1
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. G3 (BETHESDA, MD.) 2024; 14:jkae203. [PMID: 39171889 PMCID: PMC11457063 DOI: 10.1093/g3journal/jkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and showed that they encode for dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle genes, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Elli M Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ava B Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| | - Laura A Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Wu W, Wu MY, Dai T, Ke LN, Shi Y, Hu J, Wang Q. Terphenyllin induces CASP3-dependent apoptosis and pyroptosis in A375 cells through upregulation of p53. Cell Commun Signal 2024; 22:409. [PMID: 39169379 PMCID: PMC11337594 DOI: 10.1186/s12964-024-01784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Melanoma, one of the most lethal forms of skin cancer, has the potential to develop in any area where melanocytes are present. Currently, postoperative recurrence due to the emergence of systemic drug resistance represents a significant challenge in the treatment of melanoma. In this study, terphenyllin (TER), a distinctive inhibitory impact on melanoma cells was identified from the natural p-terphenyl metabolite. This study aimed to elucidate the intrinsic mechanism of this inhibitory effect, which may facilitate the discovery of novel chemotherapeutic agents. METHODS A transcriptome sequencing and metabolomic analysis of TER-treated A375 cells was conducted to identify potential pathways of action. The key proteins were knocked out and backfilled using CRISPR-Cas9 technology and molecular cloning. Subsequently, the results of cytosolic viability, LDH release, immunofluorescence and flow cytometry were employed to demonstrate the cell death status of the drug-treated cells. RESULTS The p53 signalling pathway was markedly upregulated following TER treatment, leading to the activation of CASP3 via the intrinsic apoptotic pathway. The activated CASP3 initiated apoptosis, while simultaneously continuing to cleave the GSDME, thereby triggering pyroptosis. The knockout of p53, a key protein situated upstream of this pathway, resulted in a significant rescue of TER-induced cell death, as well as an alleviation of the decrease in cell viability. However, the knockout of key proteins situated downstream of the pathway (CASP3 and GSDME) did not result in a rescue of TER-induced cell death, but rather a transformation of the cells from apoptosis and pyroptosis. CONCLUSIONS The induction of apoptosis and pyroptosis in A375 cells by TER is mediated via the p53-BAX/FAS-CASP3-GSDME signalling pathway. This lays the foundation for TER as a potential anti-melanoma drug in the future. It should be noted that CASP3 and GSDME in this pathway solely regulate the mode of cell death, rather than determine whether cell death occurs. This distinction may prove valuable in future studies of apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng-Yuan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ting Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Li-Na Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
3
|
Fogarty EA, Buchert EM, Ma Y, Nicely AB, Buttitta LA. Transcriptional repression and enhancer decommissioning silence cell cycle genes in postmitotic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592773. [PMID: 38766255 PMCID: PMC11100713 DOI: 10.1101/2024.05.06.592773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mechanisms that maintain a non-cycling status in postmitotic tissues are not well understood. Many cell cycle genes have promoters and enhancers that remain accessible even when cells are terminally differentiated and in a non-cycling state, suggesting their repression must be maintained long term. In contrast, enhancer decommissioning has been observed for rate-limiting cell cycle genes in the Drosophila wing, a tissue where the cells die soon after eclosion, but it has been unclear if this also occurs in other contexts of terminal differentiation. In this study, we show that enhancer decommissioning also occurs at specific, rate-limiting cell cycle genes in the long-lived tissues of the Drosophila eye and brain, and we propose this loss of chromatin accessibility may help maintain a robust postmitotic state. We examined the decommissioned enhancers at specific rate-limiting cell cycle genes and show that they encode dynamic temporal and spatial expression patterns that include shared, as well as tissue-specific elements, resulting in broad gene expression with developmentally controlled temporal regulation. We extend our analysis to cell cycle gene expression and chromatin accessibility in the mammalian retina using a published dataset, and find that the principles of cell cycle gene regulation identified in terminally differentiating Drosophila tissues are conserved in the differentiating mammalian retina. We propose a robust, non-cycling status is maintained in long-lived postmitotic tissues through a combination of stable repression at most cell cycle gens, alongside enhancer decommissioning at specific rate-limiting cell cycle genes.
Collapse
Affiliation(s)
- Elizabeth A. Fogarty
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Elli M. Buchert
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Yiqin Ma
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Ava B. Nicely
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109
| |
Collapse
|
4
|
Dar AA, Kim DD, Gordon SM, Klinzing K, Rosen S, Guha I, Porter N, Ortega Y, Forsyth KS, Roof J, Fazelinia H, Spruce LA, Eisenlohr LC, Behrens EM, Oliver PM. c-Myc uses Cul4b to preserve genome integrity and promote antiviral CD8 + T cell immunity. Nat Commun 2023; 14:7098. [PMID: 37925424 PMCID: PMC10625626 DOI: 10.1038/s41467-023-42765-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
During infection, virus-specific CD8+ T cells undergo rapid bursts of proliferation and differentiate into effector cells that kill virus-infected cells and reduce viral load. This rapid clonal expansion can put T cells at significant risk for replication-induced DNA damage. Here, we find that c-Myc links CD8+ T cell expansion to DNA damage response pathways though the E3 ubiquitin ligase, Cullin 4b (Cul4b). Following activation, c-Myc increases the levels of Cul4b and other members of the Cullin RING Ligase 4 (CRL4) complex. Despite expressing c-Myc at high levels, Cul4b-deficient CD8+ T cells do not expand and clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) in vivo. Cul4b-deficient CD8+ T cells accrue DNA damage and succumb to proliferative catastrophe early after antigen encounter. Mechanistically, Cul4b knockout induces an accumulation of p21 and Cyclin E2, resulting in replication stress. Our data show that c-Myc supports cell proliferation by maintaining genome stability via Cul4b, thereby directly coupling these two interdependent pathways. These data clarify how CD8+ T cells use c-Myc and Cul4b to sustain their potential for extraordinary population expansion, longevity and antiviral responses.
Collapse
Affiliation(s)
- Asif A Dar
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Dale D Kim
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott M Gordon
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen Klinzing
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siera Rosen
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ipsita Guha
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nadia Porter
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yohaniz Ortega
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine S Forsyth
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Roof
- Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurence C Eisenlohr
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula M Oliver
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Hild V, Mellert K, Möller P, Barth TFE. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers (Basel) 2023; 15:3702. [PMID: 37509363 PMCID: PMC10377796 DOI: 10.3390/cancers15143702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Giant cells (GCs) are thought to originate from the fusion of monocytic lineage cells and arise amid multiple backgrounds. To compare GCs of different origins, we immunohistochemically characterised the GCs of reactive and neoplastic lesions (n = 47). We studied the expression of 15 molecules including HLA class II molecules those relevant to the cell cycle, bone metabolism and lineage affiliation. HLA-DR was detectable in the GCs of sarcoidosis, sarcoid-like lesions, tuberculosis, and foreign body granuloma. Cyclin D1 was expressed by the GCs of neoplastic lesions as well as the GCs of bony callus, fibroid epulis, and brown tumours. While cyclin E was detected in the GCs of all lesions, p16 and p21 showed a heterogeneous expression pattern. RANK was expressed by the GCs of all lesions except sarcoid-like lesions and xanthogranuloma. All GCs were RANK-L-negative, and the GCs of all lesions were osteoprotegerin-positive. Osteonectin was limited to the GCs of chondroblastoma. Osteopontin and TRAP were detected in the GCs of all lesions except xanthogranuloma. RUNX2 was heterogeneously expressed in the reactive and neoplastic cohort. The GCs of all lesions except foreign body granuloma expressed CD68, and all GCs were CD163- and langerin-negative. This profiling points to a functional diversity of GCs despite their similar morphology.
Collapse
Affiliation(s)
- Vivien Hild
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
6
|
Hou Y, Liu R, Xia M, Sun C, Zhong B, Yu J, Ai N, Lu JJ, Ge W, Liu B, Chen X. Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacol Res 2021; 173:105870. [PMID: 34500061 DOI: 10.1016/j.phrs.2021.105870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. Nannocystin ax (NAN), a 21-membered cyclodepsipeptide initially isolated from myxobacteria of the Nannocystis genus, was found to target the eukaryotic elongation factor 1A (eEF1A). The current study was designed to evaluate the anticancer effect and underlying mechanisms of NAN with in vitro and in vivo models. Results showed that NAN induced G1 phase cell cycle arrest and caspase-independent apoptosis in HCT116 and HT29 human CRC cells. NAN significantly downregulated cyclin D1 level in a short time, but NAN did not affect the transcription level and ubiquitin-dependent degradation of cyclin D1. Furthermore, NAN treatment directly targeted eEF1A and partially decreased the synthesis of new proteins, contributing to the downregulation of cyclin D1. Besides, NAN significantly suppressed tumor growth in the zebrafish xenograft model. In conclusion, NAN triggered G1 phase cell cycle arrest through cyclin D1 downregulation and eEF1A-targeted translation inhibition and promoted caspase-independent apoptosis in CRC cells.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bingling Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
7
|
Chu C, Geng Y, Zhou Y, Sicinski P. Cyclin E in normal physiology and disease states. Trends Cell Biol 2021; 31:732-746. [PMID: 34052101 DOI: 10.1016/j.tcb.2021.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023]
Abstract
E-type cyclins, collectively called cyclin E, represent key components of the core cell cycle machinery. In mammalian cells, two E-type cyclins, E1 and E2, activate cyclin-dependent kinase 2 (CDK2) and drive cell cycle progression by phosphorylating several cellular proteins. Abnormally elevated activity of cyclin E-CDK2 has been documented in many human tumor types. Moreover, cyclin E overexpression mediates resistance of tumor cells to various therapeutic agents. Recent work has revealed that the role of cyclin E extends well beyond cell proliferation and tumorigenesis, and it may regulate a diverse array of physiological and pathological processes. In this review, we discuss these various cyclin E functions and the potential for therapeutic targeting of cyclin E and cyclin E-CDK2 kinase.
