1
|
Miścicka A, Lu K, Abaeva IS, Pestova TV, Hellen CUT. Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1051-1068. [PMID: 37041031 PMCID: PMC10275262 DOI: 10.1261/rna.079599.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Kristen Lu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
2
|
Roberts L, Wieden HJ. The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1. Nucleic Acids Res 2022; 50:9355-9367. [PMID: 36039756 PMCID: PMC9458429 DOI: 10.1093/nar/gkac697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Internal ribosome entry sites (IRESs) are RNA elements capable of initiating translation on an internal portion of a messenger RNA. The intergenic region (IGR) IRES of the Dicistroviridae virus family folds into a triple pseudoknot tertiary structure, allowing it to recruit the ribosome and initiate translation in a structure dependent manner. This IRES has also been reported to drive translation in Escherichia coli and to date is the only described translation initiation signal that functions across domains of life. Here we show that unlike in the eukaryotic context the tertiary structure of the IGR IRES is not required for prokaryotic ribosome recruitment. In E. coli IGR IRES translation efficiency is dependent on ribosomal protein S1 in conjunction with an AG-rich Shine-Dalgarno-like element, supporting a model where the translational activity of the IGR IRESs is due to S1-mediated canonical prokaryotic translation.
Collapse
Affiliation(s)
- Luc Roberts
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
3
|
Deymier S, Louvat C, Fiorini F, Cimarelli A. ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio 2022; 12:1096-1111. [PMID: 35174977 PMCID: PMC9157404 DOI: 10.1002/2211-5463.13382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) is a relatively understudied antiviral protein capable of inhibiting a broad spectrum of viruses. ISG20 exhibits strong RNase properties, and it belongs to the large family of DEDD exonucleases, present in both prokaryotes and eukaryotes. ISG20 was initially characterized as having strong RNase activity in vitro, suggesting that its inhibitory effects are mediated via direct degradation of viral RNAs. This mechanism of action has since been further elucidated and additional antiviral activities of ISG20 highlighted, including direct degradation of deaminated viral DNA and translational inhibition of viral RNA and nonself RNAs. This review focuses on the current understanding of the main molecular mechanisms of viral inhibition by ISG20 and discusses the latest developments on the features that govern specificity or resistance to its action.
Collapse
Affiliation(s)
- Séverine Deymier
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| | | | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| |
Collapse
|
4
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
5
|
Chen Y, Cao S, Chen H, Yin C, Xu X, Yang Z. Dexmedetomidine Preconditioning Reduces Myocardial Ischemia-Reperfusion Injury in Rats by Inhibiting the PERK Pathway. Arq Bras Cardiol 2021; 117:1134-1144. [PMID: 34644786 PMCID: PMC8757152 DOI: 10.36660/abc.20200672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ischemic heart disease has attracted much attention due to its high mortality rates, treatment costs and the increasing morbidity in the young population. Strategies for reperfusion have reduced mortality. However, reperfusion can lead to cardiomyocyte death and subsequent irreversible myocardial damage. At present, the timely and targeted treatment of ischemia-reperfusion (I/R) injury is often lacking. OBJECTIVES To evaluate if dexmedetomidine (DEX) has a protective effect in myocardiual I/R and explore the possible mechanism behind it. METHODS Rat hearts were perfused with a Langendorff perfusion system, and randomly assigned to five groups: control group, perfused with Krebs-Henseleit (K-H) solution for 205 minutes without ischemia; and four test groups that underwent 40 minutes of global ischemia and 120 min of reperfusion. The DEX group, the yohimbine (YOH) group and the DEX + YOH group were perfused with DEX (10 nM), YOH (1 μM) or the combination of DEX and YOH prior to reperfusion, respectively. Cardiac hemodynamics, myocardial infarct size, and myocardial histology were evaluated. The expression of glucose-related protein 78 (GRP78), protein kinase R-like ER kinase (PERK), phosphorylated PERK, eukaryotic initiation factor 2α (eIF2α), phosphorylated eIF2α, activating transcription factor 4 (ATF4), and CCAAT/enhancer-binding protein homologous protein (CHOP) were assessed. P<0.05 was considered to indicate a statistically significant difference. RESULTS DEX preconditioning improved the cardiac function of I/R hearts, reduced myocardial infarction, myocardial apoptosis, and the expression of GRP78, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. CONCLUSIONS DEX pretreatment reduced myocardial I/R injury by suppressing apoptosis, which was induced by the PERK pathway.
