1
|
Lawrimore CJ, Bloom K. Common Features of the Pericentromere and Nucleolus. Genes (Basel) 2019; 10:E1029. [PMID: 31835574 PMCID: PMC6947172 DOI: 10.3390/genes10121029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022] Open
Abstract
Both the pericentromere and the nucleolus have unique characteristics that distinguish them amongst the rest of genome. Looping of pericentromeric DNA, due to structural maintenance of chromosome (SMC) proteins condensin and cohesin, drives its ability to maintain tension during metaphase. Similar loops are formed via condensin and cohesin in nucleolar ribosomal DNA (rDNA). Condensin and cohesin are also concentrated in transfer RNA (tRNA) genes, genes which may be located within the pericentromere as well as tethered to the nucleolus. Replication fork stalling, as well as downstream consequences such as genomic recombination, are characteristic of both the pericentromere and rDNA. Furthermore, emerging evidence suggests that the pericentromere may function as a liquid-liquid phase separated domain, similar to the nucleolus. We therefore propose that the pericentromere and nucleolus, in part due to their enrichment of SMC proteins and others, contain similar domains that drive important cellular activities such as segregation, stability, and repair.
Collapse
Affiliation(s)
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA;
| |
Collapse
|
2
|
Kling E, Spaller T, Schiefner J, Bönisch D, Winckler T. Convergent evolution of integration site selection upstream of tRNA genes by yeast and amoeba retrotransposons. Nucleic Acids Res 2019; 46:7250-7260. [PMID: 29945249 PMCID: PMC6101501 DOI: 10.1093/nar/gky582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Transposable elements amplify in genomes as selfish DNA elements and challenge host fitness because their intrinsic integration steps during mobilization can compromise genome integrity. In gene-dense genomes, transposable elements are notably under selection to avoid insertional mutagenesis of host protein-coding genes. We describe an example of convergent evolution in the distantly related amoebozoan Dictyostelium discoideum and the yeast Saccharomyces cerevisiae, in which the D. discoideum retrotransposon DGLT-A and the yeast Ty3 element developed different mechanisms to facilitate position-specific integration at similar sites upstream of tRNA genes. Transcription of tRNA genes by RNA polymerase III requires the transcription factor complexes TFIIIB and TFIIIC. Whereas Ty3 recognizes tRNA genes mainly through interactions of its integrase with TFIIIB subunits, the DGLT-A-encoded ribonuclease H contacts TFIIIC subunit Tfc4 at an interface that covers tetratricopeptide repeats (TPRs) 7 and 8. A major function of this interface is to connect TFIIIC subcomplexes τA and τB and to facilitate TFIIIB assembly. During the initiation of tRNA gene transcription τB is displaced from τA, which transiently exposes the TPR 7/8 surface of Tfc4 on τA. We propose that the DGLT-A intasome uses this binding site to obtain access to genomic DNA for integration during tRNA gene transcription.
Collapse
Affiliation(s)
- Eva Kling
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Jana Schiefner
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Doreen Bönisch
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| |
Collapse
|
3
|
Trotta E. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast. J Biol Chem 2019; 294:12349-12358. [PMID: 31235518 PMCID: PMC6699833 DOI: 10.1074/jbc.ra119.008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Indexed: 07/24/2023] Open
Abstract
In yeast (Saccharomyces cerevisiae), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.
| |
Collapse
|
4
|
Schneider GX, Gomes RR, Bombassaro A, Zamarchi K, Voidaleski MF, Costa FF, Leão ACR, Lima BJFS, Soley BS, Colombo IR, Cândido GZ, Najafzadeh MJ, Sun J, de Azevedo CMPS, Marques SG, de Hoog GS, Vicente VA. New Molecular Markers Distinguishing Fonsecaea Agents of Chromoblastomycosis. Mycopathologia 2019; 184:493-504. [PMID: 31317385 DOI: 10.1007/s11046-019-00359-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
The species belonging to the genus Fonsecaea are the main causative agents of chromoblastomycosis. The invasive potential of Fonsecaea differs significantly among its various sibling species. Moreover, the lack of clarity on the virulence and availability of precise markers to distinguish and detect Fonsecaea species is attributed to the different ways of dissemination and pathogenicity. Therefore, the present study aimed to propose new molecular tools to differentiate between sibling species causing chromoblastomycosis. We used an infection model of chromoblastomycosis in BALB/c to study species-specific molecular markers for the in vivo detection of Fonsecaea species in biological samples. Specific primers based on the CBF5 gene were developed for Fonsecaea pedrosoi, Fonsecaea monophora, Fonsecaea nubica, and Fonsecaea pugnacius. In addition, a padlock probe was designed for F. pugnacius based on ITS sequences. We also assessed the specificity of Fonsecaea species using in silico, in vitro, and in vivo assays. The results showed that markers and probes could effectively discriminate the species in both clinical and environmental samples, enabling bioprospecting of agents of chromoblastomycosis, thereby elucidating the infection route of the disease.
Collapse
Affiliation(s)
- Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kassiely Zamarchi
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Morgana F Voidaleski
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Flávia F Costa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C R Leão
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna J F S Lima
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna S Soley
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Israella R Colombo
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Giovanna Z Cândido
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Mohammad J Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jiufeng Sun
- Department of Dermatology, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Conceição M P S de Azevedo
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Department of Medicine, Federal University of Maranhão, São Luis, Brazil
| | - Sirlei G Marques
- University Hospital, Federal University of Maranhão, São Luiz, Brazil.,Cedro Laboratory, São Luiz, Brazil
| | - G Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil. .,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. .,Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| | - Vânia A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
5
|
Knapp DJHF, Michaels YS, Jamilly M, Ferry QRV, Barbosa H, Milne TA, Fulga TA. Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nat Commun 2019; 10:1490. [PMID: 30940799 PMCID: PMC6445147 DOI: 10.1038/s41467-019-09148-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/22/2019] [Indexed: 11/08/2022] Open
Abstract
Spatial/temporal control of Cas9 guide RNA expression could considerably expand the utility of CRISPR-based technologies. Current approaches based on tRNA processing offer a promising strategy but suffer from high background. Here, to address this limitation, we present a screening platform which allows simultaneous measurements of the promoter strength, 5', and 3' processing efficiencies across a library of tRNA variants. This analysis reveals that the sequence determinants underlying these activities, while overlapping, are dissociable. Rational design based on the ensuing principles allowed us to engineer an improved tRNA scaffold that enables highly specific guide RNA production from a Pol-II promoter. When benchmarked against other reported systems this tRNA scaffold is superior to most alternatives, and is equivalent in function to an optimized version of the Csy4-based guide RNA release system. The results and methods described in this manuscript enable avenues of research both in genome engineering and basic tRNA biology.