Collapse
Affiliation(s)
- Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Zhou Y, Geng Y, Zhang Y, Zhou Y, Chu C, Sharma S, Fassl A, Butter D, Sicinski P. The requirement for cyclin E in c-Myc overexpressing breast cancers. Cell Cycle 2020; 19:2589-2599. [PMID: 32975478 DOI: 10.1080/15384101.2020.1804720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Basal-like triple-negative breast cancers frequently express high levels of c-Myc. This oncoprotein signals to the core cell cycle machinery by impinging on cyclin E. High levels of E-type cyclins (E1 and E2) are often seen in human triple-negative breast tumors. In the current study, we examined the requirement for E-type cyclins in the c-Myc-driven mouse model of breast cancer (MMTV-c-Myc mice). To do so, we crossed cyclin E1- (E1-/-) and E2- (E2-/-) deficient mice with MMTV-c-Myc animals, and observed the resulting cyclin E1-/-/MMTV-c-Myc and cyclin E2-/-/MMTV-c-Myc females for breast cancer incidence. We found that mice lacking cyclins E1 or E2 developed breast cancers like their cyclin Ewild-type counterparts. In contrast, further reduction of the dosage of E-cyclins in cyclin E1-/-E2+/-/MMTV-c-Myc and cyclin E1+/-E2-/-/MMTV-c-Myc animals significantly decreased the incidence of mammary carcinomas, revealing arole for E-cyclins in tumor initiation. We also observed that depletion of E-cyclins in human triple-negative breast cancer cell lines halted cell cycle progression, indicating that E-cyclins are essential for tumor cell proliferation. In contrast, we found that the catalytic partner of E-cyclins, the cyclin-dependent kinase 2 (CDK2), is dispensable for the proliferation of these cells. These results indicate that E-cyclins, but not CDK2, play essential and rate-limiting roles in driving the proliferation of c-Myc overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, China
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Yujiao Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Yubin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Deborah Butter
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
9
|
Grison A, Atanasoski S. Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System. Mol Neurobiol 2020; 57:3206-3218. [PMID: 32506380 DOI: 10.1007/s12035-020-01958-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.
Collapse
Affiliation(s)
- Alice Grison
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Suzana Atanasoski
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Nam HK, Vesela I, Siismets E, Hatch NE. Tissue nonspecific alkaline phosphatase promotes calvarial progenitor cell cycle progression and cytokinesis via Erk1,2. Bone 2019; 120:125-136. [PMID: 30342227 PMCID: PMC6360114 DOI: 10.1016/j.bone.2018.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023]
Abstract
Bone growth is dependent upon the presence of self-renewing progenitor cell populations. While the contribution of Tissue Nonspecific Alkaline Phosphatase (TNAP) enzyme activity in promoting bone mineralization when expressed in differentiated bone forming cells is well understood, little is known regarding the role of TNAP in bone progenitor cells. We previously found diminished proliferation in the calvarial MC3T3E1 cell line upon suppression of TNAP by shRNA, and in calvarial cells and tissues of TNAP-/- mice. These findings indicate that TNAP promotes cell proliferation. Here we investigate how TNAP mediates this effect. Results show that TNAP is essential for calvarial progenitor cell cycle progression and cytokinesis, and that these effects are mediated by inorganic phosphate and Erk1/2. Levels of active Erk1/2 are significantly diminished in TNAP deficient cranial cells and tissues even in the presence of inorganic phosphate. Moreover, in the absence of TNAP, FGFR2 expression levels are high and FGF2 rescues phospho-Erk1/2 levels and cell cycle abnormalities to a significantly greater extent than inorganic phosphate. Based upon the data we propose a model in which TNAP stimulates Erk1/2 activity via both phosphate dependent and independent mechanisms to promote cell cycle progression and cytokinesis in calvarial bone progenitor cells. Concomitantly, TNAP feeds back to inhibit FGFR2 expression. These results identify a novel mechanism by which TNAP promotes calvarial progenitor cell renewal and indicate that converging pathways exist downstream of FGF signaling and TNAP activity to control craniofacial skeletal development.
Collapse
Affiliation(s)
- Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Iva Vesela
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Erica Siismets
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
11
|
Xu DP, Jiang SL, Zhao CS, Fang DA, Hu HY. Comparative transcriptomics analysis of the river pufferfish (Takifugu obscurus) by tributyltin exposure: Clues for revealing its toxic injury mechanism. FISH & SHELLFISH IMMUNOLOGY 2018; 82:536-543. [PMID: 30170111 DOI: 10.1016/j.fsi.2018.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
TBT residual in water had become a noticeable ecological problem for aquatic ecosystems. The river pufferfish (Takifugu obscurus) is a kind of an anadromous fish species and widely distributed in the East China Sea and the Yellow Sea. Because of the water contamination, the pufferfish wild resource had a sudden decline in recent years. Therefore, the study on the response of pufferfish to the TBT exposure may contribute to reveal toxic injury mechanism of T. obscurus under TBT exposure. In this study, the transcriptional library of T. obscurus liver and gill was constructed and sequenced by an improved Illumina HiseqX10 high-throughput sequencing platform under different concentrations of TBT acute stress. The blood cell numbers distinctly decreased after TBT exposure, showing the adverse effects of TBT invasion and self-adjusting ability of the pufferfish. The production of reactive oxygen species increased, demonstrating the oxidation resistance of T. obscurus when exposed to TBT. The obtained data were compared with the genome data of Takifugu rubripes and transcriptional resource database. On this basis, gene function annotation, analysis and classification were carried out by bioinformatics method, and differential genes related to toxic injury function were screened out. Meanwhile, new toxic related genes and related signal pathways were sought to provide new theoretical guidance for the pathogenesis of T. obscurus exposed to TBT. This study not only enriched the transcriptome data of T. obscurus under environmental stress, but also provided a new research method for the response mechanism of T. obscurus under the stimulation of environmental factors.
Collapse
Affiliation(s)
- Dong-Po Xu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Shu-Lun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Xuejiali 69, Wuxi, 214128, China
| | - Chang-Sheng Zhao
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Hao-Yuan Hu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
12
|
Regneri J, Klotz B, Wilde B, Kottler VA, Hausmann M, Kneitz S, Regensburger M, Maurus K, Götz R, Lu Y, Walter RB, Herpin A, Schartl M. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka. Pigment Cell Melanoma Res 2018; 32:248-258. [PMID: 30117276 DOI: 10.1111/pcmr.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Brigitta Wilde
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Verena A Kottler
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Ronald B Walter
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Amaury Herpin
- INRA, Fish Physiology and Genomics Institute (INRA-LPGP), Sexual Differentiation and Oogenesis Group (SDOG), Campus de Beaulieu, Rennes Cedex, France
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
Zhao H, Wang J, Zhang Y, Yuan M, Yang S, Li L, Yang H. Prognostic Values of CCNE1 Amplification and Overexpression in Cancer Patients: A Systematic Review and Meta-analysis. J Cancer 2018; 9:2397-2407. [PMID: 30026836 PMCID: PMC6036712 DOI: 10.7150/jca.24179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022] Open
Abstract
A number of studies revealed that CCNE1 copy number amplification and overexpression (on mRNA or protein expression level) were associated with prognosis of diverse cancers, however, the results were inconsistent among studies. So we conducted this systematic review and meta-analysis to investigate the prognostic values of CCNE1 amplification and overexpression in cancer patients. PubMed, Cochrane library, Embase, CNKI and WanFang database (last update by February 15, 2018) were searched for literatures. A total of 20 studies were included and 5 survival assessment parameters were measured in this study, which included overall survival (OS), progression free survival (PFS), recurrence free survival (RFS), cancer specific survival (CSS) and distant metastasis free survival (DMFS). Pooled analyses showed that CCNE1 amplification might predict poor OS (HR=1.59, 95% CI: 1.05-2.40, p=0.027) rather than PFS (HR=1.49, 95% CI: 0.83-2.67, p=0.177) and RFS (HR=0.982, 95% CI: 0.2376-4.059, p=0.9801) in various cancers; CCNE1 overexpression significantly correlated with poor OS (HR=1.52, 95% CI: 1.05-2.20, p=0.027), PFS (HR=1.20, 95% CI: 1.07-1.34, p=0.001) and DMFS (HR=1.62, 95% CI: 1.09-2.40, p=0.017) rather than RFS (HR=1.68, 95% CI: 0.81-3.50, p=0.164) and CSS (HR=1.54, 95% CI: 0.74-3.18, p=0.246). On the whole, these results indicated CCNE1 amplification and overexpression were associated with poor survival of patients with cancer, suggesting that CCNE1 might be an effective prognostic signature for cancer patients.