Collapse
Affiliation(s)
- YuJiao Chen
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
- Affiliated HospitalNorth Sichuan Medical CollegeNanChongSiChuanChinaAffiliated Hospital of North Sichuan Medical College, NanChong, SiChuan - China
| | - Song Cao
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - Hui Chen
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - CunZhi Yin
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - XinPeng Xu
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| | - ZaiQun Yang
- Zunyi Medical UniversityZunyiGuizhouChinaZunyi Medical University, Zunyi, Guizhou – China
| |
Collapse
|
6
|
Wang X, Vlok M, Flibotte S, Jan E. Resurrection of a Viral Internal Ribosome Entry Site from a 700 Year Old Ancient Northwest Territories Cripavirus. Viruses 2021; 13:v13030493. [PMID: 33802878 PMCID: PMC8002689 DOI: 10.3390/v13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
- Correspondence: ; Tel.: +1-604-827-4226
| |
Collapse
|
7
|
Trainor BM, Ghosh A, Pestov DG, Hellen CUT, Shcherbik N. A translation enhancer element from black beetle virus engages yeast eIF4G1 to drive cap-independent translation initiation. Sci Rep 2021; 11:2461. [PMID: 33510277 PMCID: PMC7844027 DOI: 10.1038/s41598-021-82025-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/14/2021] [Indexed: 01/13/2023] Open
Abstract
Cap-independent translation initiation plays crucial roles in fine-tuning gene expression under global translation shutdown conditions. Translation of uncapped or de-capped transcripts can be stimulated by Cap-independent translation enhancer (CITE) elements, but the mechanisms of CITE-mediated translation initiation remain understudied. Here, we characterized a short 5ʹ-UTR RNA sequence from black beetle virus, BBV-seq. Mutational analysis indicates that the entire BBV-seq is required for efficient translation initiation, but this sequence does not operate as an IRES-type module. In yeast cell-free translation extracts, BBV-seq promoted efficient initiation on cap-free mRNA using a scanning mechanism. Moreover, BBV-seq can increase translation efficiency resulting from conventional cap-dependent translation initiation. Using genetic approaches, we found that BBV-seq exploits RNA-binding properties of eIF4G1 to promote initiation. Thus, BBV-seq constitutes a previously uncharacterized short, linear CITE that influences eIF4G1 to initiate 5′ end-dependent, cap-independent translation. These findings bring new insights into CITE-mediated translational control of gene expression.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Graduate School of Biomedical Sciences, Rowan University, 42 E. Laurel Road, Suite 2200, Stratford, NJ, 08084, USA
| | - Arnab Ghosh
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue MSC 44, Brooklyn, NY, 11203, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ, 08084, USA.
| |
Collapse
|
8
|
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res 2020; 48:10441-10455. [PMID: 32941651 PMCID: PMC7544200 DOI: 10.1093/nar/gkaa728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.
Collapse
Affiliation(s)
- Risa Nobuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Misaki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhito Toriumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shizuka Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daiki Suto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Zeng D, Qiu C, Shen Y, Hou J, Li Z, Zhang J, Liu S, Shang J, Qin W, Xu L, Bao X. An innovative protein expression system using RNA polymerase I for large-scale screening of high-nucleic-acid content Saccharomyces cerevisiae strains. Microb Biotechnol 2020; 13:2008-2019. [PMID: 32854170 PMCID: PMC7533336 DOI: 10.1111/1751-7915.13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5' caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.
Collapse
Affiliation(s)
- Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Zailu Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Jixiang Zhang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Shuai Liu
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Jianli Shang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Wensheng Qin
- Department of BiologyLakehead University955 Oliver RoadThunder BayONP7B 5E1Canada
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| |
Collapse
|
10
|
Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α/ATF4 and IRE1 α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3480569. [PMID: 31930117 PMCID: PMC6942794 DOI: 10.1155/2019/3480569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
Collapse
|
11
|
Leipheimer J, Bloom ALM, Campomizzi CS, Salei Y, Panepinto JC. Translational Regulation Promotes Oxidative Stress Resistance in the Human Fungal Pathogen Cryptococcus neoformans. mBio 2019; 10:e02143-19. [PMID: 31719175 PMCID: PMC6851278 DOI: 10.1128/mbio.02143-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is one of the few environmental fungi that can survive within a mammalian host and cause disease. Although many of the factors responsible for establishing virulence have been recognized, how they are expressed in response to certain host-derived cellular stresses is rarely addressed. Here, we characterize the temporal translational response of C. neoformans to oxidative stress. We find that translation is largely inhibited through the phosphorylation of the critical initiation factor eIF2α (α subunit of eukaryotic initiation factor 2) by a sole kinase. Preventing eIF2α-mediated translational suppression resulted in growth sensitivity to hydrogen peroxide (H2O2). Our work suggests that translational repression in response to H2O2 partly facilitates oxidative stress adaptation by accelerating the decay of abundant non-stress-related transcripts while facilitating the proper expression levels of select oxidative stress response factors. Our results illustrate translational suppression as a critical determinant of select mRNA decay, gene expression, and subsequent survival in response to oxidative stress.IMPORTANCE Fungal survival in a mammalian host requires the coordinated expression and downregulation of a large cohort of genes in response to cellular stresses. Initial infection with C. neoformans occurs in the lungs, where it interacts with host macrophages. Surviving macrophage-derived cellular stresses, such as the production of reactive oxygen and nitrogen species, is believed to promote dissemination into the central nervous system. Therefore, investigating how an oxidative stress-resistant phenotype is brought about in C. neoformans not only furthers our understanding of fungal pathogenesis but also unveils mechanisms of stress-induced gene reprogramming. We discovered that H2O2-derived oxidative stress resulted in severe translational suppression and that this suppression was necessary for the accelerated decay and expression of tested transcripts.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, New York, USA
