1
|
Zeng S, Kong Q, Wu X, Duan M, Nan X, Yang X, Zuo X, Li Y, Li Y. Antibiotic resistance of Helicobacter pylori in Mainland China: A focus on geographic differences through systematic review and meta-analysis. Int J Antimicrob Agents 2024; 64:107325. [PMID: 39245326 DOI: 10.1016/j.ijantimicag.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Empirical treatment needs to be supported by regional data, but knowledge of interregional differences is currently lacking in China. This study aimed to summarize and map the primary and secondary antibiotic resistance of Helicobacter pylori in different regions of mainland China. METHODS PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure and Wanfang databases were systematically reviewed for studies published between 1 January 2000 and 15 July 2023. Data related to primary and secondary H. pylori antibiotic resistance rates were included. Random-effects models were used to synthesize the pooled resistance rates. RESULTS Ultimately, 74 studies were included in the final analysis. A total of 16 provinces reported resistance data. The overall resistance rates of H. pylori in mainland China were 30.72% (95% CI 27.53%-33.99%) to clarithromycin, 70.14% (95% CI 29.53%-37.46%) to metronidazole and 32.98% (95% CI 28.73%-37.37%) to levofloxacin; for amoxicillin, tetracycline, and furazolidone, the rates were 2.41% (95% CI 1.43%-3.60%), 2.53% (95% CI 1.19%-4.28%) and 1.54% (95% CI 0.28%-3.62%), respectively. Spatial and temporal differences were observed. The resistance rates increased after treatment failure; however, secondary resistance to amoxicillin, tetracycline and furazolidone were still low across the vast majority of study regions. CONCLUSION Surveillance of the updated prevalence of antibiotic resistance of H. pylori for different regions is warranted, which should factor into clinical decision making and guideline recommendations.
Collapse
Affiliation(s)
- Shuyan Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qingzhou Kong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqi Wu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Miao Duan
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xueping Nan
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yueyue Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Xue J, Li W, Zhao Y, Wang L, Cheng P, Zhang L, Zheng Y, Zhang W, Bi Y, Chen Z, Jiang T, Sun Y. Antibiotic-induced ROS-mediated Fur allosterism contributes to Helicobacter pylori resistance by inhibiting arsR activation of mutS and mutY. Antimicrob Agents Chemother 2024; 68:e0167923. [PMID: 38386782 PMCID: PMC10989006 DOI: 10.1128/aac.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.
Collapse
Affiliation(s)
- Junyuan Xue
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wen Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Peiyuan Cheng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Lu Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yakun Bi
- Science and Technology Management Center, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Eckartt KA, Delbeau M, Munsamy-Govender V, DeJesus MA, Azadian ZA, Reddy AK, Chandanani J, Poulton NC, Quiñones-Garcia S, Bosch B, Landick R, Campbell EA, Rock JM. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 2024; 628:186-194. [PMID: 38509362 PMCID: PMC10990936 DOI: 10.1038/s41586-024-07206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Collapse
Affiliation(s)
- Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Madeleine Delbeau
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Abhijna K Reddy
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Joshua Chandanani
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Fang Z, Zhao X, Zhang Z, Wu J, Cheng J, Lei D, Li N, Ge R, He QY, Sun X. Unveiling a novel mechanism for competitive advantage of ciprofloxacin-resistant bacteria in the environment through bacterial membrane vesicles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133453. [PMID: 38246062 DOI: 10.1016/j.jhazmat.2024.133453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Ciprofloxacin (CIP) is a prevalent environmental contaminant that poses a high risk of antibiotic resistance. High concentrations of antibiotics can lead to the development of resistant bacteria with high fitness costs, which often face a competitive disadvantage. However, it is unclear whether low-cost resistant bacteria formed by exposure to sub-MIC CIP in the environment can evolve competitive mechanisms against sensitive Escherichia coli (SEN) other than stronger resistance to CIP. Our study exposed E. coli to sub-MIC CIP levels, resulting in the development of CIP-resistant E. coli (CIPr). In antibiotic-free co-culture assays, CIPr outcompeted SEN. This indicates that CIPr is very likely to continue to develop and spread in antibiotic-free environments such as drinking water and affect human health. Further mechanism investigation revealed that bacterial membrane vesicles (BMVs) in CIPr, functioning as substance delivery couriers, mediated a cleavage effect on SEN. Proteomic analysis identified Entericidin B (EcnB) within CIPr-BMVs as a key factor in this competitive interaction. RT-qPCR analysis showed that the transcription of its negative regulator ompR/envZ was down-regulated. Moreover, EcnB plays a crucial role in the development of CIP resistance, and some resistance-related proteins and pathways have also been discovered. Metabolomics analysis highlighted the ability of CIPr-BMVs to acidify SEN, increasing the lytic efficiency of EcnB through cationization. Overall, our study reveals the importance of BMVs in mediating bacterial resistance and competition, suggesting that regulating BMVs production may be a new strategy for controlling the spread of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ziyuan Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Lei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Nguyen ANT, Gorrell R, Kwok T, Connallon T, McDonald MJ. Horizontal gene transfer facilitates the molecular reverse-evolution of antibiotic sensitivity in experimental populations of H. pylori. Nat Ecol Evol 2024; 8:315-324. [PMID: 38177692 DOI: 10.1038/s41559-023-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Reversing the evolution of traits harmful to humans, such as antimicrobial resistance, is a key ambition of applied evolutionary biology. A major impediment to reverse evolution is the relatively low spontaneous mutation rates that revert evolved genotypes back to their ancestral state. However, the repeated re-introduction of ancestral alleles by horizontal gene transfer (HGT) could make reverse evolution likely. Here we evolve populations of an antibiotic-resistant strain of Helicobacter pylori in growth conditions without antibiotics while introducing an ancestral antibiotic-sensitive allele by HGT. We evaluate reverse evolution using DNA sequencing and find that HGT facilitates the molecular reverse evolution of the antibiotic resistance allele, and that selection for high rates of HGT drives the evolution of increased HGT rates in low-HGT treatment populations. Finally, we use a theoretical model and carry out simulations to infer how the fitness costs of antibiotic resistance, rates of HGT and effects of genetic drift interact to determine the probability and predictability of reverse evolution.
Collapse
Affiliation(s)
- An N T Nguyen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Gorrell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Lettl C, Schindele F, Mehdipour AR, Steiner T, Ring D, Brack-Werner R, Stecher B, Eisenreich W, Bilitewski U, Hummer G, Witschel M, Fischer W, Haas R. Selective killing of the human gastric pathogen Helicobacter pylori by mitochondrial respiratory complex I inhibitors. Cell Chem Biol 2023; 30:499-512.e5. [PMID: 37100053 DOI: 10.1016/j.chembiol.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/16/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.