Collapse
Affiliation(s)
- Haiyue Zhao
- Center of Reproduction and Genetics, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou, Jiangsu 215002, China
| | - Junling Wang
- Department of Gynaecology, Huangshi Maternity And Children's Health Hospital Edong Healthcare Group, No.80 Guilin Road, Huangshi 43500, China
| | - Yong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Ming Yuan
- Department of Gynaecology, Huangshi Maternity And Children's Health Hospital Edong Healthcare Group, No.80 Guilin Road, Huangshi 43500, China
| | - Shuangxiang Yang
- Department of Gynaecology, Huangshi Maternity And Children's Health Hospital Edong Healthcare Group, No.80 Guilin Road, Huangshi 43500, China
| | - Lisong Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| |
Collapse
|
14
|
Ehedego H, Mohs A, Jansen B, Hiththetiya K, Sicinski P, Liedtke C, Trautwein C. Loss of Cyclin E1 attenuates hepatitis and hepatocarcinogenesis in a mouse model of chronic liver injury. Oncogene 2018; 37:3329-3339. [PMID: 29551768 DOI: 10.1038/s41388-018-0181-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023]
Abstract
Chronic liver injury triggers liver fibrosis and hepatocellular carcinoma (HCC), the third leading cause of cancer-related mortality. Cyclin E1 (CcnE1, formerly designated Cyclin E) is a regulatory subunit of the Cyclin-dependent kinase 2 (CDK2). It is overexpressed in approximately 70% of human HCCs correlating with poor prognosis, while the relevance of its orthologue Cyclin E2 (CcnE2) is unclear. Hepatocyte-specific deletion of NF-kappa-B essential modulator (NEMOΔhepa) leads to chronic hepatitis, liver fibrosis, and HCC as well as CcnE upregulation. To this end, we generated NEMOΔhepa/CcnE1-/- and NEMOΔhepa/CcnE2-/- double knockout mice and investigated age-dependent liver disease progression in these animals. Deletion of CcnE1 in NEMOΔhepa mice decreased basal liver damage and reduced spontaneous liver inflammation in young mice. In contrast, loss of CcnE2 did not affect liver injury in NEMOΔhepa livers pointing to a unique, non-redundant function of CcnE1 in chronic hepatitis. Accordingly, basal compensatory hepatocyte proliferation in NEMOΔhepa mice was reduced by concomitant ablation of CcnE1, but not after loss of CcnE2. In aged NEMOΔhepa mice, loss of CcnE1 resulted in significant reduction of liver tumorigenesis, while deletion of CcnE2 had no effect on HCC formation. CcnE1, but not its orthologue CcnE2, substantially contributes to hepatic inflammatory response, liver disease progression, and hepatocarcinogenesis in NEMOΔhepa mice.
Collapse
Affiliation(s)
- Haksier Ehedego
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Antje Mohs
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Bettina Jansen
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
15
|
Corvaisier M, Bauzone M, Corfiotti F, Renaud F, El Amrani M, Monté D, Truant S, Leteurtre E, Formstecher P, Van Seuningen I, Gespach C, Huet G. Regulation of cellular quiescence by YAP/TAZ and Cyclin E1 in colon cancer cells: Implication in chemoresistance and cancer relapse. Oncotarget 2018; 7:56699-56712. [PMID: 27527859 PMCID: PMC5302946 DOI: 10.18632/oncotarget.11057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
Our aim was to decipher the role and clinical relevance of the YAP/TAZ transcriptional coactivators in the regulation of the proliferation/quiescence balance in human colon cancer cells (CCC) and survival after 5FU-based chemotherapy. The prognostic value of YAP/TAZ on tumor relapse and overall survival was assessed in a five-year follow-up study using specimens of liver metastases (n = 70) from colon cancer patients. In 5FU-chemoresistant HT29-5F31 and -chemosensitive HCT116 and RKO CCC, a reversible G0 quiescent state mediated by Cyclin E1 down-regulation was induced by 5FU in 5F31 cells and recapitulated in CCC by either YAP/TAZ or Cyclin E1 siRNAs or the YAP inhibitor Verteporfin. Conversely, the constitutive active YAPdc-S127A mutant restricted cellular quiescence in 5FU-treated 5F31 cells and sustained high Cyclin E1 levels through CREB Ser-133 phosphorylation and activation. In colon cancer patients, high YAP/TAZ level in residual liver metastases correlated with the proliferation marker Ki-67 (p < 0.0001), high level of the YAP target CTGF (p = 0.01), shorter disease-free and overall survival (p = 0.008 and 0.04, respectively). By multivariate analysis and Cox regression model, the YAP/TAZ level was an independent factor of overall (Hazard ratio [CI 95%] 2.06 (1.02–4.16) p = 0.045) and disease-free survival (Hazard ratio [CI 95%] 1.98 (1.01–3.86) p = 0.045). Thus, YAP/ TAZ pathways contribute to the proliferation/quiescence switch during 5FU treatment according to the concerted regulation of Cyclin E1 and CREB. These findings provide a rationale for therapeutic interventions targeting these transcriptional regulators in patients with residual chemoresistant liver metastases expressing high YAP/TAZ levels.
Collapse
Affiliation(s)
- Matthieu Corvaisier
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France
| | - Marjolaine Bauzone
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France
| | - François Corfiotti
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Department of Digestive Surgery and Transplantation, CHRU Lille, F-59000, Lille, France
| | - Florence Renaud
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Center of Biology-Pathology, CHRU Lille, F-59000, Lille, France
| | - Mehdi El Amrani
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Department of Digestive Surgery and Transplantation, CHRU Lille, F-59000, Lille, France
| | - Didier Monté
- UMR8576 CNRS-Université de Lille Nord de France, F-59658, Villeneuve d'Ascq, France
| | - Stéphanie Truant
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Department of Digestive Surgery and Transplantation, CHRU Lille, F-59000, Lille, France
| | - Emmanuelle Leteurtre
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Center of Biology-Pathology, CHRU Lille, F-59000, Lille, France
| | - Pierre Formstecher
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France
| | - Isabelle Van Seuningen
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France
| | - Christian Gespach
- INSERM U938, "Molecular and Clinical Oncology", Hôpital Saint-Antoine, University Pierre et Marie Curie, F-75012, Paris, France
| | - Guillemette Huet
- University Lille, Inserm, CHU Lille, UMR-S1172-JPARC-Jean-Pierre Aubert Research Center, F-59000, Lille, France.,Center of Biology-Pathology, CHRU Lille, F-59000, Lille, France
| |
Collapse
|
16
|
Abstract
E-type cyclins (cyclins E1 and E2) are components of the core cell cycle machinery and are overexpressed in many human tumor types. E cyclins are thought to drive tumor cell proliferation by activating the cyclin-dependent kinase 2 (CDK2). The cyclin E1 gene represents the site of recurrent integration of the hepatitis B virus in the pathogenesis of hepatocellular carcinoma, and this event is associated with strong up-regulation of cyclin E1 expression. Regardless of the underlying mechanism of tumorigenesis, the majority of liver cancers overexpress E-type cyclins. Here we used conditional cyclin E knockout mice and a liver cancer model to test the requirement for the function of E cyclins in liver tumorigenesis. We show that a ubiquitous, global shutdown of E cyclins did not visibly affect postnatal development or physiology of adult mice. However, an acute ablation of E cyclins halted liver cancer progression. We demonstrated that also human liver cancer cells critically depend on E cyclins for proliferation. In contrast, we found that the function of the cyclin E catalytic partner, CDK2, is dispensable in liver cancer cells. We observed that E cyclins drive proliferation of tumor cells in a CDK2- and kinase-independent mechanism. Our study suggests that compounds which degrade or inhibit cyclin E might represent a highly selective therapeutic strategy for patients with liver cancer, as these compounds would selectively cripple proliferation of tumor cells, while sparing normal tissues.
Collapse
|
17
|
Mi Y, Sun C, Wei B, Sun F, Guo Y, Hu Q, Ding W, Zhu L, Xia G. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells. Biochem Biophys Res Commun 2017; 495:473-480. [PMID: 29129687 DOI: 10.1016/j.bbrc.2017.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA.
