1
|
Lebedenko OO, Sekhar A, Skrynnikov NR. Order/Disorder Transitions Upon Protein Binding: A Unifying Perspective. Proteins 2024. [PMID: 39158131 DOI: 10.1002/prot.26737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
When two proteins bind to each other, this process is often accompanied by a change in their structural states (from disordered to ordered or vice versa). As it turns out, there are 10 distinct possibilities for such binding-related order/disorder transitions. Out of this number, seven scenarios have been experimentally observed, while another three remain hitherto unreported. As an example, we discuss the so-called mutual synergistic folding, whereby two disordered proteins come together to form a fully structured complex. Our bioinformatics analysis of the Protein Databank found potential new examples of this remarkable binding mechanism.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru, India
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Chai D, Wang J, Fan C, Lim JM, Wang X, Neeli P, Yu X, Young KH, Li Y. Remodeling of anti-tumor immunity with antibodies targeting a p53 mutant. J Hematol Oncol 2024; 17:45. [PMID: 38886748 PMCID: PMC11184848 DOI: 10.1186/s13045-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND p53, the most frequently mutated gene in cancer, lacks effective targeted drugs. METHODS We developed monoclonal antibodies (mAbs) that target a p53 hotspot mutation E285K without cross-reactivity with wild-type p53. They were delivered using lipid nanoparticles (LNPs) that encapsulate DNA plasmids. Western blot, BLI, flow cytometry, single-cell sequencing (scRNA-seq), and other methods were employed to assess the function of mAbs in vitro and in vivo. RESULTS These LNP-pE285K-mAbs in the IgG1 format exhibited a robust anti-tumor effect, facilitating the infiltration of immune cells, including CD8+ T, B, and NK cells. scRNA-seq revealed that IgG1 reduces immune inhibitory signaling, increases MHC signaling from B cells to CD8+ T cells, and enriches anti-tumor T cell and B cell receptor profiles. The E285K-mAbs were also produced in the dimeric IgA (dIgA) format, whose anti-tumor activity depended on the polymeric immunoglobulin receptor (PIGR), a membrane Ig receptor, whereas that of IgG1 relied on TRIM21, an intracellular IgG receptor. CONCLUSIONS Targeting specific mutant epitopes using DNA-encoded and LNP-delivered mAbs represents a potential precision medicine strategy against p53 mutants in TRIM21- or PIGR-positive cancers.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jing-Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
3
|
Iglesias V, Bárcenas O, Pintado-Grima C, Burdukiewicz M, Ventura S. Structural information in therapeutic peptides: Emerging applications in biomedicine. FEBS Open Bio 2024. [PMID: 38877295 DOI: 10.1002/2211-5463.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Peptides are attracting a growing interest as therapeutic agents. This trend stems from their cost-effectiveness and reduced immunogenicity, compared to antibodies or recombinant proteins, but also from their ability to dock and interfere with large protein-protein interaction surfaces, and their higher specificity and better biocompatibility relative to organic molecules. Many tools have been developed to understand, predict, and engineer peptide function. However, most state-of-the-art approaches treat peptides only as linear entities and disregard their structural arrangement. Yet, structural details are critical for peptide properties such as solubility, stability, or binding affinities. Recent advances in peptide structure prediction have successfully addressed the scarcity of confidently determined peptide structures. This review will explore different therapeutic and biotechnological applications of peptides and their assemblies, emphasizing the importance of integrating structural information to advance these endeavors effectively.