| | | | - Yana Salei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - John C Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
12
|
Choi SG, Olivet J, Cassonnet P, Vidalain PO, Luck K, Lambourne L, Spirohn K, Lemmens I, Dos Santos M, Demeret C, Jones L, Rangarajan S, Bian W, Coutant EP, Janin YL, van der Werf S, Trepte P, Wanker EE, De Las Rivas J, Tavernier J, Twizere JC, Hao T, Hill DE, Vidal M, Calderwood MA, Jacob Y. Maximizing binary interactome mapping with a minimal number of assays. Nat Commun 2019; 10:3907. [PMID: 31467278 PMCID: PMC6715725 DOI: 10.1038/s41467-019-11809-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Complementary assays are required to comprehensively map complex biological entities such as genomes, proteomes and interactome networks. However, how various assays can be optimally combined to approach completeness while maintaining high precision often remains unclear. Here, we propose a framework for binary protein-protein interaction (PPI) mapping based on optimally combining assays and/or assay versions to maximize detection of true positive interactions, while avoiding detection of random protein pairs. We have engineered a novel NanoLuc two-hybrid (N2H) system that integrates 12 different versions, differing by protein expression systems and tagging configurations. The resulting union of N2H versions recovers as many PPIs as 10 distinct assays combined. Thus, to further improve PPI mapping, developing alternative versions of existing assays might be as productive as designing completely new assays. Our findings should be applicable to systematic mapping of other biological landscapes.
Collapse
Affiliation(s)
- Soon Gang Choi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Julien Olivet
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA Institute), University of Liège, 7 Place du 20 Août, 4000, Liège, Belgium
| | - Patricia Cassonnet
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Pierre-Olivier Vidalain
- Équipe Chimie, Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Centre Interdisciplinaire Chimie Biologie-Paris (CICB-Paris), UMR8601, CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Irma Lemmens
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 3 Albert Baertsoenkaai, 9000, Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000, Ghent, Belgium
| | - Mélanie Dos Santos
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Caroline Demeret
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Louis Jones
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France
| | - Sudharshan Rangarajan
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Wenting Bian
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Eloi P Coutant
- Département de Biologie Structurale et Chimie, Unité de Chimie et Biocatalyse, Institut Pasteur, UMR3523, CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| | - Yves L Janin
- Département de Biologie Structurale et Chimie, Unité de Chimie et Biocatalyse, Institut Pasteur, UMR3523, CNRS, 28 rue du Docteur Roux, 75015, Paris, France
| | - Sylvie van der Werf
- Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France
| | - Philipp Trepte
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, 10 Robert-Rössle-Str., 13125, Berlin, Germany.,Brain Development and Disease, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 3 Dr. Bohr-Gasse, 1030, Vienna, Austria
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, 10 Robert-Rössle-Str., 13125, Berlin, Germany
| | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jan Tavernier
- Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie (VIB), 3 Albert Baertsoenkaai, 9000, Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000, Ghent, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, Groupe Interdisciplinaire de Génomique Appliquée (GIGA Institute), University of Liège, 7 Place du 20 Août, 4000, Liège, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Yves Jacob
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), 450 Brookline Avenue, Boston, MA, 02215, USA. .,Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN (GMVR), Institut Pasteur, UMR3569, Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, Sorbonne Paris Cité, 28 rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
13
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
14
|
James CC, Smyth JW. Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sci 2018; 212:138-144. [PMID: 30290184 DOI: 10.1016/j.lfs.2018.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
