1
|
Cesana M, Tufano G, Panariello F, Zampelli N, Soldati C, Mutarelli M, Montefusco S, Grieco G, Sepe LV, Rossi B, Nusco E, Rossignoli G, Panebianco G, Merciai F, Salviati E, Sommella EM, Campiglia P, Martello G, Cacchiarelli D, Medina DL, Ballabio A. TFEB controls syncytiotrophoblast formation and hormone production in placenta. Cell Death Differ 2024; 31:1439-1451. [PMID: 38965447 PMCID: PMC11519894 DOI: 10.1038/s41418-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17β-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.
Collapse
Affiliation(s)
- Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy.
| | - Gennaro Tufano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Margherita Mutarelli
- National Research Council of Italy (CNR), Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Giuseppina Grieco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Lucia Vittoria Sepe
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Barbara Rossi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | | | | | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-mediated WNT silencing drives extravillous trophoblast cell lineage development. Proc Natl Acad Sci U S A 2024; 121:e2403003121. [PMID: 39325428 PMCID: PMC11459147 DOI: 10.1073/pnas.2403003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Ayelen Moreno-Irusta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Kaela M. Varberg
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Marija Kuna
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Anna M. Galligos
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - John D. Aplin
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
3
|
Esbin MN, Dahal L, Fan VB, McKenna J, Yin E, Darzacq X, Tjian R. TFEB controls expression of human syncytins during cell-cell fusion. Genes Dev 2024; 38:718-737. [PMID: 39168638 PMCID: PMC11444194 DOI: 10.1101/gad.351633.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
During human development, a temporary organ is formed, the placenta, which invades the uterine wall to support nutrient, oxygen, and waste exchange between the mother and fetus until birth. Most of the human placenta is formed by a syncytial villous structure lined by syncytialized trophoblasts, a specialized cell type that forms via cell-cell fusion of underlying progenitor cells. Genetic and functional studies have characterized the membrane protein fusogens Syncytin-1 and Syncytin-2, both of which are necessary and sufficient for human trophoblast cell-cell fusion. However, identification and characterization of upstream transcriptional regulators regulating their expression have been limited. Here, using CRISPR knockout in an in vitro cellular model of syncytiotrophoblast development (BeWo cells), we found that the transcription factor TFEB, mainly known as a regulator of autophagy and lysosomal biogenesis, is required for cell-cell fusion of syncytiotrophoblasts. TFEB translocates to the nucleus, exhibits increased chromatin interactions, and directly binds the Syncytin-1 and Syncytin-2 promoters to control their expression during differentiation. Although TFEB appears to play a critical role in syncytiotrophoblast differentiation, ablation of TFEB largely does not affect lysosomal gene expression or lysosomal biogenesis in differentiating BeWo cells, suggesting a previously uncharacterized role for TFEB in controlling the expression of human syncytins.
Collapse
Affiliation(s)
- Meagan N Esbin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA;
| | - Liza Dahal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Eric Yin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA;
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Renaud SJ. An old dog with new tricks: TFEB promotes syncytin expression and cell fusion in the human placenta. Genes Dev 2024; 38:695-697. [PMID: 39174324 PMCID: PMC11444176 DOI: 10.1101/gad.352198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In the human placenta, cell fusion is crucial for forming the syncytiotrophoblast, a multinucleated giant cell essential for maintaining pregnancy and ensuring fetal health. The formation of the syncytiotrophoblast is catalyzed by the evolutionarily modern fusogens syncytin-1 and syncytin-2. In this issue of Genes & Development, Esbin and colleagues (doi:10.1101/gad.351633.124) reveal a critical role for the transcription factor TFEB in the regulation of syncytin expression and the promotion of trophoblast fusion. Notably, TFEB's pro-fusion role operates independently of its well-known functions in lysosome biogenesis and autophagy, suggesting that TFEB has acquired additional functions to promote cell fusion in the human placenta.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario N6A 5C1, Canada
| |
Collapse
|
5
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevents differentiation and contact inhibition in human trophoblast stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612343. [PMID: 39314437 PMCID: PMC11419009 DOI: 10.1101/2024.09.10.612343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The placenta develops alongside the embryo and nurtures fetal development to term. During the first stages of embryonic development, due to low blood circulation, the blood and ambient oxygen supply is very low (~1-2% O2) and gradually increases upon placental invasion. While a hypoxic environment is associated with stem cell self-renewal and proliferation, persistent hypoxia may have severe effects on differentiating cells and could be the underlying cause of placental disorders. We find that human trophoblast stem cells (hTSC) thrive in low oxygen, whereas differentiation of hTSC to trophoblast to syncytiotrophoblast (STB) and extravillous trophoblast (EVT) is negatively affected by hypoxic conditions. The pro-differentiation factor GCM1 (human Glial Cell Missing-1) is downregulated in low oxygen, and concordantly there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC caused impaired EVT and STB formation and function, reduced expression of differentiation-responsive genes, and resulted in maintenance of self-renewal genes. Treatment with a PI3K inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed enrichment of GCM1-specific binding near key transcription factors upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
| | - Mariyan J Jeyarajah
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Stephen J Renaud
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
- Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, United States
- Department of Obstetrics and Gynecology, University of Kansas, Kansas City, United States
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-MEDIATED WNT SILENCING DRIVES EXTRAVILLOUS TROPHOBLAST CELL LINEAGE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579974. [PMID: 38405745 PMCID: PMC10888853 DOI: 10.1101/2024.02.13.579974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first trimester EVT cells developing in situ and upregulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial PAS domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical WNT signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kaela M. Varberg