Collapse
Affiliation(s)
- Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Wang K, Xu Y, Huang H, Peng D, Chen J, Li P, Du B. Porcupine quills keratin peptides induces G0/G1 cell cycle arrest and apoptosis via p53/p21 pathway and caspase cascade reaction in MCF-7 breast cancer cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1741-1755. [PMID: 37862230 DOI: 10.1002/jsfa.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Porcupine quills, a by-product of porcupine pork, are rich in keratin, which is an excellent source of bioactive peptides. The objective of this study was to investigate the underlying mechanism of anti-proliferation effect of porcupine quills keratin peptides (PQKPs) on MCF-7 cells. RESULTS Results showed that PQKPs induced MCF-7 cells apoptosis by significantly decreasing the secretion level of anti-apoptosis protein Bcl-2 and increasing the secretion levels of pro-apoptosis proteins Bax, cytochrome c, caspase 9, caspase 3 and PARP. PQKPs also arrested the cell cycle at G0/G1 phase via remarkably reducing the protein levels of CDK4 and enhancing the protein levels of p53 and p21. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis identified nine peptides with molecular weights less than 1000 Da in PQKPs. Molecular docking results showed that TPGPPT and KGPAC identified from PQKPs could bind with p53 mutant and Bcl-2 protein by conventional hydrogen bonds, carbon hydrogen bonds and van der Waals force. Furthermore, the anti-proliferation impact of synthesized peptides (TPGPPT and KGPAC) was shown in MCF-7 cells. CONCLUSION These findings indicated that PQKPs suppressed the proliferation of MCF-7 breast cancer cells by triggering apoptosis and G0/G1 cell cycle arrest. Moreover, the outcome of this study will bring fresh insights into the production and application of animal byproducts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanan Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haozhang Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Bizzarri AR. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int J Mol Sci 2022; 23:12636. [PMID: 36293489 PMCID: PMC9604312 DOI: 10.3390/ijms232012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt) and mutated forms, was investigated by a computational approach, including the modeling and all atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H, p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract the relevant collective motions and by the frustration method to evaluate the degeneracy of the energy landscape. We found that p53 is characterized by wide collective motions and its energy landscape exhibits a rather high frustration level, especially in the regions involved in the binding to physiological ligands. Punctual mutations give rise to a modulation of both the collective motions and the frustration of p53, with different effects depending on the mutation. The regions of p53wt and of the mutated forms characterized by a high frustration level are also largely involved in the collective motions. Such a correlation is discussed also in connection with the intrinsic disordered character of p53 and with its central functional role.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
8
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
9
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
10
|
Lei J, Li X, Cai M, Guo T, Lin D, Deng X, Li Y. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L. Int J Mol Sci 2022; 23:ijms231710100. [PMID: 36077492 PMCID: PMC9456101 DOI: 10.3390/ijms231710100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is a leading fatal malignancy in humans. p53 mutants exhibit not only loss of tumor suppressor capability but also oncogenic gain-of-function, contributing to lung cancer initiation, progression and therapeutic resistance. Research shows that p53 mutants V157F and R158L occur with high frequency in lung squamous cell carcinomas. Revealing their conformational dynamics is critical for developing novel lung therapies. Here, we used all-atom molecular dynamics (MD) simulations to investigate the effect of V157F and R158L substitutions on the structural properties of the p53 core domain (p53C). Compared to wild-type (WT) p53C, both V157F and R158L mutants display slightly lesser β-sheet structure, larger radius of gyration, larger volume and larger exposed surface area, showing aggregation-prone structural characteristics. The aggregation-prone fragments (residues 249–267 and 268–282) of two mutants are more exposed to water solution than that of WT p53C. V157F and R158L mutation sites can affect the conformation switch of loop 1 through long-range associations. Simulations also reveal that the local structure and conformation around the V157F and R158L mutation sites are in a dynamic equilibrium between the misfolded and properly folded conformations. These results provide molecular mechanistic insights into allosteric mechanisms of the lung-enriched p53 mutants.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| | - Xuanyao Li
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Tianjing Guo
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| |
Collapse
|
11
|
Eskandarion MR, Tizmaghz Z, Andalib B, Parsa N, Emami SAH, Shahsiah R, Oghabian MA, Shirkoohi R. A case report of the sustained and rapid response of bevacizumab in a TP53-positive breast cancer and liver metastatic patient through personalized medicine. Front Oncol 2022; 12:940678. [PMID: 36119510 PMCID: PMC9479335 DOI: 10.3389/fonc.2022.940678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
HER2-positive metastatic breast cancer is much less frequent than other subgroups of breast cancer. Treatment options for this cancer are mostly limited to systemic chemotherapy, which leads to moderate improvements. Targeted therapy against malignant breast cancer requires the identification of reliable biomarkers for personalized medicine to obtain the maximum benefit of this therapy. Any mutations in the TP53 signaling pathway can be considered as a significant causative factor of breast cancer, for which the identification of target genes plays an important role in selecting the appropriate treatment. The use of personalized gene expression profiling could be valuable to find the direct target of the treatment in this case. The present study assessed the genetic profile of an HER2-positive metastatic breast cancer patient (with a liver metastasis) and figured out a complete and sustained response to bevacizumab. According to the results of next-generation sequencing (NGS) analysis, the patient’s genetic profile showed an increased expression of p4EBP1 and PTEN and the activation of the mTOR signaling pathway with a mutation in the TP53 gene. Based on the common treatment of similar profiling, we administrated bevacizumab/Taxol/Gemzar chemotherapy up to six courses. Accordingly, as the response to treatment was revealed by reducing the volume of the liver metastasis from 4 to 1.4 cm, metastasectomy was performed as a complementary treatment. Hence, personalized gene expression profiling not only is useful for targeted therapy but also could be recommended to avoid prescription of non-responsive drugs.