Collapse
MESH Headings
- CRISPR-Associated Protein 9/metabolism
- Gene Editing
- Gene Expression Regulation
- Humans
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- David J H F Knapp
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Yale S Michaels
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Max Jamilly
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Quentin R V Ferry
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Hector Barbosa
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford, OX3 9DS, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
6
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
7
|
Read DF, Waller TJ, Tse E, Southworth DR, Engelke DR, Smaldino PJ. Aggregation of Mod5 is affected by tRNA binding with implications for tRNA gene-mediated silencing. FEBS Lett 2017; 591:1601-1610. [PMID: 28303570 DOI: 10.1002/1873-3468.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/24/2022]
Abstract
Mod5 is a multifunctional protein that modifies a subset of tRNAs in the cytoplasm and is also required for an RNA-mediated form of transcriptional silencing. Previous in vivo studies have shown that the nuclear silencing function of Mod5 does not require that the causative tRNA gene encode a Mod5 substrate, although Mod5 is still required. However, previous data have not directly tested whether Mod5 can directly bind substrate and nonsubstrate RNAs. We herein demonstrate that Mod5 directly binds to both substrate and nonsubstrate RNAs, including a highly structured, non-tRNA sequence (5S-rRNA), consistent with previous in vivo data. Furthermore, we show that some RNAs drastically change the aggregation behavior of Mod5 with implications for tRNA gene-mediated silencing.
Collapse
Affiliation(s)
- David F Read
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Waller
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Southworth
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - David R Engelke
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,University of Colorado Denver/Anschutz Medical Campus, Aurora, CO, USA
| | - Philip J Smaldino
- Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,Biology, Ball State University, Muncie, IN, USA
| |
Collapse
|
8
|
Tsabar M, Haase J, Harrison B, Snider CE, Eldridge B, Kaminsky L, Hine RM, Haber JE, Bloom K. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genet 2016; 12:e1006021. [PMID: 27128635 PMCID: PMC4851351 DOI: 10.1371/journal.pgen.1006021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/08/2016] [Indexed: 12/24/2022] Open
Abstract
Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Julian Haase
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin Harrison
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chloe E. Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brittany Eldridge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lila Kaminsky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Rebecca M. Hine
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Lawrimore J, Vasquez PA, Falvo MR, Taylor RM, Vicci L, Yeh E, Forest MG, Bloom K. DNA loops generate intracentromere tension in mitosis. J Cell Biol 2015; 210:553-64. [PMID: 26283798 PMCID: PMC4539978 DOI: 10.1083/jcb.201502046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The geometry and arrangement of DNA loops in the pericentric region of the budding yeast centromere create a DNA-based molecular shock absorber that serves as the basis for how tension is generated between sister centromeres in mitosis. The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Paula A Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Michael R Falvo
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
| | - Russell M Taylor
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599
| | - Leandra Vicci
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599
| | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - M Gregory Forest
- Department of Mathematics and Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Argonaute 2 Binds Directly to tRNA Genes and Promotes Gene Repression in cis. Mol Cell Biol 2015; 35:2278-94. [PMID: 25918241 DOI: 10.1128/mcb.00076-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further our understanding of the RNAi machinery within the human nucleus, we analyzed the chromatin and RNA binding of Argonaute 2 (AGO2) within human cancer cell lines. Our data indicated that AGO2 binds directly to nascent tRNA and 5S rRNA, and to the genomic loci from which these RNAs are transcribed, in a small RNA- and DICER-independent manner. AGO2 chromatin binding was not observed at non-TFIIIC-dependent RNA polymerase III (Pol III) genes or at extra-TFIIIC (ETC) sites, indicating that the interaction is specific for TFIIIC-dependent Pol III genes. A genome-wide analysis indicated that loss of AGO2 caused a global increase in mRNA expression level among genes that flank AGO2-bound tRNA genes. This effect was shown to be distinct from that of the disruption of DICER, DROSHA, or CTCF. We propose that AGO2 binding to tRNA genes has a novel and important regulatory role in human cells.
Collapse
|
11
|
Wang Q, Nowak CM, Korde A, Oh DH, Dassanayake M, Donze D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biol 2014; 12:89. [PMID: 25348158 PMCID: PMC4228148 DOI: 10.1186/s12915-014-0089-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 12/26/2022] Open
Abstract
Background Assembled RNA polymerase III (Pol III) complexes exert local effects on chromatin processes, including influencing transcription of neighboring RNA polymerase II (Pol II) transcribed genes. These properties have been designated as ‘extra-transcriptional’ effects of the Pol III complex. Previous coding sequence microarray studies using Pol III factor mutants to determine global effects of Pol III complex assembly on Pol II promoter activity revealed only modest effects that did not correlate with the proximity of Pol III complex binding sites. Results Given our recent results demonstrating that tDNAs block progression of intergenic Pol II transcription, we hypothesized that extra-transcriptional effects within intergenic regions were not identified in the microarray study. To reconsider global impacts of Pol III complex binding, we used RNA sequencing to compare transcriptomes of wild type versus Pol III transcription factor TFIIIC depleted mutants. The results reveal altered intergenic Pol II transcription near TFIIIC binding sites in the mutant strains, where we observe readthrough of upstream transcripts that normally terminate near these sites, 5′- and 3′-extended transcripts, and de-repression of adjacent genes and intergenic regions. Conclusions The results suggest that effects of assembled Pol III complexes on transcription of neighboring Pol II promoters are of greater magnitude than previously appreciated, that such effects influence expression of adjacent genes at transcriptional start site and translational levels, and may explain a function of the conserved ETC sites in yeast. The results may also be relevant to synthetic biology efforts to design a minimal yeast genome. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0089-x) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Snider CE, Stephens AD, Kirkland JG, Hamdani O, Kamakaka RT, Bloom K. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. ACTA ACUST UNITED AC 2014; 207:189-99. [PMID: 25332162 PMCID: PMC4210444 DOI: 10.1083/jcb.201405028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericentric enrichment of condensin on budding yeast chromosomes, which contributes to chromatin compaction and mitotic spindle structure and integrity, is mediated by condensin interaction with tRNA genes and the tRNA-interacting protein dyskerin. Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.