Collapse
Affiliation(s)
- Yuanyuan Mi
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Bingbing Wei
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Feiyu Sun
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, 128 Ruili Rd, Shanghai 200240, PR China
| | - Yijun Guo
- Department of Urology, Jing'An District Center Hospital of Shanghai, 259 Xikang Rd, Shanghai 200040, PR China
| | - Qingfeng Hu
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China
| | - Lijie Zhu
- Department of Urology, Third Affiliated Hospital of Nantong University, 585 Xingyuan Rd, Wuxi 214041, PR China.
| | - Guowei Xia
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Rd, Shanghai 200040, PR China.
| |
Collapse
|
18
|
Mechanism study of isoflavones as an anti-retinoblastoma progression agent. Oncotarget 2017; 8:88401-88409. [PMID: 29179444 PMCID: PMC5687614 DOI: 10.18632/oncotarget.19365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023] Open
Abstract
Isoflavones, bioactive soy compounds, are known to exhibit anticancer activities. The present study investigated the anticancer activities of isoflavones on human retinoblastoma Y79 cells in vitro and in vivo. An MTT cell viability assay showed that the half maximal inhibitory concentration value of isoflavones against human retinoblastoma Y79 cells is 1.23 ± 0.42 μmol/l. Flow cytometry analysis indicated that isoflavones blocked G1/S progression. Western blot analysis demonstrated that the mammalian target of rapamycin (mTOR) pathway in Y79 cells was inhibited by isoflavones, with a concomitant decrease in cyclin E1, which accounted for the isoflavone-mediated G1 phase arrest. Isoflavones also inhibited human retinoblastoma growth in vivo; western blot analysis showed inhibition of mTOR and downregulation of cyclin E1 in an isoflavone-treated xenograft mouse model. Together, these results illustrate that isoflavones inhibit retinoblastoma tumour growth in vitro and vivo and that inactivation of the mTOR pathway and downregulation of cyclin E1 is involved in this action. The results of this study suggest that isoflavones could be tested as promising anti-retinoblastoma agent.
Collapse
|
19
|
Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21 Waf1/Cip1 and p27 Kip1. Taiwan J Obstet Gynecol 2017; 55:847-851. [PMID: 28040131 DOI: 10.1016/j.tjog.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Carfilzomib is a second-generation tetrapeptide epoxyketone proteasome inhibitor used in current clinical therapy of hematologic malignancies. The mechanism of proteasome inhibition in endometrial cancer is not very clear. Carfilzomib inhibition of type I endometrial carcinoma cell proliferation by inducing cell cycle arrest at the G2/M phase was investigated in our study. MATERIALS AND METHODS HEC-1-A and Ishikawa endometrial carcinoma cell lines and three tumor cell lines were treated by different concentrations of carfilzomib. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell viability. Flow cytometry was used to analyze the cell cycle. Western blot was used to detect proteins involved in cell cycle progression. RESULTS Carfilzomib impaired viability of myelogenous leukemia cell line K562, cervical cancer cell line HeLa, hepatocellular carcinoma cell line SMCC-7721, and endometrial carcinoma cell lines HEC-1-A and Ishikawa. The cell cycle was arrested at the G2/M phase in carfilzomib-treated HEC-1-A endometrial carcinoma cells, while it was arrested at both S and G2/M phases in carfilzomib-treated Ishikawa cells. Carfilzomib treatment significantly induced p21Waf1/ Cip1 and p27, while substantially reduced cyclin D3 and cyclin-dependent kinase 1. CONCLUSION This study showed that carfilzomib inhibited endometrial cancer proliferation by upregulating cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1, and reducing cyclin-dependent kinase 1 to arrest the cell cycle at the G2/M phase.
Collapse
|
20
|
Guo J, Shin KT, Cui XS. Analysis of Cyclin E1 Functions in Porcine Preimplantation Embryonic Development by Fluorescence Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:69-76. [PMID: 28162122 DOI: 10.1017/s1431927616012733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyclin E1 (CCNE1) is a core component of cell cycle regulation that drives the transition into the S phase. CCNE1 plays critical roles in cell cycle, cell proliferation, and cellular functions. However, the function of CCNE1 in early embryonic development is limited. In the present study, the function and expression of Ccne1 in porcine early parthenotes were examined. Immunostaining experiments showed that CCNE1 localized in the nucleus, starting at the four-cell stage. Knockdown of Ccne1 by double-stranded RNA resulted in the failure of blastocyst formation and induced blastocyst apoptosis. Ccne1 depletion increased expression of the pro-apoptotic gene Bax, and decreased the expression of Oct4 and the rate of inner cell mass (ICM)/trophectoderm formation. The results indicated that CCNE1 affects blastocyst formation by inducing cell apoptosis and ICM formation during porcine embryonic development.
Collapse
Affiliation(s)
- Jing Guo
- Department of Animal Sciences,Chungbuk National University,Chungbuk,Cheongju 361-763,Republic of Korea
| | - Kyung-Tae Shin
- Department of Animal Sciences,Chungbuk National University,Chungbuk,Cheongju 361-763,Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences,Chungbuk National University,Chungbuk,Cheongju 361-763,Republic of Korea
| |
Collapse
|
21
|
Odajima J, Saini S, Jung P, Ndassa-Colday Y, Ficaro S, Geng Y, Marco E, Michowski W, Wang YE, DeCaprio JA, Litovchick L, Marto J, Sicinski P. Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo. PLoS Genet 2016; 12:e1006429. [PMID: 27828963 PMCID: PMC5102403 DOI: 10.1371/journal.pgen.1006429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022] Open
Abstract
E-type cyclins (cyclins E1 and E2) are components of the cell cycle machinery that has been conserved from yeast to humans. The major function of E-type cyclins is to drive cell division. It is unknown whether in addition to their 'core' cell cycle functions, E-type cyclins also perform unique tissue-specific roles. Here, we applied high-throughput mass spectrometric analyses of mouse organs to define the repertoire of cyclin E protein partners in vivo. We found that cyclin E interacts with distinct sets of proteins in different compartments. These cyclin E interactors are highly enriched for phosphorylation targets of cyclin E and its catalytic partner, the cyclin-dependent kinase 2 (Cdk2). Among cyclin E interactors we identified several novel tissue-specific substrates of cyclin E-Cdk2 kinase. In proliferating compartments, cyclin E-Cdk2 phosphorylates Lin proteins within the DREAM complex. In the testes, cyclin E-Cdk2 phosphorylates Mybl1 and Dmrtc2, two meiotic transcription factors that represent key regulators of spermatogenesis. In embryonic and adult brains cyclin E interacts with proteins involved in neurogenesis, while in adult brains also with proteins regulating microtubule-based processes and microtubule cytoskeleton. We also used quantitative proteomics to demonstrate re-wiring of the cyclin E interactome upon ablation of Cdk2. This approach can be used to study how protein interactome changes during development or in any pathological state such as aging or cancer.
Collapse
Affiliation(s)
- Junko Odajima
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Siddharth Saini
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Piotr Jung
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yasmine Ndassa-Colday
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott Ficaro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Wojciech Michowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yaoyu E. Wang
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jarrod Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Jayapal SR, Ang HYK, Wang CQ, Bisteau X, Caldez MJ, Xuan GX, Yu W, Tergaonkar V, Osato M, Lim B, Kaldis P. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle 2016; 15:3070-3081. [PMID: 27657745 DOI: 10.1080/15384101.2016.1234546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclin A2 is an essential gene for development and in haematopoietic stem cells and therefore its functions in definitive erythropoiesis have not been investigated. We have ablated cyclin A2 in committed erythroid progenitors in vivo using erythropoietin receptor promoter-driven Cre, which revealed its critical role in regulating erythrocyte morphology and numbers. Erythroid-specific cyclin A2 knockout mice are viable but displayed increased mean erythrocyte volume and reduced erythrocyte counts, as well as increased frequency of erythrocytes containing Howell-Jolly bodies. Erythroblasts lacking cyclin A2 displayed defective enucleation, resulting in reduced production of enucleated erythrocytes and increased frequencies of erythrocytes containing nuclear remnants. Deletion of the Cdk inhibitor p27Kip1 but not Cdk2, ameliorated the erythroid defects resulting from deficiency of cyclin A2, confirming the critical role of cyclin A2/Cdk activity in erythroid development. Loss of cyclin A2 in bone marrow cells in semisolid culture prevented the formation of BFU-E but not CFU-E colonies, uncovering its essential role in BFU-E function. Our data unveils the critical functions of cyclin A2 in regulating mammalian erythropoiesis.