Collapse
Affiliation(s)
- Mohammad Reza Eskandarion
- Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Tizmaghz
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Andalib
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Central Clinic of Karaj (ROCK), Karaj, Iran
- *Correspondence: Reza Shirkoohi, ; Bahram Andalib,
| | - Nasser Parsa
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Association, Tehran, Iran
| | - Seyed Amir Hossein Emami
- Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Hematology and Medical Oncology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shahsiah
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomical and Clinical Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- BESTforPM (Biomarker Evaluation and Supervision Team for Personalized Medicine), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Reza Shirkoohi, ; Bahram Andalib,
| |
Collapse
|
12
|
Radhakrishnan N, Dhanjal JK, Sari AN, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) confers wild type p53 function in p53 Y220C mutant: bioinformatics and experimental evidence. Discov Oncol 2021; 12:64. [PMID: 35201513 PMCID: PMC8777538 DOI: 10.1007/s12672-021-00461-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Mutations in the tumor suppressor protein p53 is a prevalent feature in majority of cancers resulting in inactivation of its activities related to control of cell cycle progression and proliferation. p53Y220C is one of the common hotspot mutations that causes decrease in its thermodynamic stability. Some small molecules have been shown to bind to the mutated site and restore its wild type thermodynamics and tumor suppressor function. In this study, we have explored the potential of caffeic acid phenethyl ester (CAPE-a bioactive compound from propolis) to interact with p53Y220C and restore its wild type p53 (p53wt) transcription activation and tumor suppressor activities. We recruited computational methods, viz. molecular docking, molecular dynamics simulations and free energy calculations to study the interaction of CAPE at the mutation crevice and found that it has potential to restore p53wt function of the p53Y220C mutant similar to a previously described restoration molecule PK7242. We provide cell-based experimental evidence to these predictions and suggest CAPE as a potential natural drug for treatment of p53Y220C mutant harboring cancers.
Collapse
Affiliation(s)
- Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016 India
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110 020 India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| | - Yoshiyuki Ishida
- Cyclochem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047 Japan
| | - Keiji Terao
- Cyclochem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047 Japan
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016 India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565 Japan
| |
Collapse
|
13
|
Lei J, Cai M, Shen Y, Lin D, Deng X. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys Chem Chem Phys 2021; 23:23032-23041. [PMID: 34612239 DOI: 10.1039/d1cp03094a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p53 mutant aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, involving in tumor growth. Finding inhibition methods of p53 mutant aggregation is a key step for developing new therapeutics against aggregation-associated cancers. Recent studies have shown that a cell-permeable peptide, ReACp53, can inhibit aggregation of the p53 mutant and restore p53 nuclear function as a transcriptional factor, showing extraordinary therapeutic potential. However, the molecular mechanism underlying the inhibition of p53 mutant aggregation by the ReAp53 peptide is unclear. In this work, we used all-atom molecular dynamics (MD) simulations to investigate the effect of ReACp53 peptide on the structural and dynamic properties of the p53 core domain (p53C) of the aggregation-prone R175H mutant. Our simulations revealed that the ReACp53 peptide can stabilize the ordered secondary structure and decrease the flexibility of disordered loops of the R175H mutant through increasing the intra-interactions of p53C. Moreover, we found that ReACp53 peptide specifically binds to the fragment (residues 180-233) of the R175H mutant through strong hydrophobic interactions with residues L188 and L201 and a salt bridge or hydrogen bond formation with residues D186, E198, D204, E221 and E224. The specific binding pattern protects the aggregation-prone fragment (residues 182-213) from exposure to water. Hence, we suggested that the ReACp53 peptide inhibits aggregation of the R175H mutant by restoring the wild-type conformation from an aggregation-prone state and reducing the exposure of the aggregation-prone segment. These results provide molecular mechanistic insight into inhibition of the ReACp53 peptide on amyloid aggregation of the R175H mutant.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Yun Shen