Collapse
Affiliation(s)
- Chloe E Snider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D Stephens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob G Kirkland
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Omar Hamdani
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rohinton T Kamakaka
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Smaldino PJ, Read DF, Pratt-Hyatt M, Hopper AK, Engelke DR. The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer. Gene 2014; 556:13-8. [PMID: 25261850 DOI: 10.1016/j.gene.2014.09.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
Mod5 is the yeast tRNA isopentenyl transferase, an enzyme that is conserved from bacteria to humans. Mod5 is primarily cytoplasmic where it modifies the A37 position of a few tRNAs, and the yeast enzyme has been shown capable of forming heritable, amyloid-like aggregates that confer a selective advantage in the presence of specific antifungal agents. A subpopulation of Mod5 is also found associated with nuclear tRNA genes, where it contributes tRNA-gene mediated (tgm) silencing of local transcription by RNA polymerase II. The tgm-silencing function of Mod5 has been observed in yeast and a Mod5-deletion in yeast can be complemented by the plant and human tRNA isopentenyl transferases, but not the bacterial enzymes, possibly due to the lack of an extended C-terminal domain found in eukaryotes. In light of this additional nuclear role for Mod5 we discuss the proposed role of the human homologue of Mod5, TRIT1, as a tumor suppressor protein.
Collapse
Affiliation(s)
- P J Smaldino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - D F Read
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - M Pratt-Hyatt
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; The Great Plains Laboratory, 11813W. 77th St. Lenexa KS 66214, USA
| | - A K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - D R Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|
15
|
Good PD, Kendall A, Ignatz-Hoover J, Miller EL, Pai DA, Rivera SR, Carrick B, Engelke DR. Silencing near tRNA genes is nucleosome-mediated and distinct from boundary element function. Gene 2013; 526:7-15. [PMID: 23707796 PMCID: PMC3745993 DOI: 10.1016/j.gene.2013.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Transfer RNA (tRNA) genes and other RNA polymerase III transcription units are dispersed in high copy throughout nuclear genomes, and can antagonize RNA polymerase II transcription in their immediate chromosomal locus. Previous work in Saccharomyces cerevisiae found that this local silencing required subnuclear clustering of the tRNA genes near the nucleolus. Here we show that the silencing also requires nucleosome participation, though the nature of the nucleosome interaction appears distinct from other forms of transcriptional silencing. Analysis of an extensive library of histone amino acid substitutions finds a large number of residues that affect the silencing, both in the histone N-terminal tails and on the nucleosome disk surface. The residues on the disk surfaces involved are largely distinct from those affecting other regulatory phenomena. Consistent with the large number of histone residues affecting tgm silencing, survey of chromatin modification mutations shows that several enzymes known to affect nucleosome modification and positioning are also required. The enzymes include an Rpd3 deacetylase complex, Hos1 deacetylase, Glc7 phosphatase, and the RSC nucleosome remodeling activity, but not multiple other activities required for other silencing forms or boundary element function at tRNA gene loci. Models for communication between the tRNA gene transcription complexes and local chromatin are discussed.
Collapse
Affiliation(s)
- Paul D. Good
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Ann Kendall
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Erin L. Miller
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Dave A. Pai
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Sara R. Rivera
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Brian Carrick
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - David R. Engelke
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-0600, USA
| |
Collapse
|
16
|
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc Natl Acad Sci U S A 2013; 110:E3081-9. [PMID: 23898186 DOI: 10.1073/pnas.1219946110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.
Collapse
|
17
|
Nagarajavel V, Iben JR, Howard BH, Maraia RJ, Clark DJ. Global 'bootprinting' reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 2013; 41:8135-43. [PMID: 23856458 PMCID: PMC3783186 DOI: 10.1093/nar/gkt611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIIB and TFIIIC are multi-subunit factors required for transcription by RNA polymerase III. We present a genome-wide high-resolution footprint map of TFIIIB–TFIIIC complexes in Saccharomyces cerevisiae, obtained by paired-end sequencing of micrococcal nuclease-resistant DNA. On tRNA genes, TFIIIB and TFIIIC form stable complexes with the same distinctive occupancy pattern but in mirror image, termed ‘bootprints’. Global analysis reveals that the TFIIIB–TFIIIC transcription complex exhibits remarkable structural elasticity: tRNA genes vary significantly in length but remain protected by TFIIIC. Introns, when present, are markedly less protected. The RNA polymerase III transcription terminator is flexibly accommodated within the transcription complex and, unexpectedly, plays a major structural role by delimiting its 3′-boundary. The ETC sites, where TFIIIC binds without TFIIIB, exhibit different bootprints, suggesting that TFIIIC forms complexes involving other factors. We confirm six ETC sites and report a new site (ETC10). Surprisingly, TFIIIC, but not TFIIIB, interacts with some centromeric nucleosomes, suggesting that interactions between TFIIIC and the centromere may be important in the 3D organization of the nucleus.
Collapse
Affiliation(s)
- V Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Morawiec E, Wichtowska D, Graczyk D, Conesa C, Lefebvre O, Boguta M. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Gene 2013; 526:16-22. [PMID: 23657116 DOI: 10.1016/j.gene.2013.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Maf1 is a negative regulator of RNA polymerase III (Pol III) in yeast. Maf1-depleted cells manifest elevated tRNA transcription and inability to grow on non-fermentable carbon source, such as glycerol. Using genomic microarray approach, we examined the effect of Maf1 deletion on expression of Pol II-transcribed genes in yeast grown in medium containing glycerol. We found that transcription of FBP1 and PCK1, two major genes controlling gluconeogenesis, was decreased in maf1Δ cells. FBP1 is located on chromosome XII in close proximity to a tRNA-Lys gene. Accordingly we hypothesized that decreased FBP1 mRNA level could be due to the effect of Maf1 on tgm silencing (tRNA gene mediated silencing). Two approaches were used to verify this hypothesis. First, we inactivated tRNA-Lys gene on chromosome XII by inserting a deletion cassette in a control wild type strain and in maf1Δ mutant. Second, we introduced a point mutation in the promoter of the tRNA-Lys gene cloned with the adjacent FBP1 in a plasmid and expressed in fbp1Δ or fbp1Δ maf1Δ cells. The levels of FBP1 mRNA were determined by RT-qPCR in each strain. Although the inactivation of the chromosomal tRNA-Lys gene increased expression of the neighboring FBP1, the mutation preventing transcription of the plasmid-born tRNA-Lys gene had no significant effect on FBP1 transcription. Taken together, those results do not support the concept of tgm silencing of FBP1. Other possible mechanisms are discussed.