Collapse
Affiliation(s)
- Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Franziska Schindele
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ahmad Reza Mehdipour
- Center for Molecular Modeling, Ghent University, 9052 Zwijnaarde, Belgium; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Thomas Steiner
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, 85748 Garching, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Ruth Brack-Werner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany; German Research Center for Environmental Health, Institute of Virology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, 85748 Garching, Germany
| | - Ursula Bilitewski
- Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Braunschweig, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
7
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
8
|
Schindler Y, Rahav G, Nissan I, Treygerman O, Prajgrod G, Attia BZ, Raz R, Valenci GZ, Tekes-Manova D, Maor Y. Group B streptococcus virulence factors associated with different clinical syndromes: Asymptomatic carriage in pregnant women and early-onset disease in the newborn. Front Microbiol 2023; 14:1093288. [PMID: 36860481 PMCID: PMC9968972 DOI: 10.3389/fmicb.2023.1093288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Background Group B streptococcus (GBS) harbors many virulence factors but there is limited data regarding their importance in colonization in pregnancy and early-onset disease (EOD) in the newborn. We hypothesized that colonization and EOD are associated with different distribution and expression of virulence factors. Methods We studied 36 GBS EOD and 234 GBS isolates collected during routine screening. Virulence genes (pilus-like structures-PI-1, PI-2a, PI-2b; rib and hvgA) presence and expression were identified by PCR and qRT-PCR. Whole genome sequencing (WGS) and comparative genomic analyses were used to compare coding sequences (CDSs) of colonizing and EOD isolates. Results Serotype III (ST17) was significantly associated with EOD and serotype VI (ST1) with colonization. hvgA and rib genes were more prevalent among EOD isolates (58.3 and 77.8%, respectively; p < 0.01). The pilus loci PI-2b and PI-2a were more prevalent among EOD isolates (61.1%, p < 0.01), while the pilus loci PI-2a and PI-1 among colonizing isolates (89.7 and 93.1% vs. 55.6 and 69.4%, p < 0.01). qRT PCR analysis revealed that hvgA was barely expressed in colonizing isolates, even though the gene was detected. Expression of the rib gene and PI-2b was two-fold higher in EOD isolates compared to colonizing isolates. Transcription of PI-2a was three-fold higher in colonizing isolates compared to EOD isolates. ST17 isolates (associated with EOD) had a smaller genome size compared ST1 and the genome was more conserved relative to the reference strain and ST17 isolates. In a multivariate logistic regression analysis virulence factors independently associated with EOD were serotype 3, and PI-1 and PI-2a was protective. Conclusion There was a significant difference in the distribution of hvg A, rib, and PI genes among EOD (serotype III/ST17) and colonizing (serotype VI/ST1) isolates suggesting an association between invasive disease and these virulence factors. Further study is needed to understand the contribution of these genes to GBS virulence.
Collapse
Affiliation(s)
- Yulia Schindler
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Infectious Disease Unit, Sheba Medical Center, Tel HaShomer, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Tel HaShomer, Israel,National Public Health Laboratory, Ministry of Health, Tel Aviv, Israel
| | - Orit Treygerman
- Laboratory of Microbiology, Meuhedet Health Maintenance Organization, Lod, Israel
| | - George Prajgrod
- Laboratory of Microbiology, Meuhedet Health Maintenance Organization, Lod, Israel
| | | | - Ronit Raz
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | | | - Dorit Tekes-Manova
- Laboratory of Microbiology, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
| | - Yasmin Maor
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Infectious Disease Unit, Wolfson Medical Center, Holon, Israel,*Correspondence: Yasmin Maor, ,
| |
Collapse
|
9
|
Wang H, Feng Y, Lu H. Low-Level Cefepime Exposure Induces High-Level Resistance in Environmental Bacteria: Molecular Mechanism and Evolutionary Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15074-15083. [PMID: 35608924 DOI: 10.1021/acs.est.2c00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics exert selective pressures on clinically relevant antibiotic resistance. It is critical to understand how antibiotic resistance evolves in environmental microbes exposed to subinhibitory concentrations of antibiotics and whether evolutionary dynamics and emergence of resistance are predictable. In this study, Comamonas testosteroni isolated from wastewater activated sludge were subcultured in a medium containing 10 ng/mL cefepime for 40 days (∼300 generations). Stepwise mutations were accumulated, leading to an ultimate 200-fold increase in the minimum inhibitory concentration (MIC) of cefepime. Early stage mutation in DNA polymerase-encoding gene dnaE2 played an important role in antibiotic resistance evolution. Diverse resistance mechanisms were employed and validated experimentally, including increased efflux, biofilm formation, reduced antibiotic uptake, and drug inactivation. The cefepime minimal selective concentrations (MSCs) and relative fitness of susceptible, intermediate, and resistant mutants were determined. Agent-based modeling of the modified Moran process enabled simulations of resistance evolution and predictions of the emergence time and frequency of resistant mutants. The unraveled cefepime resistance mechanisms could be employed by broader bacteria, and the newly developed model is applicable to the predictions of general resistance evolution. The improved knowledge facilitates the assessment, prediction, and mitigation of antibiotic resistance progression in antibiotic-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Departments of Microbiology & General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
10
|
Nista EC, Pellegrino A, Giuli L, Candelli M, Schepis T, De Lucia SS, Ojetti V, Franceschi F, Gasbarrini A. Clinical Implications of Helicobacter pylori Antibiotic Resistance in Italy: A Review of the Literature. Antibiotics (Basel) 2022; 11:1452. [PMID: 36290110 PMCID: PMC9598780 DOI: 10.3390/antibiotics11101452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) resistance to antibiotics has increased worldwide in recent decades, especially to clarithromycin. As a result, the World Health Organization (WHO) identified clarithromycin-resistant H. pylori as a "high priority" pathogen in 2017. As international guidelines recommend empirical therapy as first-line treatment, it is crucial to know local resistance rates and history of antibiotic use to determine the most appropriate first-line antibiotic treatment. Italy is one of the European countries with the highest prevalence of H. pylori infection and the highest percentage of antibiotic-resistant H. pylori. The aim of this review is to summarize all data on H. pylori antibiotic resistance in Italy in order to quantify the current rate and determine the most effective therapeutic approach. The study confirms an elevated level of resistance to clarithromycin, metronidazole, and levofloxacin in Italy. In addition, our results show a satisfactory eradication rate for a bismuth-based regimen when used as first- or second-line treatment. Naive patients are also successfully treated with clarithromycin-based quadruple therapies. Considering the good results of bismuth-based therapy as recovery therapy, this argues for the potential use of clarithromycin quadruple therapy as a first-line treatment.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Pellegrino
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Giuli
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Schepis
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Sofia De Lucia
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
11
|
In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on Biofilm. Pathogens 2022; 11:pathogens11070740. [PMID: 35889986 PMCID: PMC9324866 DOI: 10.3390/pathogens11070740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the in vitro activity of the arylaminoartemisinin GC012, readily obtained from dihydroartemisinin (DHA), against clinical strains of Helicobacter pylori (H. pylori) with different antibiotic susceptibilities in the planktonic and sessile state. The activity was assessed in terms of bacteriostatic and bactericidal potential. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by the broth microdilution method. After treatment with GC012, all bacterial strains showed significantly lower MIC and MBC values compared to those of DHA. The effect of combination of GC012 with antibiotics was examined using the checkerboard method. GC012 displayed synergistic interactions with metronidazole, clarithromycin, and amoxicillin in all the strains. The antibiofilm activity was evaluated via crystal violet staining, AlamarBlue® assay, colony-forming unit count, and fluorescence microscopy. At ½ MIC and ¼ MIC concentration, both GC012 and DHA inhibited biofilm formation, but only GC012 showed a minimal biofilm eradication concentration (MBEC) on mature biofilm. Furthermore, both compounds induced structural changes in the bacterial membrane, as observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is thereby demonstrated that GC012 has the potential to be efficacious against H. pylori infection.