Collapse
Affiliation(s)
- Senthil Raja Jayapal
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | | | - Chelsia Qiuxia Wang
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,c Cancer Science Institute of Singapore, National University of Singapore , Singapore
| | - Xavier Bisteau
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Matias J Caldez
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,d National University of Singapore (NUS) , Department of Biochemistry , Singapore
| | - Gan Xiao Xuan
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Weimiao Yu
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Vinay Tergaonkar
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore
| | - Motomi Osato
- c Cancer Science Institute of Singapore, National University of Singapore , Singapore
| | - Bing Lim
- b Genome Institute of Singapore , Singapore
| | - Philipp Kaldis
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Republic of Singapore.,d National University of Singapore (NUS) , Department of Biochemistry , Singapore
| |
Collapse
|
23
|
Martinerie L, Manterola M, Chung SSW, Panigrahi SK, Weisbach M, Vasileva A, Geng Y, Sicinski P, Wolgemuth DJ. Mammalian E-type cyclins control chromosome pairing, telomere stability and CDK2 localization in male meiosis. PLoS Genet 2014; 10:e1004165. [PMID: 24586195 PMCID: PMC3937215 DOI: 10.1371/journal.pgen.1004165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/22/2013] [Indexed: 11/24/2022] Open
Abstract
Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis. Understanding the control of meiosis is fundamental to deciphering the origin of male infertility. Although the mechanisms controlling meiosis are poorly understood, key regulators of mitosis, such as cyclins, appear to be critical. In this regard, male mice deficient for cyclin E2 exhibit subfertility and defects in spermatogenesis; however, neither the stages of germ cell differentiation affected nor the responsible mechanisms are known. We investigated how E-type cyclins control male meiosis by examining their expression in spermatogenesis and the consequences that multiple deletions of Ccne1 and Ccne2 alleles produce. Loss of Ccne2 expression increases cyclin E1 levels as a compensatory effect, but there are still meiotic defects and subfertility. Further, loss of one Ccne1 allele in the absence of cyclin E2 results in infertility as does loss of the remaining Ccne1 allele, but with even more severe meiotic abnormalities. We further found that cyclin E1 is involved in sex chromosome synapsis while E2 is involved with homologous pairing and chromosome and telomere integrity. These processes and structures were severely disrupted in absence of both cyclin E1 and E2, uncovering new roles for the E-type cyclins in regulating male meiosis.
Collapse
Affiliation(s)
- Laetitia Martinerie
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Marcia Manterola
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Sanny S W Chung
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Sunil K Panigrahi
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Melissa Weisbach
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America ; Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Yan Geng
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Peter Sicinski
- Department of Genetics, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Debra J Wolgemuth
- Departments of Genetics & Development, Columbia University Medical Center, New York, New York, United States of America ; Obstetrics & Gynecology, Columbia University Medical Center, New York, New York, United States of America ; Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
24
|
Campaner S, Viale A, De Fazio S, Doni M, De Franco F, D'Artista L, Sardella D, Pelicci PG, Amati B. A non-redundant function of cyclin E1 in hematopoietic stem cells. Cell Cycle 2013; 12:3663-72. [PMID: 24091730 PMCID: PMC3903717 DOI: 10.4161/cc.26584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.
Collapse
Affiliation(s)
- Stefano Campaner
- Center for Genomic Science of IIT@SEMM; Istituto Italiano di Tecnologia (IIT); Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Caldon CE, Sergio CM, Burgess A, Deans AJ, Sutherland RL, Musgrove EA. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle 2013; 12:606-17. [PMID: 23324395 DOI: 10.4161/cc.23512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cyclins E1 drives the initiation of DNA replication, and deregulation of its periodic expression leads to mitotic delay associated with genomic instability. Since it is not known whether the closely related protein cyclin E2 shares these properties, we overexpressed cyclin E2 in breast cancer cells. This did not affect the duration of mitosis, nor did it cause an increase in p107 association with CDK2. In contrast, cyclin E1 overexpression led to inhibition of the APC complex, prolonged metaphase and increased p107 association with CDK2. Despite these different effects on the cell cycle, elevated levels of either cyclin E1 or E2 led to hallmarks of genomic instability, i.e., an increased proportion of abnormal mitoses, micronuclei and chromosomal aberrations. Cyclin E2 induction of genomic instability by a mechanism distinct from cyclin E1 indicates that these two proteins have unique functions in a cancer setting.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Nevzorova YA, Bangen JM, Hu W, Haas U, Weiskirchen R, Gassler N, Huss S, Tacke F, Sicinski P, Trautwein C, Liedtke C. Cyclin E1 controls proliferation of hepatic stellate cells and is essential for liver fibrogenesis in mice. Hepatology 2012; 56:1140-9. [PMID: 22454377 PMCID: PMC3396430 DOI: 10.1002/hep.25736] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/15/2012] [Indexed: 01/09/2023]
Abstract
UNLABELLED Liver fibrogenesis is associated with the transition of quiescent hepatocytes and hepatic stellate cells (HSCs) into the cell cycle. Exit from quiescence is controlled by E-type cyclins (cyclin E1 [CcnE1] and cyclin E2 [CcnE2]). Thus, the aim of the current study was to investigate the contribution of E-type cyclins for liver fibrosis in man and mice. Expression of CcnE1, but not of its homolog, CcnE2, was induced in fibrotic and cirrhotic livers from human patients with different etiologies and in murine wild-type (WT) livers after periodical administration of the profibrotic toxin, CCl(4). To further evaluate the potential function of E-type cyclins for liver fibrogenesis, we repetitively treated constitutive CcnE1(-/-) and CcnE2(-/-) knock-out mice with CCl(4) to induce liver fibrosis. Interestingly, CcnE1(-/-) mice were protected against CCl(4)-mediated liver fibrogenesis, as evidenced by reduced collagen type I α1 expression and the lack of septum formation. In contrast, CcnE2(-/-) mice showed accelerated fibrogenesis after CCl(4) treatment. We isolated primary HSCs from WT, CcnE1(-/-), and CcnE2(-/-) mice and analyzed their activation, proliferation, and survival in vitro. CcnE1 expression in WT HSCs was maximal when they started to proliferate, but decreased after the cells transdifferentiated into myofibroblasts. CcnE1(-/-) HSCs showed dramatically impaired survival, cell-cycle arrest, and strongly reduced expression of alpha smooth muscle actin, indicating deficient HSC activation. In contrast, CcnE2-deficient HSCs expressed an elevated level of CcnE1 and showed enhanced cell-cycle activity and proliferation, compared to WT cells. CONCLUSIONS CcnE1 and CcnE2 have antagonistic roles in liver fibrosis. CcnE1 is indispensable for the activation, proliferation, and survival of HSCs and thus promotes the synthesis of extracellular matrix and liver fibrogenesis.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Jörg-Martin Bangen
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Wei Hu
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Ute Haas
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Sebastian Huss
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, D-53123 Bonn, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Piotr Sicinski
- Department of Genetics, Harvard Medical School, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Christian Trautwein
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Christian Liedtke
- Department of Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
27
|
Abstract
BACKGROUND p53 induces cell-cycle arrest and apoptosis in cancer cells and negatively regulates glycolysis via TIGAR. Glycolysis is crucial for cancer progression although TIGAR provides protection from reactive oxygen species and apoptosis. The relation between TIGAR-mediated inhibition of glycolysis and p53 tumour-suppressor activity is unknown. METHODS RT-PCR, western blot, luciferase and chromatin immunoprecipitation assays were used to study TIGAR gene regulation. Co-IPP was used to determine the role of TIGAR protein in regulating the protein-protein interaction between retinoblastoma (RB) and E2F1. MCF-7 tumour xenografts were utilised to study the role of TIGAR in tumour regression. RESULTS Our study shows that TIGAR promotes p21-independent, p53-mediated G1-phase arrest in cancer cells. p53 activates the TIGAR promoter only in cells exposed to repairable doses of stress. TIGAR regulates the expression of genes involved in cell-cycle progression; suppresses synthesis of CDK-2, CDK-4, CDK-6, Cyclin D, Cyclin E and promotes de-phosphorylation of RB protein. RB de-phosphorylation stabilises the complex between RB and E2F1 thus inhibiting the entry of cell cycle from G1 phase to S phase. CONCLUSION TIGAR mediates de-phosphorylation of RB and stabilisation of RB-E2F1 complex thus delaying the entry of cells in S phase of the cell cycle. Thus, TIGAR inhibits proliferation of cancer cells and increases drug-mediated tumour regression by promoting p53-mediated cell-cycle arrest.
Collapse
|
28
|
Nehs MA, Nucera C, Nagarkatti SS, Sadow PM, Morales-Garcia D, Hodin RA, Parangi S. Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of human anaplastic thyroid cancer. Endocrinology 2012; 153:985-94. [PMID: 22202162 PMCID: PMC3275388 DOI: 10.1210/en.2011-1519] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human anaplastic thyroid cancer (ATC) is a lethal disease with an advanced clinical presentation and median survival of 3 months. The BRAF(V600E) oncoprotein is a potent transforming factor that causes human thyroid cancer cell progression in vitro and in vivo; therefore, we sought to target this oncoprotein in a late intervention model of ATC in vivo. We used the human ATC cell line 8505c, which harbors the BRAF(V600E) and TP53(R248G) mutations. Immunocompromised mice were randomized to receive the selective anti-BRAF(V600E) inhibitor, PLX4720, or vehicle by oral gavage 28 d after tumor implantation, 1 wk before all animals typically die due to widespread metastatic lung disease and neck compressive symptoms in this model. Mice were euthanized weekly to evaluate tumor volume and metastases. Control mice showed progressive tumor growth and lung metastases by 35 d after tumor implantation. At that time, all control mice had large tumors, were cachectic, and were euthanized due to their tumor-related weight loss. PLX4720-treated mice, however, showed a significant decrease in tumor volume and lung metastases in addition to a reversal of tumor-related weight loss. Mouse survival was extended to 49 d in PLX4720-treated animals. PLX4720 treatment inhibited cell cycle progression from 28 d to 49 d in vivo. PLX4720 induces striking tumor regression and reversal of cachexia in an in vivo model of advanced thyroid cancer that harbors the BRAF(V600E) mutation.