Collapse
Affiliation(s)
- Ewa Morawiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell 2013; 49:773-82. [PMID: 23473598 DOI: 10.1016/j.molcel.2013.02.011] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/17/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | | |
Collapse
|
20
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
21
|
Hiraga SI, Botsios S, Donze D, Donaldson AD. TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 2012; 23:2741-54. [PMID: 22496415 PMCID: PMC3395662 DOI: 10.1091/mbc.e11-04-0365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes contain multiple extra TFIIIC (ETC) sites that bind the TFIIIC transcription factor without recruiting RNA polymerase. TFIIIC directs the localization of Saccharomyces cerevisiae ETC sites to the nuclear periphery. Remarkably, however, perinuclear localization is not required for ETC sites to act as chromatin boundaries. Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84–domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.
Collapse
Affiliation(s)
- Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
22
|
Cha DS, Hollis SE, Datla US, Lee S, Ryu J, Jung HR, Kim E, Kim K, Lee M, Li C, Lee MH. Differential subcellular localization of DNA topoisomerase-1 isoforms and their roles during Caenorhabditis elegans development. Gene Expr Patterns 2012; 12:189-95. [PMID: 22452997 DOI: 10.1016/j.gep.2012.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/03/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
Abstract
DNA topoisomerase-1 (TOP-1) resolves the topological problems associated with DNA replication, transcription and recombination by introducing temporary single-strand breaks in the DNA. Caenorhabditis elegans TOP-1 has two isoforms, TOP-1α and TOP-1β. TOP-1β is broadly localized to the nuclei of many cells at all developmental stages and concentrated in nucleoli in embryo gut and oogenic cells. However, TOP-1α is specifically localized to centrosomes, neuronal cells, excretory cells and chromosomes of germ cells in embryonic and larval stages. Reporter gene analysis also shows that top-1 transcription is highly activated in several sensory neurons, speculating the possible role of TOP-1α in neuronal development. From RNA interference (RNAi) experiments, we demonstrated that C. elegans TOP-1 is required for chromosomal segregation, germline proliferation and gonadal migration, which are all correlated with the expression and activity of TOP-1. Therefore, our findings may provide an insight into a new role of TOP-1 in development of multicellular organisms.
Collapse
Affiliation(s)
- Dong Seok Cha
- Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodley CDM, Pai DA, Mills TA, Engelke DR, O'Sullivan JM. tRNA gene identity affects nuclear positioning. PLoS One 2011; 6:e29267. [PMID: 22206006 PMCID: PMC3242769 DOI: 10.1371/journal.pone.0029267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/23/2011] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of genomes is dynamic and plays a critical role in the regulation of cellular development and phenotypes. Here we use proximity-based ligation methods (i.e. chromosome conformation capture [3C] and circularized chromosome confrmation capture [4C]) to explore the spatial organization of tRNA genes and their locus-specific interactions with the ribosomal DNA. Directed replacement of one lysine and two leucine tRNA loci shows that tRNA spatial organization depends on both tRNA coding sequence identity and the surrounding chromosomal loci. These observations support a model whereby the three-dimensional, spatial organization of tRNA loci within the nucleus utilizes tRNA gene-specific signals to affect local interactions, though broader organization of chromosomal regions are determined by factors outside the tRNA genes themselves.
Collapse
Affiliation(s)
| | - Dave A. Pai
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tyrone A. Mills
- Institute of Natural Sciences, Massey University, Auckland, New Zealand
| | - David R. Engelke
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justin M. O'Sullivan
- Institute of Natural Sciences, Massey University, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
24
|
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark. Gene 2011; 493:169-75. [PMID: 21986035 DOI: 10.1016/j.gene.2011.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022]
Abstract
RNA polymerase III (Pol III) is one of three eukaryotic transcription complexes, and was identified as the complex responsible for production of transfer RNA and a limited number of other small RNAs. Pol III transcription at tRNA genes (tDNAs) requires the binding of two transcription factor complexes, TFIIIC and TFIIIB. Recent evidence points to a larger role for the Pol III transcription system in various other nuclear processes, including effects on nucleosome positioning, global genome and sub-nuclear organization, and direct effects on RNA polymerase II (Pol II) transcription. These effects are perhaps mediated by recruitment of a host of other chromatin proteins, including Pol II transcription factors and chromatin enzymes. Extra-TFIIIC sites (ETC sites) are chromosomal locations bound by TFIIIC without the rest of the Pol III complex, and bound TFIIIC alone is also able to mediate additional functions. These so called "extra-transcriptional effects" of the Pol III system are reviewed here, and a model is put forth suggesting that the TFIIIC transcription factor may act as a stably bound, global "bookmark" within chromatin to establish, maintain, or demarcate chromatin states as cells divide or change gene expression patterns.