Collapse
|
12
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
13
|
Arroyo-Moreno S, Cummings M, Corcoran DB, Coffey A, McCarthy RR. Identification and characterization of novel endolysins targeting Gardnerella vaginalis biofilms to treat bacterial vaginosis. NPJ Biofilms Microbiomes 2022; 8:29. [PMID: 35440653 PMCID: PMC9018826 DOI: 10.1038/s41522-022-00285-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is a recurrent dysbiosis that is frequently associated with preterm birth, increased risk for acquisition of human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). The overgrowth of a key pathobiont, Gardnerella vaginalis, as a recalcitrant biofilm is central to the development of this dysbiosis. Overgrowth of vaginal biofilms, seeded by initial G. vaginalis colonization, leads to recurrent symptomatic BV which is poorly resolved by classically used antibiotics. In this light, the use of bacteriophages and/or their proteins, represents a promising alternative. Here we identify 84 diverse anti-Gardnerella endolysins across 7 protein families. A subset of 36 endolysin candidates were refactored and overexpressed in an E. coli BL21 (DE3) system and 5 biochemically and structurally diverse endolysins were fully characterized. Each candidate endolysin showed good lytic activity against planktonic G. vaginalis ATCC14018, as well as G. vaginalis clinical isolates. These endolysin candidates were assayed in biofilm prevention and disruption assays, with biofilm disruption at low microgram concentrations (5 μg/ml) observed. In addition to clonal G. vaginalis biofilms, endolysin candidates could also successfully disrupt polyspecies biofilms. Importantly, none of our candidates showed lytic activity against commensal lactobacilli present in the vaginal microbiota such as L. crispatus, L. jensenii, L. gasseri, and L. iners or against Atopobium vaginae (currently classified as Fannyhessa vaginae). The potency and selectivity of these novel endolysins constitute a promising alternative treatment to combat BV, avoiding problems associated with antibiotic resistance, while retaining beneficial commensal bacteria in the vaginal flora. The diverse library of candidates reported here represents a strong repository of endolysins for further preclinical development.
Collapse
Affiliation(s)
- Sara Arroyo-Moreno
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
14
|
Recombination resolves the cost of horizontal gene transfer in experimental populations of Helicobacter pylori. Proc Natl Acad Sci U S A 2022; 119:e2119010119. [PMID: 35298339 PMCID: PMC8944584 DOI: 10.1073/pnas.2119010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT)—the transfer of DNA between lineages—is responsible for a large proportion of the genetic variation that contributes to evolution in microbial populations. While HGT can bring beneficial genetic innovation, the transfer of DNA from other species or strains can also have deleterious effects. In this study, we evolve populations of the bacteria Helicobacter pylori and use DNA sequencing to identify over 40,000 genetic variants transferred by HGT. We measure the cost of many of these and find that both strongly beneficial mutations and deleterious mutations are genetic variants transferred by natural transformation. Importantly, we also show how recombination that separates linked beneficial and deleterious mutations resolves the cost of HGT. Horizontal gene transfer (HGT) is important for microbial evolution, yet we know little about the fitness effects and dynamics of horizontally transferred genetic variants. In this study, we evolve laboratory populations of Helicobacter pylori, which take up DNA from their environment by natural transformation, and measure the fitness effects of thousands of transferred genetic variants. We find that natural transformation increases the rate of adaptation but comes at the cost of significant genetic load. We show that this cost is circumvented by recombination, which increases the efficiency of selection by decoupling deleterious and beneficial genetic variants. Our results show that adaptation with HGT, pervasive in natural microbial populations, is shaped by a combination of selection, recombination, and genetic drift not accounted for in existing models of evolution.
Collapse
|
15
|
Mutators Enhance Adaptive Micro-Evolution in Pathogenic Microbes. Microorganisms 2022; 10:microorganisms10020442. [PMID: 35208897 PMCID: PMC8875331 DOI: 10.3390/microorganisms10020442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Adaptation to the changing environmental conditions experienced within a host requires genetic diversity within a microbial population. Genetic diversity arises from mutations which occur due to DNA damage from exposure to exogenous environmental stresses or generated endogenously through respiration or DNA replication errors. As mutations can be deleterious, a delicate balance must be obtained between generating enough mutations for micro-evolution to occur while maintaining fitness and genomic integrity. Pathogenic microorganisms can actively modify their mutation rate to enhance adaptive micro-evolution by increasing expression of error-prone DNA polymerases or by mutating or decreasing expression of genes required for DNA repair. Strains which exhibit an elevated mutation rate are termed mutators. Mutators are found in varying prevalence in clinical populations where large-effect beneficial mutations enhance survival and are predominately caused by defects in the DNA mismatch repair (MMR) pathway. Mutators can facilitate the emergence of antibiotic resistance, allow phenotypic modifications to prevent recognition and destruction by the host immune system and enable switching to metabolic and cellular morphologies better able to survive in the given environment. This review will focus on recent advances in understanding the phenotypic and genotypic changes occurring in MMR mutators in both prokaryotic and eukaryotic pathogens.
Collapse
|
16
|
Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients. Microorganisms 2022; 10:microorganisms10020322. [PMID: 35208776 PMCID: PMC8876575 DOI: 10.3390/microorganisms10020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is a common gastric pathogen associated with multiple clinical syndromes, including cancer. Eradication rates of H. pylori remain suboptimal despite the progress made in the past few decades in improving treatment strategies. The low eradication rates are mainly driven by antibiotic resistance of H. pylori. Non-invasive molecular testing to identify patients with antibiotic-resistant H. pylori represents a promising therapeutic avenue, however this technology currently remains limited by availability, costs, and lack of robust validation. Moreover, there is insufficient evidence to demonstrate that resistance-testing-based treatment approaches are superior to appropriately designed empiric strategies. Consensus guidelines recommend use of proven locally effective regimens; however, eradication data are inconsistently generated in several regions of the world. In this review, we describe several clinical factors associated with increased rates of antibiotic resistant H. pylori, including history of previous antibiotic exposure, increasing age, female gender, ethnicity/race, extent of alcohol use, and non-ulcer dyspepsia. Assessment of these factors may aid the clinician in choosing the most appropriate empiric treatment strategy for each patient. Future study should aim to identify locally effective therapies and further explore the clinical factors associated with antibiotic resistance.
Collapse
|
17
|
Nazarov PA, Kuznetsova AM, Karakozova MV. Multidrug Resistance Pumps as a Keystone of Bacterial Resistance. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2022; 77:193-200. [PMID: 36843647 PMCID: PMC9940100 DOI: 10.3103/s009639252204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 02/22/2023]
Abstract
Antibiotic resistance is a global problem of modern medicine. A harbinger of the onset of the postantibiotic era is the complexity and high cost of developing new antibiotics as well as their inefficiency due to the rapidly developing resistance of bacteria. Multidrug resistance (MDR) pumps, involved in the formation of resistance to xenobiotics, the export of toxins, the maintenance of cellular homeostasis, and the formation of biofilms and persistent cells, are the keystone of bacterial protection against antibiotics. MDR pumps are the basis for the nonspecific protection of bacteria, while modification of the drug target, inactivation of the drug, and switching of the target or sequestration of the target is the second specific line of their protection. Thus, the nonspecific protection of bacteria formed by MDR pumps is a barrier that prevents the penetration of antibacterial substances into the cell, which is the main factor determining the resistance of bacteria. Understanding the mechanisms of MDR pumps and a balanced assessment of their contribution to total resistance, as well as to antibiotic sensitivity, will either seriously delay the onset of the postantibiotic era or prevent its onset in the foreseeable future.
Collapse
Affiliation(s)
- P. A. Nazarov
- grid.14476.300000 0001 2342 9668Belozersky Institute of Physicochemical Biology, Moscow State University, 119234 Moscow, Russia
| | - A. M. Kuznetsova
- grid.14476.300000 0001 2342 9668Department of Biology, Moscow State University, 119234 Moscow, Russia
| | - M. V. Karakozova
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
18
|
Bloomfield SJ, Midwinter AC, Biggs PJ, French NP, Marshall JC, Hayman DTS, Carter PE, Mather AE, Fayaz A, Thornley C, Kelly DJ, Benschop J. Genomic adaptations of Campylobacter jejuni to long-term human colonization. Gut Pathog 2021; 13:72. [PMID: 34893079 PMCID: PMC8665580 DOI: 10.1186/s13099-021-00469-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
Collapse
Affiliation(s)
| | - Anne C Midwinter
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Patrick J Biggs
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - Nigel P French
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Jonathan C Marshall
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- School of Fundamental Science, Massey University, Palmerston North, 4410, New Zealand
| | - David T S Hayman
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Centre of Research Excellence for Complex Systems, Te Pūnaha Matatini, Auckland, New Zealand
| | - Philip E Carter
- Institute of Environmental Science of Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- University of East Anglia, Norwich, Norfolk, UK
| | - Ahmed Fayaz
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| | - Craig Thornley
- Regional Public Health, Hutt Hospital, Lower Hutt, 5040, New Zealand
| | - David J Kelly
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, UK
| | - Jackie Benschop
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
- Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
19
|
Tedim AP, Lanza VF, Rodríguez CM, Freitas AR, Novais C, Peixe L, Baquero F, Coque TM. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J Antimicrob Chemother 2021; 76:2757-2764. [PMID: 34450635 DOI: 10.1093/jac/dkab249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTβ (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.