Eukaryotic mRNAs were historically thought to rely exclusively on recognition and binding of their 5' cap by initiation factors to effect protein translation. While internal ribosome entry sites (IRESs) are well accepted as necessary for the cap-independent translation of many viral genomes, there is now recognition that eukaryotic mRNAs also undergo non-canonical modes of translation initiation. Recently, high-throughput assays have identified thousands of mammalian transcripts with translation initiation occurring at non-canonical start codons, upstream of and within protein coding regions. In addition to IRES-mediated events, regulatory mechanisms of translation initiation have been described involving alternate 5' cap recognition, mRNA sequence elements, and ribosome selection. These mechanisms ensure translation of specific mRNAs under conditions where cap-dependent translation is shut down and contribute to pathological states including cardiac hypertrophy and cancer. Such global and gene-specific dynamic regulation of translation presents us with an increasing number of novel therapeutic targets. While these newly discovered modes of translation initiation have been largely studied in isolation, it is likely that several act on the same mRNA and exquisite coordination is necessary to maintain 'normal' translation. In this short review, we summarize the current state of knowledge of these alternative mechanisms of eukaryotic protein translation, their contribution to normal and pathological cell biology, and the potential of targeting translation initiation therapeutically in human disease.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| |
Collapse
|
15
|
Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 2018; 36:1870-1881. [PMID: 30031049 DOI: 10.1016/j.biotechadv.2018.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Synthetic biologists construct biological components and systems to look into biological phenomena and drive a myriad of practical applications that aim to tackle current global challenges in energy, healthcare and the environment. While most tools have been established in bacteria, particularly Escherichia coli, recent years have seen parallel developments in the model yeast strain Saccharomyces cerevisiae, one of the most well-understood eukaryotic biological system. Here, we outline the latest advances in yeast synthetic biology tools based on a framework of abstraction hierarchies of parts, circuits and genomes. In brief, the creation and characterization of biological parts are explored at the transcriptional, translational and post-translational levels. Using characterized parts as building block units, the designing of functional circuits is elaborated with examples. In addition, the status and potential applications of synthetic genomes as a genome level platform for biological system construction are also discussed. In addition to the development of a toolkit, we describe how those tools have been applied in the areas of drug production and screening, study of disease mechanisms, pollutant sensing and bioremediation. Finally, we provide a future outlook of yeast as a workhorse of eukaryotic genetics and a chosen chassis in this field.
Collapse
|
16
|
Roberts L, Wieden HJ. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnol Genet Eng Rev 2018; 34:60-75. [PMID: 29804514 DOI: 10.1080/02648725.2018.1471567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Internal ribosome entry sites (IRESs) are cis-acting RNA elements capable of recruiting ribosomes and initiating translation on an internal portion of an mRNA. This is divergent from canonical eukaryotic translation initiation, where the 5' cap is recognized by initiation factors (IFs) that recruit the ribosome to initiate translation of the encoded peptide. All known IRESs are capable of initiating translation in a cap-independent manner, and are therefore not constrained by the absence or presence of a 5' m7G cap. In addition to being cap-independent, IRES-mediated translation often uses only a subset of IFs allowing them to function independently of canonical initiation. The ability to function independently of the canonical translation initiation pathway allows IRESs to mediate gene expression when cap-dependent translation has been inhibited. Recent reports of viral IRESs capable of initiating translation across taxonomic domains (Eukarya and Bacteria) have sparked interest in designing gene expression systems compatible with multiple organisms. The ability to drive translation independent of cellular context using a common mechanism would have a wide range of applications ranging from agriculture biotechnology to the development of antiviral drugs. Here we discuss IRES-mediated translation and critically compare the available mechanistic and structural information. A particular focus will be on IRES-meditated translation across domains of life (viral and cellular IRESs) , IRES bioengineering and the possibility of an evolutionary conserved translation initiation mechanism.
Collapse
Affiliation(s)
- Luc Roberts
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Hans-Joachim Wieden
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| |
Collapse
|
17
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
18
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Brandariz-Núñez A, Zeng F, Lam QN, Jin H. Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. RNA (NEW YORK, N.Y.) 2018; 24:43-55. [PMID: 28986506 PMCID: PMC5733569 DOI: 10.1261/rna.062547.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
RNA-binding protein Sbp1 facilitates the decapping pathway in mRNA metabolism and inhibits global mRNA translation by an unclear mechanism. Here we report molecular interactions responsible for Sbp1-mediated translation inhibition of mRNA encoding the polyadenosine-binding protein (Pab1), an essential translation factor that stimulates mRNA translation and inhibits mRNA decapping in eukaryotic cells. We demonstrate that the two distal RRMs of Sbp1 bind to the poly(A) sequence in the 5'UTR of the Pab1 mRNA specifically and cooperatively while the central RGG domain of the protein interacts directly with Pab1. Furthermore, methylation of arginines in the RGG domain abolishes the protein-protein interaction and the inhibitory effect of Sbp1 on translation initiation of Pab1 mRNA. Based on these results, the underlying mechanism for Sbp1-specific translational regulation is proposed. The functional differences of Sbp1 and RGG repeats alone on transcript-specific translation were observed, and a comparison of the results suggests the importance of remodeling the 5'UTR by RNA-binding proteins in mRNA translation.