Collapse
|
25
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
26
|
Zhou J, Liang B, Li H. Structural and functional evidence of high specificity of Cbf5 for ACA trinucleotide. RNA (NEW YORK, N.Y.) 2011; 17:244-250. [PMID: 21149572 PMCID: PMC3022274 DOI: 10.1261/rna.2415811] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 11/07/2010] [Indexed: 05/28/2023]
Abstract
Cbf5 is the catalytic subunit of the H/ACA small nucleolar/Cajal body ribonucleoprotein particles (RNPs) responsible for site specific isomerization of uridine in ribosomal and small nuclear RNA. Recent evidence from studies on archaeal Cbf5 suggests its second functional role in modifying tRNA U55 independent of guide RNA. In order to act both as a stand-alone and a RNP pseudouridine synthase, Cbf5 must differentiate features in H/ACA RNA from those in tRNA or rRNA. Most H/ACA RNAs contain a hallmark ACA trinucleotide downstream of the H/ACA motif. Here we challenged an archaeal Cbf5 (in the form of a ternary complex with its accessory proteins Nop10 and Gar1) with T-stem-loop RNAs with or without ACA trinucleotide in the stem. Although these substrates were previously shown to be substrates for the bacterial stand-alone pseudouridine synthase TruB, the Cbf5-Nop10-Gar1 complex was only able to modify those without ACA trinucleotide. A crystal structure of Cbf5-Nop10-Gar1 trimer bound with an ACA-containing T-stem-loop revealed that the ACA trinucleotide detracted Cbf5 from the stand-alone binding mode, thereby suggesting that the H/ACA RNP-associated function of Cbf5 likely supersedes its stand-alone function.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
27
|
A cis-acting tRNA gene imposes the cell cycle progression requirement for establishing silencing at the HMR locus in yeast. Genetics 2010; 187:425-39. [PMID: 21135074 DOI: 10.1534/genetics.110.124099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numerous studies have determined that the establishment of Sir protein-dependent transcriptional silencing in yeast requires progression through the cell cycle. In our study we examined the cell cycle requirement for the establishment of silencing at the HML and HMR loci using strains bearing conditional or inducible SIR3 alleles. Consistent with prior reports, we observed that establishing silencing at HMR required progression through the cell cycle. Unexpectedly, we found that the HML locus is far less dependent on cell cycle progression to establish silencing. Seeking cis-acting elements that could account for this difference, we found that deletion of a tRNA gene that serves as a chromatin boundary at HMR abolishes the cell cycle progression requirement at this locus, while insertion of sequences containing this tRNA gene adjacent to HML imposes dependence on cell cycle progression for the full establishment of silencing. Our results indicate that the cell cycle progression requirement is not a property intrinsic to the formation of heterochromatin in yeast, but is instead a cis-limited, locus-specific phenomenon. We show that inactivation of the Scc1 cohesin also abolishes the requirement for cell cycle progression and test models based on a possible link between the tRNA gene and cohesin association.
Collapse
|
28
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
29
|
tRNA gene sequences are required for transcriptional silencing in Entamoeba histolytica. EUKARYOTIC CELL 2009; 9:306-14. [PMID: 20023072 DOI: 10.1128/ec.00248-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing by trans inactivation can contribute to the regulation of gene expression in eukaryotic cells. In the human intestinal protozoan parasite Entamoeba histolytica, trans inactivation of the amoebapore-A gene (AP-A) was recently achieved by episomal transfection of E. histolytica trophozoites with the plasmid psAP1. The mechanism of AP-A trans inactivation is largely unknown, though it was suggested that a partial short interspersed transposable element (SINE) is required. By systematic assessment of various E. histolytica isolates transfected with psAP1 derivates, trans inactivation of AP-A was restricted to the strain HM-1:IMSS (2411) but could not be achieved in other standard laboratory strains. Importantly, sequences of an E. histolytica tRNA array that were located on psAP1 in close proximity to the AP-A upstream region and comprising the glutamic acid (TTC) (E) and tyrosine (GTA) (Y) tRNA genes were indispensable for AP-A silencing. In contrast to the case described in previous reports, SINE was not required for AP-A trans inactivation. AP-A expression could be regained in silenced cells by episomal transfection under the control of a heterologous E. histolytica promoter, opening a way toward future silencing of individual genes of interest in E. histolytica. Our results indicate that tRNA gene-mediated silencing is not restricted to Saccharomyces cerevisiae.
Collapse
|
30
|
Grozdanov PN, Fernandez-Fuentes N, Fiser A, Meier UT. Pathogenic NAP57 mutations decrease ribonucleoprotein assembly in dyskeratosis congenita. Hum Mol Genet 2009; 18:4546-51. [PMID: 19734544 DOI: 10.1093/hmg/ddp416] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
X-linked dyskeratosis congenita (DC) is a rare bone marrow failure syndrome caused by mostly missense mutations in the pseudouridine synthase NAP57 (dyskerin/Cbf5). As part of H/ACA ribonucleoproteins (RNPs), NAP57 is important for the biogenesis of ribosomes, spliceosomal small nuclear RNPs, microRNAs and the telomerase RNP. DC mutations concentrate in the N- and C-termini of NAP57 but not in its central catalytic domain raising questions as to their impact. We demonstrate that the N- and C-termini together form the binding surface for the H/ACA RNP assembly factor SHQ1 and that DC mutations modulate the interaction between the two proteins. Pinpointing impaired interaction between NAP57 and SHQ1 as a potential molecular basis for X-linked DC has implications for therapeutic approaches, e.g. by targeting the NAP57-SHQ1 interface with small molecules.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The long polycistronic transcription units of trypanosomes do not appear to be demarcated by the usual DNA motifs that punctuate transcription in familiar eukaryotes. In this issue of Genes & Development, Siegel and colleagues (pp. 1063-1076) describe a system for the demarcation of trypanosome transcription units based on the deposition and turnover of histone variants rather than on the binding of transcription factors. Replication-independent incorporation of histone variants and destabilization of nucleosomes is an emerging theme at promoters of more familiar eukaryotes, and it now appears that this system is an evolutionarily conserved mode of transcriptional punctuation.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
32
|
Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, Wang X, Dewell S, Cross GAM. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 2009; 23:1063-76. [PMID: 19369410 DOI: 10.1101/gad.1790409] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.