Collapse
Affiliation(s)
- Ana P Tedim
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Val F Lanza
- Unit of Bioinformatics, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - Ana R Freitas
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fernando Baquero
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.,Centres for Biomedical Research in the Epidemiology and Public Health Network (CIBER-ESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| |
Collapse
|
20
|
Menati Rashno M, Mehraban H, Naji B, Radmehr M. Microbiome in human cancers. Access Microbiol 2021; 3:000247. [PMID: 34888478 PMCID: PMC8650843 DOI: 10.1099/acmi.0.000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
A microbiome is defined as the aggregate of all microbiota that reside in human digestive system and other tissues. This microbiota includes viruses, bacteria, fungi that live in various human organs and tissues like stomach, guts, oesophagus, mouth cavity, urinary tract, vagina, lungs, and skin. Almost 20 % of malignant cancers worldwide are related to microbial infections including bacteria, parasites, and viruses. The human body is constantly being attacked by microbes during its lifetime and microbial pathogens that have tumorigenic effects in 15-20 % of reported cancer cases. Recent scientific advances and the discovery of the effect of microbes on cancer as a pathogen or as a drug have significantly contributed to our understanding of the complex relationship between microbiome and cancer. The aim of this study is to overview some microbiomes that reside in the human body and their roles in cancer.
Collapse
Affiliation(s)
| | - Hamed Mehraban
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Behnaz Naji
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohadeseh Radmehr
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
21
|
Wu K, Cheng ZH, Williams E, Turner NT, Ran D, Li H, Zhou X, Guo H, Sung W, Liu DF, Lynch M, Long H. Unexpected Discovery of Hypermutator Phenotype Sounds the Alarm for Quality Control Strains. Genome Biol Evol 2021; 13:evab148. [PMID: 34180992 PMCID: PMC8350357 DOI: 10.1093/gbe/evab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Microbial strains with high genomic stability are particularly sought after for testing the quality of commercial microbiological products, such as biological media and antibiotics. Yet, using mutation-accumulation experiments and de novo assembled complete genomes based on Nanopore long-read sequencing, we find that the widely used quality-control strain Shewanella putrefaciens ATCC-8071, also a facultative pathogen, is a hypermutator, with a base-pair substitution mutation rate of 2.42 × 10-8 per nucleotide site per cell division, ∼146-fold greater than that of the wild-type strain CGMCC-1.6515. Using complementation experiments, we confirm that mutL dysfunction, which was a recent evolutionary event, is the cause for the high mutation rate of ATCC-8071. Further analyses also give insight into possible relationships between mutation and genome evolution in this important bacterium. This discovery of a well-known strain being a hypermutator necessitates screening the mutation rate of bacterial strains before any quality control or experiments.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Emily Williams
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Nathan T Turner
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| | - Dapeng Ran
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Haichao Li
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Xia Zhou
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Huilin Guo
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Guiraud J, Lounnas M, Boissière A, Le Roy C, Elguero E, Banuls AL, Bébéar C, Godreuil S, Pereyre S. Lower mgpB diversity in macrolide-resistant Mycoplasma genitalium infecting men visiting two sexually transmitted infection clinics in Montpellier, France. J Antimicrob Chemother 2021; 76:43-47. [PMID: 33078199 DOI: 10.1093/jac/dkaa410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Men engaged in high-risk sexual behaviour, such as MSM, are likely to be infected by resistant Mycoplasma genitalium strains. Understanding the transmission dynamics is challenging. We aimed to investigate the molecular epidemiology of M. genitalium in men visiting sexually transmitted infection (STI) clinics. PATIENTS AND METHODS Between June 2017 and February 2018, 95 M. genitalium-positive specimens from 78 men, including 76.9% MSM, visiting two STI clinics in Montpellier, France, were analysed for SNPs in the mgpB adhesin gene and number of tandem repeats in the MG_309 gene. Macrolide and fluoroquinolone resistance were determined. Typing results were compared with antibiotic resistance, sexual behaviour, sampling site, HIV pre-exposure prophylaxis (PrEP) usage and HIV status. RESULTS Thirty-eight mgpB STs were identified, including 23 new STs, with ST4 being most prevalent. The mgpB/MG_309 typing method identified 52 genetic profiles, resulting in a discriminatory index of 0.979. Macrolide and fluoroquinolone resistance-associated mutations were detected in 58.3% and 10.8% of patients, respectively. The macrolide resistance rate was higher among MSM than among men who have sex with women only (68.4% versus 9.1%; adjusted OR, 1.57; 95% CI, 1.13-2.18; P = 0.007). A lower mgpB diversity of 0.870 was found among macrolide-resistant strains in comparison with 0.978 in macrolide-susceptible strains, with an over-representation of mgpB ST62 and ST153. CONCLUSIONS Although macrolide resistance spread appears polyclonal in M. genitalium, the lower diversity of mgpB types among macrolide-resistant strains may reflect the easier spread of a few specific mgpB types or the occurrence of sexual networks among MSM.
Collapse
Affiliation(s)
- Jennifer Guiraud
- Univ. Bordeaux, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,CHU Bordeaux, Bacteriology Department, French National Reference Centre for Bacterial STI, Bordeaux, France
| | - Manon Lounnas
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne Boissière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Chloé Le Roy
- Univ. Bordeaux, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Eric Elguero
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Cécile Bébéar
- Univ. Bordeaux, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,CHU Bordeaux, Bacteriology Department, French National Reference Centre for Bacterial STI, Bordeaux, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Centre de Recherche en Ecologie et Evolution de la Santé (CREES), Montpellier, France
| | - Sabine Pereyre
- Univ. Bordeaux, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,CHU Bordeaux, Bacteriology Department, French National Reference Centre for Bacterial STI, Bordeaux, France
| |
Collapse
|
23
|
Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun 2021; 12:3418. [PMID: 34103502 PMCID: PMC8187385 DOI: 10.1038/s41467-021-23745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022] Open
Abstract
The antifungal agent 5-fluorocytosine (5-FC) is used for the treatment of several mycoses, but is unsuitable for monotherapy due to the rapid development of resistance. Here, we show that cryptococci develop resistance to 5-FC at a high frequency when exposed to concentrations several fold above the minimal inhibitory concentration. The genomes of resistant clones contain alterations in genes relevant as well as irrelevant for 5-FC resistance, suggesting that 5-FC may be mutagenic at moderate concentrations. Mutations in FCY2 (encoding a known permease for 5-FC uptake), FCY1, FUR1, UXS1 (encoding an enzyme that converts UDP-glucuronic acid to UDP-xylose) and URA6 contribute to 5-FC resistance. The uxs1 mutants accumulate UDP-glucuronic acid, which appears to down-regulate expression of permease FCY2 and reduce cellular uptake of the drug. Additional mutations in genes known to be required for UDP-glucuronic acid synthesis (UGD1) or a transcriptional factor NRG1 suppress UDP-glucuronic acid accumulation and 5-FC resistance in the uxs1 mutants. Pathogenic fungi rapidly develop resistance to the antifungal agent 5-fluorocytosine (5-FC). Here, Chang et al. explore the mechanisms by which Cryptococcus develops 5-FC resistance at a high frequency, including mutations in several genes and altered levels of key metabolites.