Collapse
Affiliation(s)
- Alberto Brandariz-Núñez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Fuxing Zeng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Quan Ngoc Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
20
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Bugaud O, Barbier N, Chommy H, Fiszman N, Le Gall A, Dulin D, Saguy M, Westbrook N, Perronet K, Namy O. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy. RNA (NEW YORK, N.Y.) 2017; 23:1626-1635. [PMID: 28768714 PMCID: PMC5648031 DOI: 10.1261/rna.061523.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 05/05/2023]
Abstract
Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases.
Collapse
Affiliation(s)
- Olivier Bugaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Barbier
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Hélène Chommy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Nicolas Fiszman
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Antoine Le Gall
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - David Dulin
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Matthieu Saguy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Westbrook
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Karen Perronet
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| |
Collapse
|
22
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
24
|
Molecular analysis of the factorless internal ribosome entry site in Cricket Paralysis virus infection. Sci Rep 2016; 6:37319. [PMID: 27853311 PMCID: PMC5112510 DOI: 10.1038/srep37319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022] Open
Abstract
The dicistrovirus Cricket Paralysis virus contains a unique dicistronic RNA genome arrangement, encoding two main open reading frames that are driven by distinct internal ribosome entry sites (IRES). The intergenic region (IGR) IRES adopts an unusual structure that directly recruits the ribosome and drives translation of viral structural proteins in a factor-independent manner. While structural, biochemical, and biophysical approaches have provided mechanistic details into IGR IRES translation, these studies have been limited to in vitro systems and little is known about the behavior of these IRESs during infection. Here, we examined the role of previously characterized IGR IRES mutations on viral yield and translation in CrPV-infected Drosophila S2 cells. Using a recently generated infectious CrPV clone, introduction of a subset of mutations that are known to disrupt IRES activity failed to produce virus, demonstrating the physiological relevance of specific structural elements within the IRES for virus infection. However, a subset of mutations still led to virus production, thus revealing the key IRES-ribosome interactions for IGR IRES translation in infected cells, which highlights the importance of examining IRES activity in its physiological context. This is the first study to examine IGR IRES translation in its native context during virus infection.
Collapse
|
25
|
Abstract
Viruses maintain compact genomes that must be packaged within capsids typically less than 200 nanometers in diameter. Therefore, instead of coding for a full set of genes needed for replication, viruses have evolved remarkable strategies for co-opting the host cellular machinery. Additionally, viruses often increase the coding capacity of their own genomes by employing overlapping open reading frames (ORFs). Some overlapping viral ORFs involve recoding events that are programmed by the viral RNA. During these programmed recoding events, the ribosome is directed to translate in an alternative reading frame. Here we describe how the Dicistroviridae family of viruses utilize an internal ribosome entry site (IRES) in order to recruit ribosomes to initiate translation at a non-AUG codon. The IRES accomplishes this in part by mimicking the structure of a tRNA. Recently, we showed that the Israeli Acute Paralysis Virus (IAPV) member of the Dicistroviridae family utilizes its IRES to initiate translation in 2 different reading frames. Thus, IAPV has evolved an apparently novel recoding mechanism that reveals important insights into translation. Finally, we compare the IAPV structure to other systems that utilize tRNA mimicry in translation.
