpper M, Oder A, Kuchling J, Koch SP, Mueller S, Boehm-Sturm P, von Kries JP, Finke C, Kirschstein T, Wright SK, Prüss H. Human cerebrospinal fluid monoclonal CASPR2 autoantibodies induce changes in electrophysiology, functional MRI, and behavior in rodent models. Brain Behav Immun 2024; 122:266-278. [PMID: 39142424 DOI: 10.1016/j.bbi.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Anti-contactin associated protein receptor 2 (CASPR2) encephalitis is a severe autoimmune encephalitis with a variable clinical phenotype including behavioral abnormalities, cognitive decline, epileptic seizures, peripheral nerve hyperexcitability and neuropathic pain. The detailed mechanisms of how CASPR2 autoantibodies lead to synaptic dysfunction and clinical symptoms are largely unknown. Aiming for analyses from the molecular to the clinical level, we isolated antibody-secreting cells from the cerebrospinal fluid of two patients with CASPR2 encephalitis. From these we cloned four anti-CASPR2 human monoclonal autoantibodies (mAbs) with strong binding to brain and peripheral nerves. All were highly hypermutated and mainly of the IgG4 subclass. Mutagenesis studies determined selective binding to the discoidin domain of CASPR2. Surface plasmon resonance revealed affinities with dissociation constants KD in the pico- to nanomolar range. CASPR2 mAbs interrupted the interaction of CASPR2 with its binding partner contactin 2 in vitro and were internalized after binding to CASPR2-expressing cells. Electrophysiological recordings of rat hippocampal slices after stereotactic injection of CASPR2 mAbs showed characteristic afterpotentials following electrical stimulation. In vivo experiments with intracerebroventricular administration of human CASPR2 mAbs into mice and rats showed EEG-recorded brain hyperexcitability but no spontaneous recurrent seizures. Behavioral assessment of infused mice showed a subtle clinical phenotype, mainly affecting sociability. Mouse brain MRI exhibited markedly reduced resting-state functional connectivity without short-term structural changes. Together, the experimental data support the direct pathogenicity of CASPR2 autoantibodies. The minimally invasive EEG and MRI techniques applied here may serve as novel objective, quantifiable tools for improved animal models, in particular for subtle neuropsychiatric phenotypes or repeated measurements.
Collapse
Affiliation(s)
- Scott van Hoof
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - César Cordero-Gómez
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Julius Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany
| | - Sophie L Duong
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Manoj Upadhya
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Divya Dhangar
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Paulina Michór
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Gavin L Woodhall
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Maraike Küpper
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany, Center of Transdisciplinary Neurosciences Rostock (CTNR), Germany
| | - Andreas Oder
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Neurocure Cluster of Excellence, NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Center for Stroke Research Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Germany; Charité 3R, Replace, Reduce, Refine, Charité - Universitätsmedizin Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Neurocure Cluster of Excellence, NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany, Center of Transdisciplinary Neurosciences Rostock (CTNR), Germany
| | - Sukhvir K Wright
- Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, UK; Department of Paediatric Neurology, The Birmingham Women's and Children's Hospital National Health Service Foundation Trust, Birmingham, UK
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany.
| |
Collapse
|
9
|
Joubert B. The neurobiology and immunology of CASPR2-associated neurological disorders. Rev Neurol (Paris) 2024; 180:950-956. [PMID: 39341757 DOI: 10.1016/j.neurol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
CASPR2-associated neurological disorders encompass a wide clinical spectrum broadly divided into overlapping three autoimmune syndromes: CASPR2 limbic encephalitis, Morvan syndrome, and Isaacs syndrome. CASPR2 is a neuronal protein expressed at different sites in the central and peripheral nervous system and has a variety of roles and functions regarding neuronal excitability, synaptic plasticity, and homeostasis of inhibitory networks, most of which are only partially understood. CASPR2 antibodies have various pathogenic effects including internalization of CASPR2, disruption of protein-protein interactions, and, possibly, complement activation. Their pathogenic effect is well demonstrated in the limbic encephalitis phenotype, but the role of pathogenic antibodies in the development of other clinical manifestations is less clear. CASPR2 limbic encephalitis also differ from the other CASPR2-associated disorders in regard to HLA allele and paraneoplastic associations, suggesting it has immunological mechanisms distinct from the other clinical forms. Future studies are needed to better understand how the immunological alterations lead to the different phenotypes associated with CASPR2 antibodies.