Collapse
|
24
|
Kocsmár É, Buzás GM, Szirtes I, Kocsmár I, Kramer Z, Szijártó A, Fadgyas-Freyler P, Szénás K, Rugge M, Fassan M, Kiss A, Schaff Z, Röst G, Lotz G. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides. Nat Commun 2021; 12:2255. [PMID: 33859206 PMCID: PMC8050269 DOI: 10.1038/s41467-021-22557-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Clarithromycin is a macrolide antibiotic widely used for eradication of Helicobacter pylori infection, and thus resistance to this antibiotic is a major cause of treatment failure. Here, we present the results of a retrospective observational study of clarithromycin resistance (Cla-res) in 4744 H. pylori-infected patients from Central Hungary. We use immunohistochemistry and fluorescence in situ hybridization on fixed gastric tissue samples to determine H. pylori infection and to infer Cla-res status, respectively. We correlate this information with macrolide dispensing data for the same patients (available through a prescription database) and develop a mathematical model of the population dynamics of Cla-res H. pylori infections. Cla-res is found in 5.5% of macrolide-naive patients (primary Cla-res), with no significant sex difference. The model predicts that this primary Cla-res originates from transmission of resistant bacteria in 98.7% of cases, and derives from spontaneous mutations in the other 1.3%. We find an age-dependent preponderance of female patients among secondary (macrolide-exposed) clarithromycin-resistant infections, predominantly associated with prior use of macrolides for non-eradication purposes. Our results shed light into the sources of primary resistant cases, and indicate that the growth rate of Cla-res prevalence would likely decrease if macrolides were no longer used for purposes other than H. pylori eradication. Clarithromycin is a macrolide antibiotic widely used for eradication of Helicobacter pylori infection. Here, Kocsmár et al. study clarithromycin resistance and previous macrolide consumption in 4,744 H. pylori-infected patients, shedding light into the sources of primary resistant cases and the role played by prior consumption of macrolides for non-eradication purposes.
Collapse
Affiliation(s)
- Éva Kocsmár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - György Miklós Buzás
- Department of Gastroenterology, Ferencváros Health Center, Budapest, Hungary
| | - Ildikó Szirtes
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ildikó Kocsmár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsófia Kramer
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Attila Szijártó
- 1st Department of Surgery and Interventional Gastroenterology, Semmelweis University, Budapest, Hungary
| | | | - Kató Szénás
- Department of Pathology, Péterfy Hospital, Budapest, Hungary
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.,Veneto Tumor Registry (RTV), Veneto Regional Authority, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Gergely Röst
- Wolfson Center for Mathematical Biology, University of Oxford, Oxford, United Kingdom.,Bolyai Institute, University of Szeged, Szeged, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
25
|
Sylte MJ, Sivasankaran SK, Trachsel J, Sato Y, Wu Z, Johnson TA, Chandra LC, Zhang Q, Looft T. The Acute Host-Response of Turkeys Colonized With Campylobacter coli. Front Vet Sci 2021; 8:613203. [PMID: 33889603 PMCID: PMC8057350 DOI: 10.3389/fvets.2021.613203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023] Open
Abstract
Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) and C. coli are responsible for ~98% of the cases. In turkeys, the ceca are an important anatomical site where Campylobacter asymptomatically colonizes. We previously demonstrated that commercial turkey poults colonized by C. jejuni showed acute changes in cytokine gene expression profiles, and histological intestinal lesions at 2 days post-inoculation (dpi). Cecal tonsils (CT) are an important part of the gastrointestinal-associated lymphoid tissue that surveil material passing in and out of the ceca, and generate immune responses against intestinal pathogens. The CT immune response toward Campylobacter remains unknown. In this study, we generated a kanamycin-resistant C. coli construct (CcK) to facilitate its enumeration from cecal contents after experimental challenge. In vitro analysis of CcK demonstrated no changes in motility when compared to the parent isolate. Poults were inoculated by oral gavage with CcK (5 × 107 colony forming units) or sterile-media (mock-colonized), and euthanized at 1 and 3 dpi. At both time points, CcK was recovered from cecal contents, but not from the mock-colonized group. As a marker of acute inflammation, serum alpha-1 acid glycoprotein was significantly elevated at 3 dpi in CcK inoculated poults compared to mock-infected samples. Significant histological lesions were detected in cecal and CT tissues of CcK colonized poults at 1 and 3 dpi, respectively. RNAseq analysis identified 250 differentially expressed genes (DEG) in CT from CcK colonized poults at 3 dpi, of which 194 were upregulated and 56 were downregulated. From the DEG, 9 significantly enriched biological pathways were identified, including platelet aggregation, response to oxidative stress and negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway. These data suggest that C. coli induced an acute inflammatory response in the intestinal tract of poults, and that platelet aggregation and oxidative stress in the CT may affect the turkey's ability to resist Campylobacter colonization. These findings will help to develop and test Campylobacter mitigation strategies to promote food safety in commercial turkeys.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Yuko Sato
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, United States
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Timothy A Johnson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Lawrance C Chandra
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
26
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
27
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
28
|
Merker M, Tueffers L, Vallier M, Groth EE, Sonnenkalb L, Unterweger D, Baines JF, Niemann S, Schulenburg H. Evolutionary Approaches to Combat Antibiotic Resistance: Opportunities and Challenges for Precision Medicine. Front Immunol 2020; 11:1938. [PMID: 32983122 PMCID: PMC7481325 DOI: 10.3389/fimmu.2020.01938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The rise of antimicrobial resistance (AMR) in bacterial pathogens is acknowledged by the WHO as a major global health crisis. It is estimated that in 2050 annually up to 10 million people will die from infections with drug resistant pathogens if no efficient countermeasures are implemented. Evolution of pathogens lies at the core of this crisis, which enables rapid adaptation to the selective pressures imposed by antimicrobial usage in both medical treatment and agriculture, consequently promoting the spread of resistance genes or alleles in bacterial populations. Approaches developed in the field of Evolutionary Medicine attempt to exploit evolutionary insight into these adaptive processes, with the aim to improve diagnostics and the sustainability of antimicrobial therapy. Here, we review the concept of evolutionary trade-offs in the development of AMR as well as new therapeutic approaches and their impact on host-microbiome-pathogen interactions. We further discuss the possible translation of evolution-informed treatments into clinical practice, considering both the rapid cure of the individual patients and the prevention of AMR.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Hamburg, Germany.,Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany
| | - Leif Tueffers
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| | - Marie Vallier
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Espen E Groth
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany.,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lindsay Sonnenkalb
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Daniel Unterweger
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John F Baines
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University and Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), Partner Site Borstel-Hamburg-Lübeck-Riems, Hamburg, Germany.,Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany
| | - Hinrich Schulenburg
- Cluster of Excellence Precision Medicine in Chronic Inflammation, Kiel, Germany.,Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
29
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
30
|
Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nat Ecol Evol 2020; 4:1268-1278. [PMID: 32632259 DOI: 10.1038/s41559-020-1235-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
In the absence of antibiotics, it is essential that antibiotic resistance has a fitness cost for microorganisms if suspending antibiotics treatment is to be a useful strategy for reducing antibiotic resistance. However, the cost of antibiotic resistance within the complex ecosystem of the mammalian gut is not well understood. Here, using mice, we show that the same antibiotic resistance mutation can reduce fitness in one host, while being neutral or even increasing fitness in other hosts. Such antagonistic pleiotropy is shaped by the microbiota because resistance in germ-free mice is consistently costly across all hosts, and the host-specific effect on antibiotic resistance is reduced in hosts with similar microbiotas. Using an eco-evolutionary model of competition for resources, we identify a general mechanism that underlies between-host variation and predicts that the dynamics of compensatory evolution of resistant bacteria should be host specific, a prediction that was supported by experimental evolution in vivo. The microbiome of each human is close to unique, and our results suggest that the short-term cost of resistances and their long-term within-host evolution are also highly personalized, a finding that may contribute to the observed variable outcome of withdrawing antibiotics to reduce resistance levels.