Collapse
Affiliation(s)
- Samuel E Butcher
- a Department of Biochemistry , University of Wisconsin-Madison , Madison , WI , USA
| | - Eric Jan
- b Department of Biochemistry and Molecular Biology , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
26
|
Zhang H, Ng MY, Chen Y, Cooperman BS. Kinetics of initiating polypeptide elongation in an IRES-dependent system. eLife 2016; 5. [PMID: 27253065 PMCID: PMC4963199 DOI: 10.7554/elife.13429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
The intergenic IRES of Cricket Paralysis Virus (CrPV-IRES) forms a tight complex with 80S ribosomes capable of initiating the cell-free synthesis of complete proteins in the absence of initiation factors. Such synthesis raises the question of what effect the necessary IRES dissociation from the tRNA binding sites, and ultimately from all of the ribosome, has on the rates of initial peptide elongation steps as nascent peptide is formed. Here we report the first results measuring rates of reaction for the initial cycles of IRES-dependent elongation. Our results demonstrate that 1) the first two cycles of elongation proceed much more slowly than subsequent cycles, 2) these reduced rates arise from slow pseudo-translocation and translocation steps, and 3) the retarding effect of ribosome-bound IRES on protein synthesis is largely overcome following translocation of tripeptidyl-tRNA. Our results also provide a straightforward approach to detailed mechanistic characterization of many aspects of eukaryotic polypeptide elongation.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Martin Y Ng
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
27
|
Commandeering the Ribosome: Lessons Learned from Dicistroviruses about Translation. J Virol 2016; 90:5538-5540. [PMID: 27053555 DOI: 10.1128/jvi.00737-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To replicate, all viruses depend entirely on the enslavement of host cell ribosomes for their own advantage. To this end, viruses have evolved a multitude of translational strategies to usurp the ribosome. RNA-based structures known as internal ribosome entry sites (IRESs) are among the most notable mechanisms employed by viruses to seize host ribosomes. In this article, we spotlight the intergenic region IRES from the Dicistroviridae family of viruses and its importance as a model for IRES-dependent translation and in understanding fundamental properties of translation.
Collapse
|
28
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
29
|
Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 2016; 5. [PMID: 27159451 PMCID: PMC4861600 DOI: 10.7554/elife.13567] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI:http://dx.doi.org/10.7554/eLife.13567.001
Collapse
Affiliation(s)
- Jason Murray
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | | | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Petrov A, Grosely R, Chen J, O'Leary SE, Puglisi JD. Multiple Parallel Pathways of Translation Initiation on the CrPV IRES. Mol Cell 2016; 62:92-103. [PMID: 27058789 PMCID: PMC4826567 DOI: 10.1016/j.molcel.2016.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/28/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023]
Abstract
The complexity of eukaryotic translation allows fine-tuned regulation of protein synthesis. Viruses use internal ribosome entry sites (IRESs) to minimize or, like the CrPV IRES, eliminate the need for initiation factors. Here, by exploiting the CrPV IRES, we observed the entire process of initiation and transition to elongation in real time. We directly tracked the CrPV IRES, 40S and 60S ribosomal subunits, and tRNA using single-molecule fluorescence spectroscopy and identified multiple parallel initiation pathways within the system. Our results distinguished two pathways of 80S:CrPV IRES complex assembly that produce elongation-competent complexes. Following 80S assembly, the requisite eEF2-mediated translocation results in an unstable intermediate that is captured by binding of the elongator tRNA. Whereas initiation can occur in the 0 and +1 frames, the arrival of the first tRNA defines the reading frame and strongly favors 0 frame initiation. Overall, even in the simplest system, an intricate reaction network regulates translation initiation.
Collapse
Affiliation(s)
- Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Jin Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| |
Collapse
|
31
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
32
|
Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses 2016; 8:v8010025. [PMID: 26797630 PMCID: PMC4728584 DOI: 10.3390/v8010025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated region (5′UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5′UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.
Collapse
|
33
|
Ruehle MD, Zhang H, Sheridan RM, Mitra S, Chen Y, Gonzalez RL, Cooperman BS, Kieft JS. A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation. eLife 2015; 4. [PMID: 26523395 PMCID: PMC4709265 DOI: 10.7554/elife.08146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/01/2015] [Indexed: 01/06/2023] Open
Abstract
Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs. DOI:http://dx.doi.org/10.7554/eLife.08146.001 Many viruses store their genetic information in the form of strands of ribonucleic acid (RNA), which contain building blocks called nucleotides. Once inside an infected cell, the virus hijacks the cellular structures that build proteins (called ribosomes), which forces the cell to start making viral proteins. Many RNA viruses manipulate the cell’s ribosomes using RNA elements called Internal Ribosome Entry Sites, or IRESs. In a family of viruses called Dicistroviridae, which infect a number of insects, a section of the IRES RNA binds directly to the ribosome. Proteins called elongation factors then trigger a series of events that lead to the cell starting to make the viral proteins. By mutating the RNA of many different Dicistroviridae viruses that infect a variety of invertebrates, Ruehle et al. have now investigated how a particular loop in the structure of the IRES helps to make cells build the viral proteins. This loop is flexible, and interacts with the ribosome to enable the IRES to move through the ribosome. Mutations that shorten the loop or alter the sequence of nucleotides in the loop prevent the occurrence of two of the steps that need to occur for the cell to make viral proteins. Both of these steps depend on elongation factors. Determining how the entire IRES might change shape as it moves through the ribosome is an important next step, since the ribosome is exquisitely sensitive to the shape and motions of its binding partners. DOI:http://dx.doi.org/10.7554/eLife.08146.002
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Somdeb Mitra
- Department of Chemistry, Columbia University, New York, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
34
|
Abstract
Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets.