Collapse
Affiliation(s)
- B Joubert
- Service de neurologie clinique et fonctionnelle, groupe hospitalier Sud, hospices civils de Lyon, Lyon, France; Centre de référence pour les encéphalites auto-immunes et les syndromes neurologiques paranéoplasiques, hospices civils de Lyon, Lyon, France.
| |
Collapse
|
10
|
Li LY, Keles A, Homeyer MA, Prüss H. Antibodies in neurological diseases: Established, emerging, explorative. Immunol Rev 2024; 328:283-299. [PMID: 39351782 PMCID: PMC11659937 DOI: 10.1111/imr.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Within a few years, autoantibodies targeting the nervous system resulted in a novel disease classification. For several of them, which we termed 'established', direct pathogenicity has been proven and now guides diagnostic pathways and early immunotherapy. For a rapidly growing number of further anti-neuronal autoantibodies, the role in disease is less clear. Increasing evidence suggests that they could contribute to disease, by playing a modulating role on brain function. We therefore suggest a three-level classification of neurological autoantibodies according to the degree of experimentally proven pathogenicity and strength of clinical association: established, emerging, explorative. This may facilitate focusing on clinical constellations in which autoantibody-mediated mechanisms have not been assumed previously, including autoimmune psychosis and dementia, cognitive impairment in cancer, and neurodegenerative diseases. Based on recent data reviewed here, humoral autoimmunity may represent an additional "super-system" for brain health. The "brain antibody-ome", that is, the composition of thousands of anti-neuronal autoantibodies, may shape neuronal function not only in disease, but even in healthy aging. Towards this novel concept, extensive research will have to elucidate pathogenicity from the atomic to the clinical level, autoantibody by autoantibody. Such profiling can uncover novel biomarkers, enhance our understanding of underlying mechanisms, and identify selective therapies.
Collapse
Affiliation(s)
- Lucie Y. Li
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Amelya Keles
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Marie A. Homeyer
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Harald Prüss
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| |
Collapse
|
11
|
Cleaver J, Ceronie B, Strippel C, Handel A, Irani SR. The immunology underlying CNS autoantibody diseases. Rev Neurol (Paris) 2024; 180:916-930. [PMID: 39289136 DOI: 10.1016/j.neurol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
The past two decades have seen a considerable paradigm shift in the way autoimmune CNS disorders are considered, diagnosed, and treated; largely due to the discovery of novel autoantibodies directed at neuroglial surface or intracellular targets. This approach has enabled multiple bona fide CNS autoantibody-associated diseases to thoroughly infiltrate the sphere of clinical neurology, facilitating advances in patient outcomes. This review focusses on the fundamental immunological concepts behind CNS autoantibody-associated diseases. First, we briefly review the broad phenotypic profiles of these conditions. Next, we explore concepts around immune checkpoints and the related B cell lineage. Thirdly, the sources of autoantibody production are discussed alongside triggers of tolerance failure, including neoplasms, infections and iatrogenic therapies. Penultimately, the role of T cells and leucocyte trafficking into the CNS are reviewed. Finally, biological insights from responses to targeted immunotherapies in different CNS autoantibody-associated diseases are summarised. The continued and rapid expansion of the CNS autoantibody-associated field holds promise for further improved diagnostic and therapeutic paradigms, ultimately leading to further improvements in patient outcomes.
Collapse
Affiliation(s)
- J Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - B Ceronie
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - C Strippel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - A Handel
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - S R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
12
|
Shin SJ, Jang Y, Ahn SH, Mon SY, You JH, An HY, Sun CH, Koh Y, Chu K, Lee SK, Lee S. Clonal hematopoiesis in LGI1-antibody encephalitis. Ann Clin Transl Neurol 2024; 11:2785-2791. [PMID: 39199016 PMCID: PMC11514903 DOI: 10.1002/acn3.52192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE Leucine-rich glioma-inactivated 1 (LGI1)-antibody encephalitis (LGI1e), the major form of autoimmune encephalitis (AE) presented with memory loss and faciobrachial dystonic seizure, commonly develops in aged population. Hematologic aging is often accompanied by clonal hematopoiesis (CH), a phenomenon in which specific mutations accumulate, potentially leading to autoimmune disorders or malignancies. Our research aimed to investigate the connection between clonal hematopoiesis of indeterminate potential (CHIP) and LGI1e. METHODS Peripheral blood samples from consecutive LGI1e patients were collected and analyzed for 24 clonal CHIP using targeted gene sequencing. The results were compared to a control dataset from an ethnically matched health care cohort. Patient characteristics were analyzed based on their CHIP status. RESULTS A total of 52 LGI1e patients were enrolled for this study. Among them, three patients (5.8%) exhibited functional mutations in the ASXL1 gene, one of the CHIP-associated genes analyzed by targeted sequencing. This frequency was significantly higher compared to that of the control cohort (1%, p = 0.015). Nevertheless, the patients showed no difference in the clinical characteristics, laboratory results, and immunotherapy outcomes. INTERPRETATION LGI1e showed high frequency of ASXL1 functional mutation in the CHIP analysis, which may contribute to the underlying pathogenesis. Further research is needed to determine its direct role in the development of autoimmunity and disease progression.