Collapse
|
31
|
Zhang J, van der Veen S. Neisseria gonorrhoeae 23S rRNA A2059G mutation is the only determinant necessary for high-level azithromycin resistance and improves in vivo biological fitness. J Antimicrob Chemother 2020; 74:407-415. [PMID: 30376120 DOI: 10.1093/jac/dky438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives The global emergence of Neisseria gonorrhoeae isolates displaying high-level azithromycin resistance is a major concern for the currently recommended azithromycin/ceftriaxone dual therapy. N. gonorrhoeae high-level azithromycin resistance has been associated with an A2059G mutation in 23S rRNA. Here we investigated the specific contribution of this 23S rRNA A2059G mutation to high-level azithromycin resistance and its impact on biological fitness. Methods A2059G/G2059A alleles were specifically cloned into all four genomic copies of 23S rDNA of an azithromycin-susceptible isolate and a high-level azithromycin-resistant isolate. WT and mutant strains were subsequently investigated for azithromycin susceptibility using the agar dilution method. In addition, their biological fitness was studied by comparative liquid growth in the presence of hydrophobic and amphipathic compounds, by competition assays in a mouse vaginal tract infection model and by competition assays for invasion and intracellular survival. Results Azithromycin susceptibility analyses showed that the 23S rRNA A2059G mutation is the only genetic determinant required for N. gonorrhoeae to display the high-level azithromycin resistance phenotype. Further analysis of biological fitness showed that strains containing 2059G outcompeted isogenic strains containing 2059A for colonization in the mouse vaginal tract infection model and for invasion of HeLa cervical epithelial cells. Furthermore, the A2059G mutation enhanced growth in the presence of lithocholic acid or Triton X-100. Conclusions Our findings that the 23S rRNA A2059G mutation is sufficient for high-level azithromycin resistance and that this mutation generally enhanced the biological fitness of N. gonorrhoeae have important implications for the currently recommended treatment policies and antimicrobial stewardship programmes.
Collapse
Affiliation(s)
- Jianglin Zhang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Kinoshita-Daitoku R, Kiga K, Sanada T, Ogura Y, Bo Z, Iida T, Yokomori R, Kuroda E, Tanaka M, Sood A, Suzuki T, Nakai K, Hayashi T, Mimuro H. Mutational diversity in mutY deficient Helicobacter pylori and its effect on adaptation to the gastric environment. Biochem Biophys Res Commun 2020; 525:806-811. [PMID: 32164943 DOI: 10.1016/j.bbrc.2020.02.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022]
Abstract
Helicobacter pylori, a pathogenic bacterium that colonizes in the human stomach, harbors DNA repair genes to counter the gastric environment during chronic infection. In addition, H. pylori adapts to the host environment by undergoing antigenic phase variation caused by genomic mutations. The emergence of mutations in nucleotide sequences is one of the major factors underlying drug resistance and genetic diversity in bacteria. However, it is not clear how DNA repair genes contribute to driving the genetic change of H. pylori during chronic infection. To elucidate the physiological roles of DNA repair genes, we generated DNA repair-deficient strains of H. pylori (ΔuvrA, ΔuvrB, ΔruvA, Δnth, ΔmutY, ΔmutS, and Δung). We performed susceptibility testing to rifampicin in vitro and found that ΔmutY exhibited the highest mutation frequency among the mutants. The number of bacteria colonizing the stomach was significantly lower with ΔmutY strain compared with wild-type strains in a Mongolian gerbil model of H. pylori infection. Furthermore, we performed a genomic sequence analysis of the strains isolated from the Mongolian gerbil stomachs eight weeks after infection. We found that the isolated ΔmutY strains exhibited a high frequency of spontaneous G:C to T:A mutations. However, the frequency of phase variations in the ΔmutY strain was almost similar to the wild-type strain. These results suggest that MutY may play a role in modes of gastric environmental adaptation distinct from phase variation.
Collapse
Affiliation(s)
- Ryo Kinoshita-Daitoku
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takahito Sanada
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Zhu Bo
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tamako Iida
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yokomori
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Kuroda
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mototsugu Tanaka
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Arpana Sood
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitomi Mimuro
- Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019:AAC.01225-19. [PMID: 31570391 DOI: 10.1128/aac.01225-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The U.S. Centers for Disease Control and Prevention (CDC) lists Neisseria gonorrhoeae as one of the most urgent antibiotic-resistant threats in the United States. This is due to the emergence of clinical isolates that have developed resistance to nearly every antibiotic used to treat gonorrhea and highlights the critical need to find new therapeutics. The present study discovered salicylamide, an analgesic and antipyretic drug, has antibacterial activity against 40 different antibiotic-resistant strains of N. gonorrhoeae (MIC 8-32 μg/ml) with low frequency of resistance <2.4x10-9 Interestingly, salicylamide did not inhibit growth of bacterial species in the vaginal microflora involved in defense against gonococcal infections, such as Lactobacillus gasseri, L. jensenii, L. johnsonii, and L. crispatus A time-kill assay revealed that salicylamide is a rapidly bactericidal drug as it eradicated a high inoculum of N. gonorrhoeae within 10 hours. Salicylamide was superior to the drug of choice, ceftriaxone, in reducing the burden of intracellular N. gonorrhoeae by 97% in infected endocervical cells. Furthermore, salicylamide outperformed ceftriaxone in reducing expression of the pro-inflammatory cytokine IL-8 from endocervical cells infected with N. gonorrhoeae A checkerboard assay revealed that salicylamide exhibited a synergistic interaction with tetracycline and an additive relationship with azithromycin and ciprofloxacin, and ceftriaxone. A more in-depth investigation of the structure-activity-relationship of derivatives of salicylamide revealed the amide and hydroxyl groups are important for anti-gonorrheal activity. In conclusion, this study identified salicylamide as a promising candidate for further investigation as a novel treatment option for multidrug-resistant gonorrhea.
Collapse
|
34
|
Helicobacter pylori lipids can form ordered membrane domains (rafts). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183050. [PMID: 31449801 DOI: 10.1016/j.bbamem.2019.183050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.
Collapse
|
35
|
Rizvanov AA, Haertlé T, Bogomolnaya L, Talebi Bezmin Abadi A. Helicobacter pylori and Its Antibiotic Heteroresistance: A Neglected Issue in Published Guidelines. Front Microbiol 2019; 10:1796. [PMID: 31456763 PMCID: PMC6700363 DOI: 10.3389/fmicb.2019.01796] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
"Heteroresistance" is a widely applied term that characterizes most of the multidrug-resistant microorganisms. In microbiological practice, the word "heteroresistance" indicates diverse responses to specific antibiotics by bacterial subpopulations in the same patient. These resistant subpopulations of heteroresistant strains do not respond to antibiotic therapy in vitro or in vivo. Presently, there is no standard protocol available for the treatment of infections caused by heteroresistant Helicobacter pylori in clinical settings, at least according to recent guidelines. Thus, there is a definite need to open a new discussion on how to recognize, how to screen, and how to eliminate those problematic strains in clinical and environmental samples. Since there is great interest in developing new strategies to improve the eradication rate of anti-H. pylori treatments, the presence of heteroresistant strains/clones among clinical isolates of the bacteria should be taken into account. Indeed, increased knowledge of gastroenterologists about the existence of heteroresistance phenomena is highly required. Moreover, the accurate breakpoints should be examined/determined in order to have a solid statement of heteroresistance among the H. pylori isolates. The primary definition of heteroresistance was about coexistence of both resistant and susceptible isolates at the similar gastric microniche at once, while we think that it can be happened subsequently as well. The new guidelines should include a personalized aspect in the standard protocol to select a precise, effective antibiotic therapy for infected patients and also address the problems of regional antibiotic susceptibility profiles.