Collapse
Affiliation(s)
- Matthew A Nehs
- Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S, Quadros IM, Newman J, Das M, Jecrois ME, Yu Q, Li N, Bienvenu F, Moss SJ, Greenberg ME, Marto JA, Sicinski P. Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell 2011; 21:655-68. [PMID: 21944720 DOI: 10.1016/j.devcel.2011.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 07/25/2011] [Accepted: 08/09/2011] [Indexed: 12/13/2022]
Abstract
Cyclin E is a component of the core cell cycle machinery, and it drives cell proliferation by regulating entry and progression of cells through the DNA synthesis phase. Cyclin E expression is normally restricted to proliferating cells. However, high levels of cyclin E are expressed in the adult brain. The function of cyclin E in quiescent, postmitotic nervous system remains unknown. Here we use a combination of in vivo quantitative proteomics and analyses of cyclin E knockout mice to demonstrate that in terminally differentiated neurons cyclin E forms complexes with Cdk5 and controls synapse function by restraining Cdk5 activity. Ablation of cyclin E led to a decreased number of synapses, reduced number and volume of dendritic spines, and resulted in impaired synaptic plasticity and memory formation in cyclin E-deficient animals. These results reveal a cell cycle-independent role for a core cell cycle protein, cyclin E, in synapse function and memory.
Collapse
Affiliation(s)
- Junko Odajima
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cooley A, Zelivianski S, Jeruss JS. Impact of cyclin E overexpression on Smad3 activity in breast cancer cell lines. Cell Cycle 2010; 9:4900-7. [PMID: 21150326 DOI: 10.4161/cc.9.24.14158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Smad3, a component of the TGFβ signaling pathway, contributes to G1 arrest in breast cancer cells. Overexpression of the cell cycle mitogen, cyclin E, is associated with poor prognosis in breast cancer, and cyclin E/CDK2 mediated phosphorylation of Smad3 has been linked with inhibition of Smad3 activity. We hypothesized that the biological aggressiveness of cyclin E overexpressing breast cancer cells would be associated with CDK2 phosphorylation and inhibition of the tumor suppressant action of Smad3. Expression constructs containing empty vector, wild type (WT) Smad3, or Smad3 with CDK phosphorylation site mutations were co-transfected with a Smad3-responsive reporter construct into parental, vector control (A1), or cyclin E overexpressing (EL1) MCF7 cells. Smad3 function was evaluated by luciferase reporter assay and mRNA analysis. The impact of a Cdk2 inhibitor and cdk2 siRNA on Smad3 activity was also assessed. Cells expressing Smad3 containing mutations of the CDK phosphorylation sites had higher p15 and p21 and lower c-myc mRNA levels, as well as higher Smad3-responsive reporter activity, compared with controls or cells expressing WT Smad3. Transfection of cdk2 siRNA resulted in a significant increase in Smad3-responsive reporter activity compared with control siRNA; reporter activity was also increased after the treatment with a Cdk2 inhibitor. Thus, cyclin E-mediated inhibition of Smad3 is regulated by CDK2 phosphorylation of the Smad3 protein in MCF7 cells. Inhibition of CDK2 may lead to restoration of Smad3 tumor suppressor activity in breast cancer cells, and may represent a potential treatment approach for cyclin E overexpressing breast cancers.
Collapse
Affiliation(s)
- Anne Cooley
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
31
|
Ikeda Y, Matsunaga Y, Takiguchi M, Ikeda MA. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain. Gene Expr Patterns 2010; 11:64-71. [PMID: 20863901 DOI: 10.1016/j.gep.2010.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/24/2022]
Abstract
Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | |
Collapse
|
32
|
Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5:2. [PMID: 20180967 PMCID: PMC2835679 DOI: 10.1186/1747-1028-5-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/07/2023] Open
Abstract
The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA. Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover, expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allowing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progression. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially different roles in vivo.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
33
|
Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci U S A 2009; 107:58-63. [PMID: 19966300 DOI: 10.1073/pnas.0900121106] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular senescence required phosphorylation of Myc at Ser-62 by cyclin E/cyclin-dependent kinase (Cdk) 2. Cdk2 interacted with Myc at promoters, where it affected Myc-dependent regulation of genes, including Bmi-1, p16, p21, and hTERT, which encode proteins known to control senescence. Repression of senescence by Myc was abrogated by the Cdk inhibitor p27Kip1, which is induced by antiproliferative signals like IFN-gamma or by pharmacological inhibitors of Cdk2 but not by inhibitors of other Cdks. In contrast, a phospho-mimicking Myc-S62D mutant was resistant to these manipulations. Inhibition of cyclin E/Cdk2 reversed the senescence-associated gene expression pattern imposed by Myc/cyclin E/Cdk2. This indicates a role of Cdk2 as a transcriptional cofactor and activator of the antisenescence function of Myc and provides mechanistic insight into the Myc-p27Kip1 antagonism. Finally, our findings highlight that pharmacological inhibition of Cdk2 activity is a potential therapeutical principle for cancer therapy, in particular for tumors with activated Myc or Ras.
Collapse
|
34
|
Abstract
During estrogen-induced proliferation, c-Myc and cyclin D1 initiate independent pathways that activate cyclin E1-Cdk2 by sequestration and/or downregulation of the CDK inhibitor p21(Waf1/Cip1), without significant increases in cyclin E1 protein levels. In contrast, cyclin E2 undergoes a marked increase in expression, which occurs within 9 to 12 h of estrogen treatment of antiestrogen-pretreated MCF-7 breast cancer cells. Both E cyclins are important to estrogen action, as small interfering RNA (siRNA)-mediated knockdown of either cyclin E1 or cyclin E2 attenuated estrogen-mediated proliferation. Inducible expression of cyclin D1 upregulated cyclin E2, while siRNA-mediated knockdown of cyclin D1 attenuated estrogen effects on cyclin E2. However, manipulation of c-Myc levels did not profoundly affect cyclin E2. Cyclin E2 induction by estrogen was accompanied by recruitment of E2F1 to the cyclin E1 and E2 promoters, and cyclin D1 induction was sufficient for E2F1 recruitment. siRNA-mediated knockdown of the chromatin remodelling factor CHD8 prevented cyclin E2 upregulation. Together, these data indicate that cyclin E2-Cdk2 activation by estrogen occurs via E2F- and CHD8-mediated transcription of cyclin E2 downstream of cyclin D1. This contrasts with the predominant regulation of cyclin E1-Cdk2 activity via CDK inhibitor association downstream of both c-Myc and cyclin D1 and indicates that cyclins E1 and E2 are not always coordinately regulated.
Collapse
|
35
|
Cdc6 and cyclin E2 are PTEN-regulated genes associated with human prostate cancer metastasis. Neoplasia 2009; 11:66-76. [PMID: 19107233 DOI: 10.1593/neo.81048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/18/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is frequently inactivated in metastatic prostate cancer, yet the molecular consequences of this and their association with the metastatic phenotype are incompletely understood. We performed transcriptomic analysis and identified genes altered by conditional PTEN reexpression in C4-2, a human metastatic prostate cancer cell line with inactive PTEN. PTEN-regulated genes were disproportionately represented among genes altered in human prostate cancer progression and metastasis but not among those associated with tumorigenesis. From the former set, we identified two novel putative PTEN targets, cdc6 and cyclin E2, which were overexpressed in metastatic human prostate cancer and up-regulated as a function of PTEN depletion in poorly metastatic DU145 human prostate cancer cells harboring a wild type PTEN. Inhibition of cdc6 and cyclin E2 levels as a consequence of PTEN expression was associated with cell cycle G(1) arrest, whereas use of PTEN activity mutants revealed that regulation of these genes was dependent on PTEN lipid phosphatase activity. Computational and promoter-reporter evaluations implicated the E2F transcription factor in PTEN regulation of cdc6 and cyclin E2 expression. Our results suggest a hypothetical model whereby PTEN loss upregulates cell cycle genes such as cdc6 and cyclin E2 that in turn promote metastatic colonization at distant sites.
Collapse
|
36
|
Yu Q, Wu J. Involvement of cyclins in mammalian spermatogenesis. Mol Cell Biochem 2008; 315:17-24. [PMID: 18470654 DOI: 10.1007/s11010-008-9783-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Mammalian spermatogenesis is a complicated developmental process by which undifferentiated germ cells continuously produce mature sperm throughout a lifetime. Stringent control of the cell cycle during spermatogenesis is required to ensure self-renewal of male germ line cells and differentiation of appropriate numbers of cells for the various lineages. Cyclins are key factors of cell cycle regulation and play crucial roles in governing both the mitotic and meiotic divisions that characterize spermatogenesis. Abnormal expression of some types of cyclins in the testes can induce apoptosis, infertility, testicular tumors, and other problems related to spermatogenesis in mammals. In this review, available data regarding cellular and molecular regulation of several different types of cyclins during mammalian spermatogenesis are collected and further discussed.