Collapse
Affiliation(s)
- T Nicolai Siegel
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:2078-86. [PMID: 18849469 DOI: 10.1128/ec.00128-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromosomal sites of RNA polymerase III (Pol III) transcription have been demonstrated to have "extratranscriptional" functions, as the assembled Pol III complex can act as chromatin boundaries or pause sites for replication forks, can alter nucleosome positioning or affect transcription of neighboring genes, and can play a role in sister chromatid cohesion. Several studies have demonstrated that assembled Pol III complexes block the propagation of heterochromatin-mediated gene repression. Here we show that in Saccharomyces cerevisiae tRNA genes (tDNAs) and even partially assembled Pol III complexes containing only the transcription factor TFIIIC can exhibit chromatin boundary functions both as heterochromatin barriers and as insulators to gene activation. Both the TRT2 tDNA and the ETC4 site which binds only the TFIIIC complex prevented an upstream activation sequence from activating the GAL promoters in our assay system, effectively acting as chromatin insulators. Additionally, when placed downstream from the heterochromatic HMR locus, ETC4 blocked the ectopic spread of Sir protein-mediated silencing, thus functioning as a barrier to repression. Finally, we show that TRT2 and the ETC6 site upstream of TFC6 in their natural contexts display potential insulator-like functions, and ETC6 may represent a novel case of a Pol III factor directly regulating a Pol II promoter. The results are discussed in the context of how the TFIIIC transcription factor complex may function to demarcate chromosomal domains in yeast and possibly in other eukaryotes.
Collapse
|
34
|
Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 2008; 22:2204-14. [PMID: 18708579 DOI: 10.1101/gad.1675908] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 274 tRNA genes in Saccharomyces cerevisiae are scattered throughout the linear maps of the 16 chromosomes, but the genes are clustered at the nucleolus when compacted in the nucleus. This clustering is dependent on intact nucleolar organization and contributes to tRNA gene-mediated (tgm) silencing of RNA polymerase II transcription near tRNA genes. After examination of the localization mechanism, we find that the chromosome-condensing complex, condensin, is involved in the clustering of tRNA genes. Conditionally defective mutations in all five subunits of condensin, which we confirm is bound to active tRNA genes in the yeast genome, lead to loss of both pol II transcriptional silencing near tRNA genes and nucleolar clustering of the genes. Furthermore, we show that condensin physically associates with a subcomplex of RNA polymerase III transcription factors on the tRNA genes. Clustering of tRNA genes by condensin appears to be a separate mechanism from their nucleolar localization, as microtubule disruption releases tRNA gene clusters from the nucleolus, but does not disperse the clusters. These observations suggest a widespread role for condensin in gene organization and packaging of the interphase yeast nucleus.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
35
|
The coding/non-coding overlapping architecture of the gene encoding the Drosophila pseudouridine synthase. BMC Mol Biol 2007; 8:15. [PMID: 17328797 PMCID: PMC1821038 DOI: 10.1186/1471-2199-8-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 02/28/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotic cells, each molecule of H/ACA small nucleolar RNA (snoRNA) assembles with four evolutionarily conserved core proteins to compose a specific ribonucleoprotein particle. One of the four core components has pseudouridine synthase activity and catalyzes the conversion of a selected uridine to pseudouridine. Members of the pseudouridine synthase family are highly conserved. In addition to catalyzing pseudouridylation of target RNAs, they carry out a variety of essential functions related to ribosome biogenesis and, in mammals, to telomere maintenance. To investigate further the molecular mechanisms underlying the expression of pseudouridine synthase genes, we analyzed the transcriptional activity of the Drosophila member of this family in great detail. RESULTS The Drosophila gene for pseudouridine synthase, minifly/Nop60b (mfl), encodes two novel mRNAs ending at a downstream poly(A) site. One species is characterized only by an extended 3'-untranslated region (3'UTR), while a minor mRNA encodes a variant protein that represents the first example of an alternative subform described for any member of the family to date. The rare spliced variant is detected mainly in females and is predicted to have distinct functional properties. We also report that a cluster comprising four isoforms of a C/D box snoRNA and two highly related copies of a small ncRNA gene of unknown function is intron-encoded at the gene-variable 3'UTRs. Because this arrangement, the alternative 3' ends allow mfl not only to produce two distinct protein subforms, but also to release different ncRNAs. Intriguingly, accumulation of all these intron-encoded RNAs was found to be sex-biased and quantitatively modulated throughout development and, within the ovaries, the ncRNAs of unknown function were found not ubiquitously expressed. CONCLUSION Our results expand the repertoire of coding/non-coding transcripts derived from the gene encoding Drosophila pseudouridine synthase. This gene exhibits a complex and interlaced organization, and its genetic information may be expressed as different protein subforms and/or ncRNAs that may potentially contribute to its biological functions.
Collapse
|
36
|
Abstract
RNA polymerase III (pol III) transcribes many essential, small, noncoding RNAs, including the 5S rRNAs and tRNAs. While most pol III-transcribed genes are found scattered throughout the linear chromosome maps or in multiple linear clusters, there is increasing evidence that many of these genes prefer to be spatially clustered, often at or near the nucleolus. This association could create an environment that fosters the coregulation of transcription by pol III with transcription of the large ribosomal RNA repeats by RNA polymerase I (pol I) within the nucleolus. Given the high number of pol III-transcribed genes in all eukaryotic genomes, the spatial organization of these genes is likely to affect a large portion of the other genes in a genome. In this Survey and Summary we analyze the reports regarding the spatial organization of pol III genes and address the potential influence of this organization on transcriptional regulation.
Collapse
Affiliation(s)
| | - David R. Engelke
- To whom correspondence should be addressed. Tel: +1 734 763 0641; Fax:+1 734 763 7799;
| |
Collapse
|
37
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
38
|
Pratt-Hyatt MJ, Kapadia KM, Wilson TE, Engelke DR. Increased recombination between active tRNA genes. DNA Cell Biol 2006; 25:359-64. [PMID: 16792506 PMCID: PMC3756803 DOI: 10.1089/dna.2006.25.359] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We have tested whether active transcription of tRNA genes might also suppress recombination, since recombination between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimental to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated, but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to tRNA genes, and the selective advantage of this arrangement is not known.