Collapse
Affiliation(s)
- Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Thomas Haertlé
- Biopolymers Interactions Assemblies, Institut National de la Recherche Agronomique, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Lydia Bogomolnaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Natali F, Rancati G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front Genet 2019; 10:713. [PMID: 31447882 PMCID: PMC6691094 DOI: 10.3389/fgene.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
The mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes). In this review, we first provide an overview of what we learned from model organisms about the roles of these genes and the genome instability that arises as a consequence of their dysregulation. We then discuss our current understanding of how mutator phenotypes shape the evolution of bacteria and yeast species. We end by bringing clinical evidence that lessons learned from single-cell organisms can be applied to tumor evolution.
Collapse
Affiliation(s)
- Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
37
|
Luján AM, Moyano AJ, Martino RA, Feliziani S, Urretavizcaya M, Smania AM. ImuB and ImuC contribute to UV-induced mutagenesis as part of the SOS regulon in Pseudomonas aeruginosa. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:594-601. [PMID: 30921487 DOI: 10.1002/em.22290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
DNA damage-induced mutagenesis is a process governed by the SOS system that requires the activity of specialized DNA polymerases. These polymerases, which are devoid of proof-reading activity, serve to increase the probability of survival under stressful conditions in exchange for an error-prone DNA synthesis. As an opportunistic pathogen of humans, Pseudomonas aeruginosa employs adaptive responses that originally evolved for survival in many diverse and often stressful environmental conditions, where the action of error-prone DNA polymerases may be crucial. In this study, we have investigated the role of the polymerases ImuB and ImuC in P. aeruginosa DNA-damage induced mutagenesis. UV irradiation of imuB- and imuC-deletion mutants showed that both genes contribute to UV-induced mutagenesis in this bacterium. Furthermore, we confirmed that UV treatment significantly increase the expression levels of the imuB and imuC genes and that they are co-transcribed as a single transcriptional unit under the control of LexA as part of the SOS regulon in P. aeruginosa. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adela M Luján
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Román A Martino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mariana Urretavizcaya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea M Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
38
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|
39
|
Dai L, Xia J, Sahin O, Zhang Q. Identification of a nth-Like Gene Encoding an Endonuclease III in Campylobacter jejuni. Front Microbiol 2019; 10:698. [PMID: 31024487 PMCID: PMC6467930 DOI: 10.3389/fmicb.2019.00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/20/2019] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerobic pathogen, C. jejuni is subjected to DNA damages caused by various stresses such as reactive oxygen species (ROS) and UV radiations. The base excision repair (BER) system plays an important role in preventing mutations associated with oxidative DNA damage, but the system remains poorly characterized in Campylobacter. In this study, a BER homolog encoded by cj0595c (named nth) in C. jejuni was analyzed for endonuclease III activity and for its role in maintaining genomic stability. It was found that inactivation of nth resulted in elevated frequencies of spontaneous fluoroquinolone-resistant (FQR) and oxidative stress resistant (OXR) mutants, compared with the wild-type strain in C. jejuni. Sequencing analysis of the FQR and OXR mutants revealed that the elevated mutation rates were associated with C → T or G → A transition in gyrA (FQR mutants) or perR (for OXR mutants). In an in vitro assay, a purified recombinant C. jejuni Nth protein demonstrated endonuclease III activity that recognized and excised the thymine glycol (Tg) base from a double stranded DNA. These findings indicate that Nth functions as a BER repair enzyme in C. jejuni and is important for the repair of DNA damage, protecting the bacteria from stresses encountered within a host and in the environment.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jing Xia
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
40
|
α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in Helicobacter pylori cagY. Proc Natl Acad Sci U S A 2019; 116:5077-5085. [PMID: 30804204 DOI: 10.1073/pnas.1814497116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.
Collapse
|
41
|
Alfarouk KO, Bashir AHH, Aljarbou AN, Ramadan AM, Muddathir AK, AlHoufie STS, Hifny A, Elhassan GO, Ibrahim ME, Alqahtani SS, AlSharari SD, Supuran CT, Rauch C, Cardone RA, Reshkin SJ, Fais S, Harguindey S. The Possible Role of Helicobacter pylori in Gastric Cancer and Its Management. Front Oncol 2019; 9:75. [PMID: 30854333 PMCID: PMC6395443 DOI: 10.3389/fonc.2019.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (HP) is a facultative anaerobic bacterium. HP is a normal flora having immuno-modulating properties. This bacterium is an example of a microorganism inducing gastric cancer. Its carcinogenicity depends on bacteria-host related factors. The proper understanding of the biology of HP inducing gastric cancer offers the potential strategy in the managing of HP rather than eradicating it. In this article, we try to summarize the biology of HP-induced gastric cancer and discuss the current pharmacological approach to treat and prevent its carcinogenicity.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Alfarouk Biomedical Research LLC, Tampa, FL, United States.,Hala Alfarouk Cancer Center, Khartoum, Sudan.,Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,American Biosciences, Inc., New York City, NY, United States
| | - Adil H H Bashir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ahmed N Aljarbou
- College of Pharmacy, Qassim University, Buraydah, Saudi Arabia.,Al-Ghad International College for Applied Medical Sciences, Jeddah, Saudi Arabia
| | | | - Abdel Khalig Muddathir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sari T S AlHoufie
- Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | | | - Gamal O Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Saad S Alqahtani
- Clinical Pharmacy Department, College of pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | | |
Collapse
|
42
|
The Story of Helicobacter pylori: Depicting Human Migrations from the Phylogeography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:1-16. [PMID: 31016625 DOI: 10.1007/5584_2019_356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a spiral-shaped Gram-negative bacterium, which has infected more than half of the human population. Besides its colonisation capability, the genetic diversity of H. pylori is exceptionally well structured and belongs to several distinct genetic populations, depicting various prehistorical human migration events. The evolutionary relationship of H. pylori with its host had been started at least ~100,000 years ago. In addition, the discovery of the ancient H. pylori genome from a European Copper Age glacier mummy, "The Iceman", gave the idea that the second out of Africa migration resulted in the recombinant population of hpEurope at least about 5300 years ago. The advancement of next-generation genome sequencing discovered the prophage of H. pylori and could discriminate the big population of hpEurope into two different subpopulations. In addition, the implementation of the chromopainter/fineSTRUCTURE algorithm to the whole genome analysis of H. pylori provides a finer resolution population genetics of H. pylori; therefore it could also depict the recent migrations within the past 500 years after colonial expansion. This discovery shows that the genetic recombination of H. pylori strains is far more dynamic compared to its human host, but still maintains the similarity to its host, suggesting that H. pylori is a handy tool to reconstruct the human migration both in the past and the recent.
Collapse
|
43
|
Balloux F, Brønstad Brynildsrud O, van Dorp L, Shaw LP, Chen H, Harris KA, Wang H, Eldholm V. From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends Microbiol 2018; 26:1035-1048. [PMID: 30193960 PMCID: PMC6249990 DOI: 10.1016/j.tim.2018.08.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
Hospitals worldwide are facing an increasing incidence of hard-to-treat infections. Limiting infections and providing patients with optimal drug regimens require timely strain identification as well as virulence and drug-resistance profiling. Additionally, prophylactic interventions based on the identification of environmental sources of recurrent infections (e.g., contaminated sinks) and reconstruction of transmission chains (i.e., who infected whom) could help to reduce the incidence of nosocomial infections. WGS could hold the key to solving these issues. However, uptake in the clinic has been slow. Some major scientific and logistical challenges need to be solved before WGS fulfils its potential in clinical microbial diagnostics. In this review we identify major bottlenecks that need to be resolved for WGS to routinely inform clinical intervention and discuss possible solutions.