Collapse
Affiliation(s)
- Qingsheng Yu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China
| | | |
Collapse
|
37
|
Ikegami K, Iwatani M, Suzuki M, Tachibana M, Shinkai Y, Tanaka S, Greally JM, Yagi S, Hattori N, Shiota K. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells 2007; 12:1-11. [PMID: 17212651 DOI: 10.1111/j.1365-2443.2006.01029.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the mammalian genome, numerous CpG-rich loci define tissue-dependent and differentially methylated regions (T-DMRs). Euchromatin from different cell types differs in terms of its tissue-specific DNA methylation profile as defined by these T-DMRs. G9a is a euchromatin-localized histone methyltransferase (HMT) and catalyzes methylation of histone H3 at lysines 9 and 27 (H3-K9 and -K27). To test whether HMT activity influences euchromatic cytosine methylation, we analyzed the DNA methylation status of approximately 2000 CpG-rich loci, which are predicted in silico, in G9a(-/-) embryonic stem cells by restriction landmark genomic scanning (RLGS). While the RLGS profile of wild-type cells contained about 1300 spots, 32 new spots indicating DNA demethylation were seen in the profile of G9a(-/-) cells. Virtual-image RLGS (Vi-RLGS) allowed us to identify the genomic source of ten of these spots. These were confirmed to be cytosine demethylated, not just at the Not I site detected by the RLGS but extending over several kilobase pairs in cis. Chromatin immunoprecipitation (ChIP) confirmed these loci to be targets of G9a, with decreased H3-K9 and/or -K27 dimethylation in the G9a(-/-) cells. These data indicate that G9a site-selectively contributes to DNA methylation.
Collapse
Affiliation(s)
- Kohta Ikegami
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences and Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The Rb protein is a tumor suppressor, which plays a pivotal role in the negative control of the cell cycle and in tumor progression. It has been shown that Rb protein (pRb) is responsible for a major G1 checkpoint, blocking S-phase entry and cell growth. The retinoblastoma family includes three members, Rb/p105, p107 and Rb2/p130, collectively referred to as 'pocket proteins'. The pRb protein represses gene transcription, required for transition from G1 to S phase, by directly binding to the transactivation domain of E2F and by binding to the promoter of these genes as a complex with E2F. pRb represses transcription also by remodeling chromatin structure through interaction with proteins such as hBRM, BRG1, HDAC1 and SUV39H1, which are involved in nucleosome remodeling, histone acetylation/deacetylation and methylation, respectively. Loss of pRb functions may induce cell cycle deregulation and so lead to a malignant phenotype. Gene inactivation of pRB through chromosomal mutations is one of the principal reasons for retinoblastoma tumor development. Functional inactivation of pRb by viral oncoprotein binding is also shown in many neoplasias such as cervical cancer, mesothelioma and AIDS-related Burkitt's lymphoma.
Collapse
Affiliation(s)
- C Giacinti
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
39
|
Fanton CP, Rowe MW, Moler EJ, Ison-Dugenny M, De Long SK, Rendahl K, Shao Y, Slabiak T, Gesner TG, MacKichan ML. Development of a Screening Assay for Surrogate Markers of Chk1 Inhibitor-Induced Cell Cycle Release. ACTA ACUST UNITED AC 2006; 11:792-806. [PMID: 17035625 DOI: 10.1177/1087057106289808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chk1 is a key regulator of the S and G2/M checkpoints and is activated following DNA damage by agents such as the topoisomerase I inhibitor camptothecin (CPT). It has been proposed that Chk1 inhibitors used in combination with such a DNA damaging agent to treat tumors would potentiate cytotoxicity and increase the therapeutic index, particularly in tumors lacking functional p53. The aim of this study was to determine whether gene expression analysis could be used to inform lead optimization of a novel series of Chk1 inhibitors. The candidate small-molecule Chk1 inhibitors were used in combination with CPT to identify potential markers of functional Chk1 inhibition, as well as resulting cell cycle progression, using cDNA-based microarrays. Differential expression of several of these putative marker genes was further validated by RT-PCR for use as a medium-throughput assay. In the presence of DNA damage, Chk1 inhibitors altered CPT-dependent effects on the expression of cell cycle and DNA repair genes in a manner consistent with a Chk1-specific mechanism of action. Furthermore, differential expression of selected marker genes, cyclin E2, EGR1, and DDIT3, was dose dependent for Chk1 inhibition. RT-PCR results for these genes following treatment with a panel of Chk1 inhibitors showed a strong correlation between marker gene response and the ability of each compound to abrogate cell cycle arrest in situ following CPT-induced DNA damage. These results demonstrate the utility of global expression analysis to identify surrogate markers, providing an alternative method for rapid compound characterization to support advancement decisions in early drug discovery.
Collapse
Affiliation(s)
- Christie P Fanton
- Biopharma Research and Development, Chiron Corporation, Emeryville, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In yeast, a single cyclin-dependent kinase (Cdk) is able to regulate diverse cell cycle transitions (S and M phases) by associating with multiple stage-specific cyclins. The evolution of multicellular organisms brought additional layers of cell cycle regulation in the form of numerous Cdks, cyclins and Cdk inhibitors to reflect the higher levels of organismal complexity. Our current knowledge about the mammalian cell cycle emerged from early experiments using human and rodent cell lines, from which we built the current textbook model of cell cycle regulation. In this model, the functions of different cyclin/Cdk complexes were thought to be specific for each cell cycle phase. In the last decade, studies using genetically engineered mice in which cell cycle regulators were targeted revealed many surprises. We discovered the in vivo functions of cell cycle proteins within the context of a living animal and whether they are essential for animal development. In this review, we discuss first the textbook model of cell cycle regulation, followed by a global overview of data obtained from different mouse models. We describe the similarities and differences between the phenotypes of different mouse models including embryonic lethality, sterility, hematopoietic, pancreatic, and placental defects. We also describe the role of key cell cycle regulators in the development of tumors in mice, and the implications of these data for human cancer. Furthermore, animal models in which two or more genes are ablated revealed which cell cycle regulators interact genetically and functionally complement each other. We discuss for example the interaction of cyclin D1 and p27 and the compensation of Cdk2 by Cdc2. We also focus on new functions discovered for certain cell cycle regulators such as the regulation of S phase by Cdc2 and the role of p27 in regulating cell migration. Finally, we conclude the chapter by discussing the limitations of animal models and to what extent can the recent findings be reconciled with the past work to come up with a new model for cell cycle regulation with high levels of redundancy among the molecular players.
Collapse
Affiliation(s)
- Eiman Aleem
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, MD 21702-1201, USA
| | | |
Collapse
|
41
|
Sansregret L, Goulet B, Harada R, Wilson B, Leduy L, Bertoglio J, Nepveu A. The p110 isoform of the CDP/Cux transcription factor accelerates entry into S phase. Mol Cell Biol 2006; 26:2441-55. [PMID: 16508018 PMCID: PMC1430290 DOI: 10.1128/mcb.26.6.2441-2455.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/31/2005] [Accepted: 12/29/2005] [Indexed: 01/19/2023] Open
Abstract
The CDP/Cux transcription factor was previously found to acquire distinct DNA binding and transcriptional properties following a proteolytic processing event that takes place at the G1/S transition of the cell cycle. In the present study, we have investigated the role of the CDP/Cux processed isoform, p110, in cell cycle progression. Populations of cells stably expressing p110 CDP/Cux displayed a faster division rate and reached higher saturation density than control cells carrying the empty vector. p110 CDP/Cux cells reached the next S phase faster than control cells under various experimental conditions: following cell synchronization in G0 by growth factor deprivation, synchronization in S phase by double thymidine block treatment, or enrichment in G2 by centrifugal elutriation. In each case, duration of the G1 phase was shortened by 2 to 4 h. Gene inactivation confirmed the role of CDP/Cux as an accelerator of cell cycle progression, since mouse embryo fibroblasts obtained from Cutl1z/z mutant mice displayed a longer G1 phase and proliferated more slowly than their wild-type counterparts. The delay to enter S phase persisted following immortalization by the 3T3 protocol and transformation with H-RasV12. Moreover, CDP/Cux inactivation hindered both the formation of foci on a monolayer and tumor growth in mice. At the molecular level, expression of both cyclin E2 and A2 was increased in the presence of p110 CDP/Cux and decreased in its absence. Overall, these results establish that p110 CDP/Cux functions as a cell cycle regulator that accelerates entry into S phase.