Collapse
Affiliation(s)
- Matthew J Pratt-Hyatt
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, 48109-0606, USA
| | | | | | | |
Collapse
|
39
|
Scott KC, Merrett SL, Willard HF. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 2006; 16:119-29. [PMID: 16431364 DOI: 10.1016/j.cub.2005.11.065] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 10/18/2005] [Accepted: 11/23/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation. Centromeric regions of higher eukaryotes are structurally complex, consisting of various epigenetically modified chromatin types including specialized chromatin at the kinetochore itself, pericentromeric heterochromatin, and flanking euchromatin. Although the features necessary for the establishment and maintenance of discrete chromatin domains remain poorly understood, two models have been proposed based either on the passive convergence of competing activities involved in individual domain formation or, alternatively, on the action of specific genomic sequences and associated proteins to actively block the propagation of one chromatin type into another. RESULTS Functional analysis of centromeric sequences located at the intersection of Schizosaccharomyces pombe central core chromatin and outer repeat heterochromatin identified a chromatin barrier that contains a transfer RNA (tRNA) gene. Deletion or modification of the barrier sequences result in the propagation of pericentromeric heterochromatin beyond its normal boundary. The tRNA gene is transcriptionally active, and barrier activity requires sequences necessary for RNA polymerase III transcription. Moreover, absence of the barrier results in abnormal meiotic chromosome segregation. CONCLUSIONS The identification of DNA sequences with chromatin barrier activity at the fission yeast centromere provides a model for establishment of centromeric chromatin domains in higher eukaryotes.
Collapse
Affiliation(s)
- Kristin C Scott
- Institute for Genome Sciences and Policy, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
40
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
41
|
Conesa C, Ruotolo R, Soularue P, Simms TA, Donze D, Sentenac A, Dieci G. Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Mol Cell Biol 2005; 25:8631-42. [PMID: 16166643 PMCID: PMC1265737 DOI: 10.1128/mcb.25.19.8631-8642.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/21/2005] [Accepted: 07/06/2005] [Indexed: 11/20/2022] Open
Abstract
We used genome-wide expression analysis in Saccharomyces cerevisiae to explore whether and how the expression of protein-coding, RNA polymerase (Pol) II-transcribed genes is influenced by a decrease in RNA Pol III-dependent transcription. The Pol II transcriptome was characterized in four thermosensitive, slow-growth mutants affected in different components of the RNA Pol III transcription machinery. Unexpectedly, we found only a modest correlation between altered expression of Pol II-transcribed genes and their proximity to class III genes, a result also confirmed by the analysis of single tRNA gene deletants. Instead, the transcriptome of all of the four mutants was characterized by increased expression of genes known to be under the control of the Gcn4p transcriptional activator. Indeed, GCN4 was found to be translationally induced in the mutants, and deleting the GCN4 gene eliminated the response. The Gcn4p-dependent expression changes did not require the Gcn2 protein kinase and could be specifically counteracted by an increased gene dosage of initiator tRNA(Met). Initiator tRNA(Met) depletion thus triggers a GCN4-dependent reprogramming of genome expression in response to decreased Pol III transcription. Such an effect might represent a key element in the coordinated transcriptional response of yeast cells to environmental changes.
Collapse
Affiliation(s)
- Christine Conesa
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Bachman N, Gelbart ME, Tsukiyama T, Boeke JD. TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs. Genes Dev 2005; 19:955-64. [PMID: 15833918 PMCID: PMC1080134 DOI: 10.1101/gad.1299105] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/03/2005] [Indexed: 11/24/2022]
Abstract
Retrotransposons are RNA elements that reverse transcribe their RNA genomes and make a cDNA copy that is inserted back into a new genomic location by the element-encoded integrase protein. Ty1 is a long terminal repeat (LTR) retrotransposon in Saccharomyces cerevisiae that inserts into an approximately 700-bp integration window upstream of tRNA genes with a periodicity of approximately 80 bp. ATP-dependent chromatin remodeling by Isw2 upstream of tRNA genes leads to changes in chromatin structure and Ty1 integration site selection. We show that the N terminus of Bdp1p, a component of the RNA polymerase III transcription factor TFIIIB, is required for periodic integration of Ty1 into the integration window. Deletion of the Bdp1p N terminus and mutation of ISW2 result in similar disruption of nucleosome positioning upstream of some tRNA genes, and the N-terminal domain of Bdp1p is required for targeting of Isw2 complex to tRNA genes. This study provides the first example for recruitment of an ATP-dependent chromatin-remodeling factor by a general transcription factor in vivo.
Collapse
Affiliation(s)
- Nurjana Bachman
- The Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
44
|
Wang L, Haeusler RA, Good PD, Thompson M, Nagar S, Engelke DR. Silencing near tRNA genes requires nucleolar localization. J Biol Chem 2005; 280:8637-9. [PMID: 15654076 PMCID: PMC3761214 DOI: 10.1074/jbc.c500017200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription by RNA polymerase II is antagonized by the presence of a nearby tRNA gene in Saccharomyces cerevisiae. To test hypotheses concerning the mechanism of this tRNA gene-mediated (tgm) silencing, the effects of specific gene deletions were determined. The results show that the mechanism of silencing near tRNA genes is fundamentally different from other forms of transcriptional silencing in yeast. Rather, tgm silencing is dependent on the ability to cluster the dispersed tRNA genes in or near the nucleolus, constituting a form of three-dimensional gene control.