Collapse
|
35
|
Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 2015; 519:110-3. [PMID: 25652826 PMCID: PMC4352134 DOI: 10.1038/nature14219] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Abstract
The central dogma of gene expression (DNA→RNA→protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive1,2. However, the core structures and conformational dynamics of ribosomes that are responsible for the steps of translation following initiation are ancient and conserved across the domains of life3,4. We asked whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here, we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by tRNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence as an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.
Collapse
|
36
|
Wang QS, Jan E. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection. PLoS One 2014; 9:e103601. [PMID: 25089704 PMCID: PMC4121135 DOI: 10.1371/journal.pone.0103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.
Collapse
Affiliation(s)
- Qing S. Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Hodgman CE, Jewett MC. Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis. N Biotechnol 2014; 31:499-505. [PMID: 25017988 DOI: 10.1016/j.nbt.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) systems are limited, in part, by inefficient translation initiation. Here, we report three internal ribosome entry site (IRES) sequences from the Dicistroviridae family that are highly active in yeast CFPS. These include the intergenic region (IGR) IRES from cricket paralysis virus (CrPV), plautia stali intestine virus (PSIV) and Solenopsis invicta virus 1 (SINV1). Optimization of combined transcription and translation (Tx/Tl) CFPS reactions primed with linear DNA containing the CrPV IGR IRES resulted in batch synthesis yields of 0.92 ± 0.17 μg/mL luciferase. Further template engineering, such as including the first 12 nt of native CrPV gene, increased yields to 2.33 ± 0.11 μg/mL. We next observed that the inclusion of a 50 nt poly(A) to the 3' end of the IGR IRES-mediated message increased yields an additional 81% to 4.33 ± 0.37 μg/mL, without any effect on mRNA stability or copy number. This was surprising because the CrPV IGR IRES requires no known translation initiation factors. Lastly, we investigated a method to inhibit background expression through competitive inhibition by supplying the reaction with 5' cap structure analog. This study highlights the crucial role translation initiation plays in yeast CFPS and offers a simple platform to study IRES sequences.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA; Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North St Clair Street, Suite 1200, Chicago, IL 60611-3068, USA; Institute for BioNanotechnology in Medicine, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611-2875, USA.
| |
Collapse
|
39
|
Fernández IS, Bai XC, Murshudov G, Scheres SHW, Ramakrishnan V. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 2014; 157:823-31. [PMID: 24792965 PMCID: PMC4017093 DOI: 10.1016/j.cell.2014.04.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/14/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The cricket paralysis virus internal ribosome entry site (CrPV-IRES) is a folded structure in a viral mRNA that allows initiation of translation in the absence of any host initiation factors. By using recent advances in single-particle electron cryomicroscopy, we have solved the structure of CrPV-IRES bound to the ribosome of the yeast Kluyveromyces lactis in both the canonical and rotated states at overall resolutions of 3.7 and 3.8 Å, respectively. In both states, the pseudoknot PKI of the CrPV-IRES mimics a tRNA/mRNA interaction in the decoding center of the A site of the 40S ribosomal subunit. The structure and accompanying factor-binding data show that CrPV-IRES binding mimics a pretranslocation rather than initiation state of the ribosome. Translocation of the IRES by elongation factor 2 (eEF2) is required to bring the first codon of the mRNA into the A site and to allow the start of translation. The high-resolution structure of CrPV-IRES bound to the ribosome was solved by cryoEM Pseudoknot I of CrPV-IRES binds in the decoding center, thus blocking the A site CrPV-IRES mimics a pretranslocation rather than initiation complex of the ribosome Translocation of CrPV-IRES by eEF2 is required for the start of translation
Collapse
Affiliation(s)
- Israel S Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
40
|
Brödel AK, Sonnabend A, Roberts LO, Stech M, Wüstenhagen DA, Kubick S. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems. PLoS One 2013; 8:e82234. [PMID: 24376523 PMCID: PMC3869664 DOI: 10.1371/journal.pone.0082234] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/22/2013] [Indexed: 02/04/2023] Open
Abstract
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.