Collapse
Affiliation(s)
- Soo Jean Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
| | - Yoonhyuk Jang
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Soo Hyun Ahn
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Su Yee Mon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Ji Hye You
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | | | | | - Youngil Koh
- NOBO Medicine Inc.Seoul04799South Korea
- Department of Internal MedicineSeoul National University HospitalSeoul03080South Korea
- Center for Precision MedicineSeoul National University HospitalSeoul03080South Korea
| | - Kon Chu
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Sang Kun Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| | - Soon‐Tae Lee
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
13
|
Talucci I, Maric HM. Epitope landscape in autoimmune neurological disease and beyond. Trends Pharmacol Sci 2024; 45:768-780. [PMID: 39181736 DOI: 10.1016/j.tips.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
Autoantibody binding has a central role in autoimmune diseases and has also been linked to cancer, infections, and behavioral disorders. Autoimmune neurological diseases remain misclassified also due to an incomplete understanding of the underlying disease-specific epitopes. Such epitopes are crucial for both pathology and diagnosis, but have historically been overlooked. Recent technological advancements have enabled the exploration of these epitopes, potentially opening novel clinical avenues. The precise identification of novel B and T cell epitopes and their autoreactivity has led to the discovery of autoantigen-specific biomarkers for patients at high risk of autoimmune neurological diseases. In this review, we propose utilizing newly available synthetic and cellular-surface display technologies and guide epitope-focused studies to unlock the potential of disease-specific epitopes for improving diagnosis and treatments. Additionally, we offer recommendations to guide emerging epitope-focused studies to broaden the current landscape.
Collapse
Affiliation(s)
- Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Germany; Department of Neurology, University Hospital Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Germany.
| |
Collapse
|
14
|
Cleaver J, Dale R, Irani SR. Hunting the origin and source of NR1-directed IgGs in patients with encephalitis. Brain Behav Immun 2024; 120:554-556. [PMID: 38986722 DOI: 10.1016/j.bbi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Jonathan Cleaver
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Russell Dale
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Clinical Neuroimmunology Group, Kids Neuroscience Centre and Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; TY Nelson Department of Neurology, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Qing Li A, Jie Li X, Liu X, Gong X, Ru Ma Y, Cheng P, Jiao Wang X, Mei Li J, Zhou D, Hong Z. Antibody-secreting cells as a source of NR1-IgGs in N-methyl-D-aspartate receptor-antibody encephalitis. Brain Behav Immun 2024; 120:181-186. [PMID: 38825049 DOI: 10.1016/j.bbi.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The pathogenicity of NR1-IgGs in N-methyl-D-aspartate receptor (NMDAR)-antibody encephalitis is known, but the immunobiological mechanisms underlying their production remain unclear. METHODS For the first time, we explore the origin of NR1-IgGs and evaluate the contribution of B-cells to serum NR1-IgGs levels. Peripheral blood mononuclear cells (PBMCs) were obtained from patients and healthy controls (HCs). Naïve, unswitched memory (USM), switched memory B cells (SM), antibody-secreting cells (ASCs), and PBMC depleted of ASCs were obtained by fluorescence-activated cell sorting and cultured in vitro. RESULTS For some patients, PBMCs spontaneously produced NR1-IgGs. Compared to the patients in PBMC negative group, the positive group had higher NR1-IgG titers in cerebrospinal fluid and Modified Rankin scale scores. The proportions of NR1-IgG positive wells in PBMCs cultures were correlated with NR1-IgGs titers in serum and CSF. The purified ASCs, SM, USM B cells produced NR1-IgGs in vitro. Compared to the patients in ASCs negative group, the positive group exhibited a worse response to second-line IT at 3-month follow-up. Naïve B cells also produce NR1-IgGs, implicating that NR1-IgGs originate from naïve B cells and a pre-germinal centres defect in B cell tolerance checkpoint in some patients. For HCs, no NR1-IgG from cultures was observed. PBMC depleted of ASCs almost eliminated the production of NR1-IgGs. CONCLUSIONS These collective findings suggested that ASCs might mainly contribute to the production of peripheral NR1-IgG in patients with NMDAR-antibody encephalitis in the acute phase. Our study reveals the pathogenesis and helps develop tailored treatments (eg, anti-CD38) for NMDAR-antibody encephalitis.
Collapse
Affiliation(s)
- Ai Qing Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xing Jie Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ya Ru Ma
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Peng Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao Jiao Wang
- Core Facilities of West China Hospital, Chengdu, Sichuan, China
| | - Jin Mei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nan fu Hospital, Chengdu, Sichuan 611730, China; Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, China.
| |
Collapse
|
16
|
Iversen R, Sollid LM. Dissecting autoimmune encephalitis through the lens of intrathecal B cells. Proc Natl Acad Sci U S A 2024; 121:e2401337121. [PMID: 38354256 PMCID: PMC10907258 DOI: 10.1073/pnas.2401337121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Affiliation(s)
- Rasmus Iversen
- Norwegian Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo0372, Norway
- Department of Immunology, Oslo University Hospital, Oslo0372, Norway
| | - Ludvig M. Sollid
- Norwegian Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo0372, Norway
- Department of Immunology, Oslo University Hospital, Oslo0372, Norway
| |
Collapse
|