Collapse
Affiliation(s)
- Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; These authors made equal contributions.
| | - Ola Brønstad Brynildsrud
- Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway; These authors made equal contributions
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; These authors made equal contributions
| | - Liam P Shaw
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Hongbin Chen
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK; Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Kathryn A Harris
- Great Ormond Street Hospital NHS Foundation Trust, Department of Microbiology, Virology & Infection Prevention & Control, London WC1N 3JH, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Vegard Eldholm
- Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Lovisenberggata 8, Oslo 0456, Norway
| |
Collapse
|
44
|
Chattopadhyay S, Chi PB, Minin VN, Berg DE, Sokurenko EV. Recombination-independent rapid convergent evolution of the gastric pathogen Helicobacter pylori. BMC Genomics 2018; 19:835. [PMID: 30463511 PMCID: PMC6249973 DOI: 10.1186/s12864-018-5231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Helicobacter pylori is a human stomach pathogen, naturally-competent for DNA uptake, and prone to homologous recombination. Extensive homoplasy (i.e., phylogenetically-unlinked identical variations) observed in H. pylori genes is considered a hallmark of such recombination. However, H. pylori also exhibits a high mutation rate. The relative adaptive role of homologous recombination and mutation in species diversity is a highly-debated issue in biology. Recombination results in homoplasy. While convergent mutation can also account for homoplasy, its contribution is thought to be minor. We demonstrate here that, contrary to dogma, convergent mutation is a key contributor to Helicobacter pylori homoplasy, potentially driven by adaptive evolution of proteins. RESULTS Our present genome-wide analysis shows that homoplastic nonsynonymous (amino acid replacement) changes are not typically accompanied by homoplastic synonymous (silent) variations. Moreover, the majority of the codon positions with homoplastic nonsynonymous changes also contain different (i.e. non-homoplastic) nonsynonymous changes arising from mutation only. This indicates that, to a considerable extent, nonsynonymous homoplasy is due to convergent mutations. High mutation rate or limited availability of evolvable sites cannot explain this excessive convergence, as suggested by our simulation studies. Rather, the genes with convergent mutations are overrepresented in distinct functional categories, suggesting possible selective responses to conditions such as distinct micro-niches in single hosts, and to differences in host genotype, physiology, habitat and diet. CONCLUSIONS We propose that mutational convergence is a key player in H. pylori's adaptation and extraordinary persistence in human hosts. High frequency of mutational convergence could be due to saturation of evolvable sites capable of responding to selection pressures, while the number of mutable residues is far from saturation. We anticipate a similar scenario of mutational vs. recombinational genome dynamics or plasticity for other naturally competent microbes where strong positive selection could favor frequent convergent mutations in adaptive protein evolution.
Collapse
Affiliation(s)
| | - Peter B Chi
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| | - Vladimir N Minin
- Department of Statistics, University of California, Irvine, California, USA
| | - Douglas E Berg
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Evgeni V Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
46
|
Zheng Q. A cautionary note on the mutation frequency in microbial research. Mutat Res 2018; 809:51-55. [PMID: 29705518 DOI: 10.1016/j.mrfmmm.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
The mutation frequency, also known as the mutant frequency, is an unnormalized quantity, and its normalized counterpart is the mutation rate. Due to historical reasons, the mutation frequency has been a predominant yardstick of microbial mutability in the field of mutator identification. While the mean mutation frequency is infamously erratic, replacing it with the median mutation frequency is not an effective remedy. By encouraging investigators to substitute mutation rates for mutation frequencies in microbial research, this paper directs attention to substantial open problems such as false positive control and massive nonmutant cell death.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 212 Adriance Lab Road, College Station, TX 77843, United States.
| |
Collapse
|
47
|
Servetas SL, Kim A, Su H, Cha JH, Merrell DS. Comparative analysis of the Hom family of outer membrane proteins in isolates from two geographically distinct regions: The United States and South Korea. Helicobacter 2018; 23:e12461. [PMID: 29315985 DOI: 10.1111/hel.12461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori encodes numerous outer membrane proteins (OMPs), but only a few have been characterized in depth. Deletion, duplication, and allelic variation of many of the H. pylori OMPs have been reported, which suggests that these proteins may play key roles in host adaptation. Herein, we characterize the variation observed within the Hom family of OMPs in H. pylori obtained from two geographically distinct populations. MATERIALS AND METHODS PCR genotyping of the hom genes was carried out using clinical isolates from South Korea and the United States. A combination of statistical, phylogenetic, and protein modeling analyses was conducted to further characterize the hom variants. RESULTS Variations in the closely related hom genes, homA and homB, occur in regions that are predicted to encode environmentally exposed loops. A similar phenomenon is true for homCS as compared to homCL . Conversely, little variation was observed in homD. Certain variants of the Hom family of proteins were more prominent in isolates from the Korean population as compared to isolates from the United States. CONCLUSION En masse, our data show that the homA, homB, and homC profiles vary based upon the geographic origin of the strain; however, the fourth member of the hom family, homD, is more highly conserved. Additionally, protein topology modeling showed that many of the less well-conserved regions between homA and homB and between homCS and homCL corresponded to predicted environmentally exposed loops, suggesting that the divergence of the Hom family may be due to host adaptation/pressure.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea
| | - Hanfu Su
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Microbiology and Molecular Biology Laboratory, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Microbiology and Molecular Biology Laboratory, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
48
|
Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, Schoenrock A, Pitre S, Wong A. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biol Evol 2018; 10:667-679. [PMID: 29432584 PMCID: PMC5817949 DOI: 10.1093/gbe/evy030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. Although studies of single resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extraintestinal clinical isolates of Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics. Whole-genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between resistance and growth. However, this relationship is sometimes weak and depends on the environment in which growth rates are measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects, resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore, our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes.
Collapse
Affiliation(s)
- Prabh Basra
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ahlam Alsaadi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Bryn Hazlett
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Pereira RVV, Carroll LM, Lima S, Foditsch C, Siler JD, Bicalho RC, Warnick LD. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci Rep 2018; 8:554. [PMID: 29323259 PMCID: PMC5764986 DOI: 10.1038/s41598-017-19021-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
Feeding drug residue-containing milk to calves is common worldwide and no information is currently available on the impact on the functional profile of the fecal microbiota. Our objective was to characterize the functional profile of the fecal microbiota of preweaned dairy calves fed raw milk with residual concentrations of antimicrobials commonly found in waste milk from birth to weaning. Calves were assigned to a controlled feeding trial being fed milk with no drug residues or milk with antibiotic residues. Fecal samples collected from each calf once a week starting at birth, prior to the first feeding in the trial, until 6 weeks of age. Antibiotic residues resulted in a significant difference in relative abundance of microbial cell functions, especially with genes linked with stress response, regulation and cell signaling, and nitrogen metabolism. These changes could directly impacts selection and dissemination of virulence and antimicrobial. Our data also identified a strong association between age in weeks and abundance of Resistance to Antibiotics and Toxic Compounds. Findings from this study support the hypothesis that drug residues, even at very low concentrations, impact the gut microbiota of calves and result in changes in the functional profile of microbial populations.
Collapse
Affiliation(s)
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Svetlana Lima
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carla Foditsch
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Julie D Siler
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rodrigo Carvalho Bicalho
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lorin D Warnick
- College of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
50
|
Dai L, Sahin O, Tang Y, Zhang Q. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni. Appl Environ Microbiol 2017; 83:e01685-17. [PMID: 29030436 PMCID: PMC5717198 DOI: 10.1128/aem.01685-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OXR) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OXR phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR, which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OXR phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OXR mutants in bacterial organisms.IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OXR mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OXR mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OXR mutants in a bacterial population. This method represents a technical innovation and may also be applied to other bacterial species. These findings significantly advance our understanding of bacterial mechanisms for survival under oxidative stress.
Collapse
Affiliation(s)
- Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yizhi Tang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|