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Marija Kuna
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Anna M. Galligos
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John D. Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
7
|
Kumar RP, Kumar R, Ganguly A, Ghosh A, Ray S, Islam MR, Saha A, Roy N, Dasgupta P, Knowles T, Niloy AJ, Marsh C, Paul S. METTL3 shapes m6A epitranscriptomic landscape for successful human placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603294. [PMID: 39026770 PMCID: PMC11257629 DOI: 10.1101/2024.07.12.603294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Methyltransferase-like 3 (METTL3), the catalytic enzyme of methyltransferase complex for m6A methylation of RNA, is essential for mammalian development. However, the importance of METTL3 in human placentation remains largely unexplored. Here, we show that a fine balance of METTL3 function in trophoblast cells is essential for successful human placentation. Both loss-of and gain-in METTL3 functions are associated with adverse human pregnancies. A subset of recurrent pregnancy losses and preterm pregnancies are often associated with loss of METTL3 expression in trophoblast progenitors. In contrast, METTL3 is induced in pregnancies associated with fetal growth restriction (FGR). Our loss of function analyses showed that METTL3 is essential for the maintenance of human TSC self-renewal and their differentiation to extravillous trophoblast cells (EVTs). In contrast, loss of METTL3 in human TSCs promotes syncytiotrophoblast (STB) development. Global analyses of RNA m6A modification and METTL3-RNA interaction in human TSCs showed that METTL3 regulates m6A modifications on the mRNA molecules of critical trophoblast regulators, including GATA2, GATA3, TEAD1, TEAD4, WWTR1, YAP1, TFAP2C and ASCL2, and loss of METTL3 leads to depletion of mRNA molecules of these critical regulators. Importantly, conditional deletion of Mettl3 in trophoblast progenitors of an early post-implantation mouse embryo also leads to arrested self-renewal. Hence, our findings indicate that METLL3 is a conserved epitranscriptomic governor in trophoblast progenitors and ensures successful placentation by regulating their self-renewal and dictating their differentiation fate.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajnish Kumar
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Avishek Ganguly
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Ananya Ghosh
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Soma Ray
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Md. Rashedul Islam
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Abhik Saha
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Namrata Roy
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Purbasa Dasgupta
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Taylor Knowles
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Asef Jawad Niloy
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumen Paul
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center Kansas City, KS 66160, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Zheng W, Zhang Y, Xu P, Wang Z, Shao X, Chen C, Cai H, Wang Y, Sun MA, Deng W, Liu F, Lu J, Zhang X, Cheng D, Mysorekar IU, Wang H, Wang YL, Hu X, Cao B. TFEB safeguards trophoblast syncytialization in humans and mice. Proc Natl Acad Sci U S A 2024; 121:e2404062121. [PMID: 38968109 PMCID: PMC11253012 DOI: 10.1073/pnas.2404062121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.
Collapse
Affiliation(s)
- Wanshan Zheng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yue Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Peiqun Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Zexin Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen361102, Fujian, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing100101, China
| | - Chunyan Chen
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou225009, Jiangsu, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xueqin Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Dunjin Cheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou510140, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou510140, Guangdong, China
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston77030, TX
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston77030, TX
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing100101, China
| | - Xiaoqian Hu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen361102, Fujian, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
9
|
Yin E, Esbin MN. Optimized CRISPR-based knockout in BeWo cells. Placenta 2024:S0143-4004(24)00300-X. [PMID: 38997889 DOI: 10.1016/j.placenta.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
CRISPR genome editing is a widely used tool to perturb genes of interest within cells and tissues and can be used as a research tool to study the connection between genotypes and cellular phenotypes. Highly efficient genome editing is limited in certain cell types due to low transfection efficiency or single-cell survivability. This is true for BeWo cells, an in vitro model of placental syncytiotrophoblast cell-cell fusion and hormone secretion. Here we describe an optimized and easy-to-use protocol for knockout in BeWo cells using CRISPR Cas9 ribonucleoprotein (RNP) complexes delivered via electroporation. Further, we describe parameters for successful guide RNA design and how to assess genetic knockouts in BeWo cells so that users can apply this technique to their own genes of interest. We provide a positive control for inducing highly efficient knockout of the cell-cell fusion protein Syncytin-2 (ERVFRD-1) and assessing editing efficiency at this locus. We anticipate that efficient RNP-mediated genetic knockouts in BeWo cells will facilitate the study of new genes involved in cell-cell fusion and hormone secretion in this important cellular model system. Furthermore, this strategy of optimized nucleofection and RNP delivery may be of use in other difficult-to-edit trophoblast cells or could be applied to efficiently deliver transgenes to BeWo cells.
Collapse
Affiliation(s)
- Eric Yin
- University of California, Berkeley, United States
| | | |
Collapse
|
10
|
Ghosh A, Kumar R, Kumar RP, Ray S, Saha A, Roy N, Dasgupta P, Marsh C, Paul S. The GATA transcriptional program dictates cell fate equilibrium to establish the maternal-fetal exchange interface and fetal development. Proc Natl Acad Sci U S A 2024; 121:e2310502121. [PMID: 38346193 PMCID: PMC10895349 DOI: 10.1073/pnas.2310502121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.
Collapse
Affiliation(s)
- Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Rajnish Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ram P Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Abhik Saha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Namrata Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|