Collapse
Affiliation(s)
- Laurent Sansregret
- McGill University Health Center, Molecular Oncology Group, 687 Pine Avenue West, room H5.21, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The ultimate stem cell, the oocyte, is frequently very large. For example, Drosophila and Xenopus oocytes are approximately 10(5) times larger than normal somatic cells. Importantly, once the large oocytes are fertilized, the resulting embryonic cells proliferate rapidly. Moreover, these divisions occur in the absence of cell growth and are not governed by normal cell cycle controls. Observations suggest that mitogens and cell growth signals modulate proliferation by upregulating G1-phase cyclins, which in turn promote cell division. Like embryonic cells, the proliferation of cancer cells is largely independent of mitogens and growth factors. This occurs, in part, because many proteins that are known to modulate G1-phase cyclin activity are frequently mutated in cancer cells. Interestingly, we have found that both the expression and the activity of G1-phase cyclins is modulated by growth rate and cell size in yeast. These and other data suggest that proliferative capacity correlates with cell size. Thus, a major goal of our laboratory is to use yeast to investigate the relationship between proliferation rate, G1-phase cyclins, growth rate, and cell size. The elucidation of this relationship will help clarify the role of cell size in promoting proliferation in both normal and cancer cells.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Carcinoma of the uterine cervix is one of the most common malignancies among women worldwide. Human papillomaviruses (HPV) have been identified as the major etiological factor in cervical carcinogenesis. However, the time lag between HPV infection and the diagnosis of cancer indicates that multiple steps, as well as multiple factors, may be necessary for the development of cervical cancer. The development and progression of cervical carcinoma have been shown to be dependent on various genetic and epigenetic events, especially alterations in the cell cycle checkpoint machinery. In mammalian cells, control of the cell cycle is regulated by the activity of cyclin-dependent kinases (CDKs) and their essential activating coenzymes, the cyclins. Generally, CDKs, cyclins, and CDK inhibitors function within several pathways, including the p16(INK4A)-cyclin D1-CDK4/6-pRb-E2F, p21(WAF1)- p27(KIP1)-cyclinE-CDK2, and p14(ARF)-MDM2-p53 pathways. The results from several studies showed aberrant regulation of several cell cycle proteins, such as cyclin D, cyclin E, p16(INK4A), p21(WAF1), and p27(KIP1), as characteristic features of HPV- infected and HPV E6/E7 oncogene-expressing cervical carcinomas and their precursors. These data suggested further that interactions of viral proteins with host cellular proteins, particularly cell cycle proteins, are involved in the activation or repression of cell cycle progression in cervical carcinogenesis.
Collapse
Affiliation(s)
- Young Tae Kim
- Department of Obstetrics and Gynecology, Women's Cancer Clinic, Women's life and Science Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
44
|
Okada A, Kushima K, Aoki Y, Bialer M, Fujiwara M. Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice. ACTA ACUST UNITED AC 2005; 73:229-38. [PMID: 15799026 DOI: 10.1002/bdra.20131] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | |
Collapse
|
45
|
Abstract
A fundamental aspect of cancer is dysregulated cell cycle control. Unlike normal cells that only proliferate when compelled to do so by developmental or other mitogenic signals in response to tissue growth needs, the proliferation of cancer cells proceeds essentially unchecked. This does not mean that cancer cell cycles are necessarily different from those found in normal cycling cells, but rather implies that cancer cells proliferate because they are no longer subject to proliferation-inhibitory influences arising from the stroma or from gene expression pattern changes consequent to 'terminal' differentiation, nor do they necessarily require extrinsic growth factors to recruit them into or maintain their proliferative state. Finally, cancer cells have also often avoided normal controls linked to cell cycle progression that halt proliferation in the presence of damaged DNA or other physiological insults. The result of these alterations is the inappropriate proliferation commonly associated with cancerous tumor formation. This review will summarize the current understanding of dysregulation of the G0/G1-to-S-phase transition in cancer cells, with particular emphasis on recent in vivo studies that suggest a need to rethink existing models of cell cycle control in development and tumorigenesis.
Collapse
Affiliation(s)
- Amit Deshpande
- Department of Radiation Oncology, Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
46
|
Ishii H, Mimori K, Yoshikawa Y, Mori M, Furukawa Y, Vecchione A. Differential roles of E-type cyclins during transformation of murine E2F-1-deficient cells. DNA Cell Biol 2005; 24:173-9. [PMID: 15767783 DOI: 10.1089/dna.2005.24.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deregulation of retinoblastoma gene product (pRB) is a hallmark of cancer, which acts as a transcriptional repressor by targeting E2F transcription factors. A transcription factor E2F-1 is not only important for S phase entry of cell cycle, but also stimulates gene expression of pro-apoptotic molecules. To investigate roles of E2F-1 and its target genes in cellular transformation, we studied murine E2F-1-deficient embryonic fibroblasts. Compared with control wild-type cells, E2F-1-deficient cells at early passages were less sensitive to exposure to gamma-radiation and showed an increase of colony formation, while their growth was slow. After sequential passages, the growth of E2F-1-deficient cells reached closely to that of wild-type cells. Immunoblot study of E2F target genes showed that multiple passages of E2F-1-deficient cells resulted in preferential increase of cyclin E2 expression. Furthermore, carcinogenicity study using N-nitrosomethylbenzylamine demonstrated that, compared to wild-type mice, fore-stomach tumors in E2F-1-deficient mice expressed an increased amount of cyclin E2, but not cyclin E1. Taken together, the present study shows that differential roles of E-type cyclins are involved at least partially in the process of cellular transformation, supporting the concept of important roles of the E2F regulatory pathway in carcinogenesis.
Collapse
Affiliation(s)
- Hideshi Ishii
- Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Jiang W, Roemer ME, Newsham IF. The tumor suppressor DAL-1/4.1B modulates protein arginine N-methyltransferase 5 activity in a substrate-specific manner. Biochem Biophys Res Commun 2005; 329:522-30. [PMID: 15737618 DOI: 10.1016/j.bbrc.2005.01.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 11/18/2022]
Abstract
We previously identified DAL-1/4.1B as a growth suppression protein involved in the pathogenesis of lung, breast, and meningioma tumors. Using yeast two-hybrid interaction cloning, protein arginine N-methyltransferase 3 (PRMT3) was originally identified as a DAL-1/4.1B-interacting protein. PRMTs catalyze the sequential transfer of methyl groups from S-adeonsyl-l-methionine to the guanidino nitrogens of arginine residues in proteins, the effect of which can include regulation of signal transduction, transcription regulation, and RNA transport, suggesting that modulating this event may have far-reaching impact. In this study, we assessed the impact of DAL-1/4.1B binding on the activity of another family member, PRMT5, both in vitro and in cells. In contrast to PRMT3, DAL-1/4.1B was found to mediate PRMT5 by either inhibiting (Sm proteins) or enhancing (myelin basic protein) protein methylation. We propose that this interaction between a tumor suppressor and a post-translational methylation enzyme is of biological importance in controlling tumorigenesis.
Collapse
Affiliation(s)
- Wei Jiang
- David and Doreen Hermelin Laboratory of Molecular Oncogenetics, Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | |
Collapse
|
48
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
49
|
Wu JT, Kral JG. The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 2005; 123:158-69. [PMID: 15652965 DOI: 10.1016/j.jss.2004.06.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 12/21/2022]
Abstract
The nuclear factor kappaB (NFkappaB) superfamily of eukaryotic transcription factors plays an important role in carcinogenesis. NF-kappaB and its regulators are linked to various signal transduction pathways as well as transcriptional activation events that mediate critical stages of cell proliferation. These intracellular signaling processes are thought to regulate chromatin structure to accommodate transcription, apoptosis, cell-cycle control, and cell transformation. In this capacity, uncontrolled or aberrant NF-kappaB activity may, in part, be responsible for breast cancer progression. Constitutive NF-kappaB expression may predict the metastatic potential of breast tumors, indicating early use of adjuvant therapy and suggesting NF-kappaB inhibition as a novel treatment. In this review, we discuss the regulatory mechanisms and physiological significance of NF-kappaB activation, and highlight recent advances in the development of NF-kappaB as an integral mediator of mammary carcinogenesis.
Collapse
Affiliation(s)
- James T Wu
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York, USA.
| | | |
Collapse
|
50
|
Wolgemuth DJ, Lele KM, Jobanputra V, Salazar G. The A-type cyclins and the meiotic cell cycle in mammalian male germ cells. ACTA ACUST UNITED AC 2004; 27:192-9. [PMID: 15271198 DOI: 10.1111/j.1365-2605.2004.00480.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are two mammalian A-type cyclins, cyclin Al and A2. While cyclin A1 is limited to male germ cells, cyclin A2 is widely expressed. Cyclin A2 promotes both Gl/S and G2/M transitions in somatic cells and cyclin A2-deficient mice are early embryonic lethal. We have shown that cyclin Al is essential for passage of spermatocytes into meiosis I (MI) by generating mice null for the cyclin A1 gene Ccna1. Both Ccna1(-/-) males and females were healthy but the males were sterile because of a cell cycle arrest before MI. This arrest was associated with desynapsis abnormalities, low M-phase promoting factor activity, and apoptosis. We have now determined that human cyclin A1 is expressed in similar stages of spermatogenesis and are exploring its role in human male infertility and whether it may be a novel target for new approaches for male contraception.
Collapse
Affiliation(s)
- Debra J Wolgemuth
- Department of Genetics & Development, Institute of Human Nutrition, Center for Reproductive Sciences, and The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | |
Collapse
|