Collapse
Affiliation(s)
- Li Wang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Rebecca A. Haeusler
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Paul D. Good
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Martin Thompson
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931-129
| | - Sapna Nagar
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
- To whom correspondence should be addressed: Dept. of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 3200 MSRB III, Ann Arbor, MI, 48109-0606. Tel.: 734-763-0641; Fax: 734-763-7799;
| |
Collapse
|
45
|
Simms TA, Miller EC, Buisson NP, Jambunathan N, Donze D. The Saccharomyces cerevisiae TRT2 tRNAThr gene upstream of STE6 is a barrier to repression in MATalpha cells and exerts a potential tRNA position effect in MATa cells. Nucleic Acids Res 2004; 32:5206-13. [PMID: 15459290 PMCID: PMC521669 DOI: 10.1093/nar/gkh858] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A growing body of evidence suggests that genes transcribed by RNA polymerase III exhibit multiple functions within a chromosome. While the predominant function of these genes is the synthesis of RNA molecules, certain RNA polymerase III genes also function as genomic landmarks. Transfer RNA genes are known to exhibit extra-transcriptional activities such as directing Ty element integration, pausing of replication forks, overriding nucleosome positioning sequences, repressing neighboring genes (tRNA position effect), and acting as a barrier to the spread of repressive chromatin. This study was designed to identify other tRNA loci that may act as barriers to chromatin-mediated repression, and focused on TRT2, a tRNA(Thr) adjacent to the STE6 alpha2 operator. We show that TRT2 acts as a barrier to repression, protecting the upstream CBT1 gene from the influence of the STE6 alpha2 operator in MATalpha cells. Interestingly, deletion of TRT2 results in an increase in CBT1 mRNA levels in MATa cells, indicating a potential tRNA position effect. The transcription of TRT2 itself is unaffected by the presence of the alpha2 operator, suggesting a hierarchy that favors assembly of the RNA polymerase III complex versus assembly of adjacent alpha2 operator-mediated repressed chromatin structures. This proposed hierarchy could explain how tRNA genes function as barriers to the propagation of repressive chromatin.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters
- Chromosomes, Fungal
- Fungal Proteins/genetics
- Gene Deletion
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genes, Fungal
- Glycoproteins
- Histones/metabolism
- Homeodomain Proteins/genetics
- Operator Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Transfer, Thr/biosynthesis
- RNA, Transfer, Thr/genetics
- Repressor Proteins/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Tiffany A Simms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
46
|
Haeusler RA, Engelke DR. Genome organization in three dimensions: thinking outside the line. Cell Cycle 2004; 3:273-5. [PMID: 14726665 PMCID: PMC3746017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Gene organization on nuclear chromosomes is usually depicted as a linear array, but at least some regions of the genome are localized to specific subnuclear positions in interphase nuclei. Studies in yeast have found that centromeres and telomeres are found around the nuclear periphery, and that tRNA genes are gathered at the nucleolus, along with the ribosomal RNA gene cluster. These 325 loci alone impose significant constraints on the three dimensional organization of chromosomes in the nucleus, and there is mounting experimental evidence that transcription by RNA polymerase II is strongly affected by proximity to these regions. Given these observations, one consideration in understanding nuclear gene regulation might be the degree to which spatial positioning affects at least a subset of gene families.
Collapse
Affiliation(s)
| | - David R. Engelke
- Correspondence to: Department of Biological Chemistry; University of Michigan; Ann Arbor, Michigan 48109-0606 USA; Tel.: 734.763.0641; Fax: 734.763.7799;
| |
Collapse
|
47
|
Abstract
Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. Nucleolar localization requires tRNA gene transcription-complex formation, because inactivation of the promoter at a single locus removes its nucleolar association. This organization of tRNA genes must profoundly affect the spatial packaging of the genome and raises the question of whether gene types might be coordinated in three dimensions to regulate transcription.
Collapse
MESH Headings
- Cell Nucleolus/genetics
- DNA Polymerase II/metabolism
- DNA Polymerase III/metabolism
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Genes, Fungal
- Genes, rRNA
- Genome, Fungal
- Introns
- Multigene Family
- Promoter Regions, Genetic
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nucleolar/analysis
- RNA, Transfer/genetics
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Lys/genetics
- Saccharomyces cerevisiae/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Martin Thompson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109–0606, USA
| | - Rebecca A. Haeusler
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109–0606, USA
| | - Paul D. Good
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109–0606, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109–0606, USA
| |
Collapse
|
48
|
Yang Y, Meier UT. Genetic interaction between a chaperone of small nucleolar ribonucleoprotein particles and cytosolic serine hydroxymethyltransferase. J Biol Chem 2003; 278:23553-60. [PMID: 12700234 DOI: 10.1074/jbc.m300695200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Srp40p is a nonessential yeast nucleolar protein proposed to function as a chaperone for over 100 small nucleolar ribonucleoprotein particles that are required for rRNA maturation. To verify and expand on its function, genetic screens were performed for the identification of genes that were lethal when mutated in a SRP40 null background (srp40Delta). Unexpectedly, mutation of both cytosolic serine hydroxymethyltransferase (SHM2) and one-carbon tetrahydrofolate synthase (ADE3) was required to achieve synthetic lethality with srp40Delta. Shm2p and Ade3p are cytoplasmic enzymes producing 5,10-methylene tetrahydrofolate in convergent pathways as the primary source for cellular one-carbon groups. Nonetheless, point mutants of Shm2p that were catalytically inactive (i.e. failed to rescue the methionine auxotrophy of a shm2Delta ade3 strain) complemented the synthetic lethal phenotype, thus revealing a novel metabolism-independent function of Shm2p. The same Shm2p mutants exacerbated a giant cell phenotype observed in the shm2Delta ade3 strain suggesting a catalysis-independent role for Shm2p in cell size control, possibly through regulation of ribosome biogenesis via SRP40. Additionally, we show that the Sm-like protein Lsm5p, which as part of Lsm complexes participates in cytosolic and nuclear RNA processing and degradation pathways, is a multicopy suppressor of the synthetic lethality and of the specific depletion of box H/ACA small nucleolar RNAs from the srp40Delta shm2 ade3 strain. Finally, rat Nopp140 restored growth and stability of box H/ACA snoRNAs after genetic depletion of SRP40 in the synthetic lethal strain indicating that it is indeed the functional homolog of yeast Srp40p.
Collapse
Affiliation(s)
- Yunfeng Yang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
49
|
Abstract
The organization of transcription within the eukaryotic nucleus may be expected to both depend on and determine the structure of the chromosomes. This study shows that, in yeast, genes that are controlled by the same sequence-specific transcription factor tend to be regularly spaced along the chromosome arms; a similar period characterizes the spacing of origins of replication, although periodicity is less pronounced. The same period is found for most transcription factors within a chromosome arm. However, different periods are observed for different chromosome arms, making it unlikely that periodicity is caused by dedicated scaffolding proteins. Such regularities are consistent with a genome-wide loop model of chromosomes, in which coregulated genes tend to dynamically colocalize in 3D. This colocalization may also involve co-regulated genes belonging to different chromosomes, as suggested by partial conservation of the respective positioning of different transcription factors around the loops. Thus, binding at genuine regulatory sites on DNA would be optimized by locally increasing the concentration of multimeric transcription factors. In this model, self-organization of transcriptional initiation plays a major role in the functional nuclear architecture.
Collapse
Affiliation(s)
- François Képès
- ATelier de Génomique Cognitive, CNRS UMR8071/genopole, 523 Terrasses de l'Agora, 91000 Evry, France.
| |
Collapse
|
50
|
|