Collapse
Affiliation(s)
- Andreas K. Brödel
- Fraunhofer Institute for Biomedical Engineering (IBMT) Branch Potsdam-Golm, Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Biomedical Engineering (IBMT) Branch Potsdam-Golm, Potsdam, Germany
| | - Lisa O. Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Marlitt Stech
- Fraunhofer Institute for Biomedical Engineering (IBMT) Branch Potsdam-Golm, Potsdam, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Biomedical Engineering (IBMT) Branch Potsdam-Golm, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT) Branch Potsdam-Golm, Potsdam, Germany
- * E-mail:
| |
Collapse
|
41
|
Hodgman CE, Jewett MC. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol Bioeng 2013; 110:2643-54. [PMID: 23832321 DOI: 10.1002/bit.24942] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 01/31/2023]
Abstract
Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1) µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
42
|
Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Mol Cell Biol 2012; 33:1016-26. [PMID: 23275440 DOI: 10.1128/mcb.00879-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During viral infection or cellular stress, cap-dependent translation is shut down. Proteins that are synthesized under these conditions use alternative mechanisms to initiate translation. This study demonstrates that at least two alternative translation initiation routes, internal ribosome entry site (IRES) initiation and ribosome shunting, rely on ribosomal protein S25 (RPS25). This suggests that they share a mechanism for initiation that is not employed by cap-dependent translation, since cap-dependent translation is not affected by the loss of RPS25. Furthermore, we demonstrate that viruses that utilize an IRES or a ribosome shunt, such as hepatitis C virus, poliovirus, or adenovirus, have impaired amplification in cells depleted of RPS25. In contrast, viral amplification of a virus that relies solely on cap-dependent translation, herpes simplex virus, is not hindered. We present a model that explains how RPS25 can be a nexus for multiple alternative translation initiation pathways.
Collapse
|
43
|
RETRACTED ARTICLE: Simultaneous expression of antibody light and heavy chains in Pichia pastoris: improving retransformation outcome by linearizing vector at a different site. Appl Microbiol Biotechnol 2012; 96:1381. [DOI: 10.1007/s00253-012-4347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
44
|
Thompson SR. Tricks an IRES uses to enslave ribosomes. Trends Microbiol 2012; 20:558-66. [PMID: 22944245 DOI: 10.1016/j.tim.2012.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023]
Abstract
In eukaryotes, mRNAs are primarily translated through a cap-dependent mechanism whereby initiation factors recruit the 40S ribosomal subunit to a cap structure at the 5' end of the mRNA. However, some viral and cellular messages initiate protein synthesis without a cap. They use a structured RNA element termed an internal ribosome entry site (IRES) to recruit the 40S ribosomal subunit. IRESs were discovered over 20 years ago, but only recently have studies using a model IRES from dicistroviruses expanded our understanding of how a 3D RNA structure can capture and manipulate the ribosome to initiate translation.
Collapse
Affiliation(s)
- Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
45
|
A new framework for understanding IRES-mediated translation. Gene 2012; 502:75-86. [PMID: 22555019 DOI: 10.1016/j.gene.2012.04.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/23/2012] [Accepted: 04/17/2012] [Indexed: 01/08/2023]
Abstract
Studies over the past 5 or so years have indicated that the traditional clustering of mechanisms for translation initiation in eukaryotes into cap-dependent and cap-independent (or IRES-mediated) is far too narrow. From individual studies of a number of mRNAs encoding proteins that are regulatory in nature (i.e. likely to be needed in small amounts such as transcription factors, protein kinases, etc.), it is now evident that mRNAs exist that blur these boundaries. This review seeks to set the basic ground rules for the analysis of different initiation pathways that are associated with these new mRNAs as well as related to the more traditional mechanisms, especially the cap-dependent translational process that is the major route of initiation of mRNAs for housekeeping proteins and thus, the bulk of protein synthesis in most cells. It will become apparent that a mixture of descriptions is likely to become the norm in the near future (i.e. m(7)G-assisted internal initiation).
Collapse
|
46
|
Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. J Biotechnol 2012; 159:69-77. [PMID: 22342374 DOI: 10.1016/j.jbiotec.2012.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 01/24/2012] [Indexed: 11/22/2022]
Abstract
A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.
Collapse
|
47
|
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2012; 44:660-6. [PMID: 22099312 DOI: 10.1016/j.molcel.2011.09.017] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/17/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Collapse
Affiliation(s)
- Karen Jack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim IK, Roldão A, Siewers V, Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 2012; 12:228-48. [DOI: 10.1111/j.1567-1364.2011.00779.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 12/01/2022] Open
Affiliation(s)
- Il-Kwon Kim
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - António Roldão
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
49
|
Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol 2011; 31:4482-99. [PMID: 21930789 DOI: 10.1128/mcb.05804-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.
Collapse
|
50
|
Hodgman CE, Jewett MC. Cell-free synthetic biology: thinking outside the cell. Metab Eng 2011; 14:261-9. [PMID: 21946161 DOI: 10.1016/j.ymben.2011.09.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/19/2011] [Accepted: 09/09/2011] [Indexed: 01/19/2023]
Abstract
Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|