- Department of Physics, School of Sciences, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang City 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| |
Collapse
|
14
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
15
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
16
|
Barnoud T, Indeglia A, Murphy ME. Shifting the paradigms for tumor suppression: lessons from the p53 field. Oncogene 2021; 40:4281-4290. [PMID: 34103683 PMCID: PMC8238873 DOI: 10.1038/s41388-021-01852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023]
Abstract
The TP53 gene continues to hold distinction as the most frequently mutated gene in cancer. Since its discovery in 1979, hundreds of research groups have devoted their efforts toward understanding why this gene is so frequently selected against by tumors, with the hopes of harnessing this information toward improved therapy of cancer. The result is that this protein has been meticulously analyzed in tumor and normal cells, resulting in over one hundred thousand publications, with an average of five thousand papers published on p53 every year for the past decade. The journey toward understanding p53 function has been anything but straightforward; in fact, the field is notable for the numerous times that established paradigms not only have been shifted, but in fact have been shattered or reversed. In this review, we will discuss the manuscripts, or series of manuscripts, that have most radically changed our thinking about how this tumor suppressor functions, and we will delve into the emerging challenges for the future in this important area of research. It is hoped that this review will serve as a useful historical reference for those interested in p53, and a useful lesson on the need to be flexible in the face of established paradigms.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Bizzarri AR, Cannistraro S. Toward Cancer Diagnostics of the Tumor Suppressor p53 by Surface Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20247153. [PMID: 33327383 PMCID: PMC7764831 DOI: 10.3390/s20247153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 05/10/2023]
Abstract
The tumor suppressor p53 protein plays a crucial role in many biological processes. The presence of abnormal concentrations of wild-type p53, or some of its mutants, can be indicative of a pathological cancer state. p53 represents therefore a valuable biomarker for tumor screening approaches and development of suitable biosensors for its detection deserves a high interest in early diagnostics. Here, we revisit our experimental approaches, combining Surface Enhanced Raman Spectroscopy (SERS) and nanotechnological materials, for ultrasensitive detection of wild-type and mutated p53, in the perspective to develop biosensors to be used in clinical diagnostics. The Raman marker is provided by a small molecule (4-ATP) acting as a bridge between gold nanoparticles (NPs) and a protein biomolecule. The Azurin copper protein and specific antibodies of p53 were used as a capture element for p53 (wild-type and its mutants). The developed approaches allowed us to reach a detection level of p53 down to 10-17 M in both buffer and serum. The implementation of the method in a biosensor device, together with some possible developments are discussed.
Collapse
|
18
|
Xu C, Zhuang J, Zhang X. 2-[(4-Hydroxybenzyl) Amino] Phenol (HBAP) Restores the Mutated p53 to the Level Similar to That of Wild-Type p53 Protein and Inhibits Breast Cancer Growth in vivo to by Inducing Tumor Cells Apoptosis. Front Cell Dev Biol 2020; 8:574799. [PMID: 33324634 PMCID: PMC7726228 DOI: 10.3389/fcell.2020.574799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
P53 is a transcriptional factor that plays important roles in apoptosis and is mutated in more than 50% of tumor cells. However, the restoration of mutated p53 to the level similar to wild-type p53 by a natural compound has not been explored intensively. In this study, the 2-[(4-hydroxybenzyl) amino] phenol (HBAP) compound, obtained from deep-sea virus-challenged thermophile Geobacillus sp. E263, interacted specifically with the mutated p53 protein. HBAP was able to induce apoptosis of p53-mutated breast cancer cells, but not normal breast cells and p53-unmutated breast cancer cells. HBAP activated the mutant p53 transcriptional activity by restoring the function of mutant p53 to that of wild-type p53. Further analysis indicated that HBAP bound only to the DNA binding domain of mutant p53 and that the interaction was dependent on the HBAP hydroxyl groups. In vivo data demonstrated that HBAP was toxicity-free and could suppress tumor growth by inducing tumor cell apoptosis. Therefore our findings revealed that recovering mutated p53 function to that of wild-type p53 caused by HBAP triggered cancer cell apoptosis and that metabolites from deep-sea virus-challenged thermophiles could be a promising source of anti-tumor drugs.
Collapse
Affiliation(s)
- Chenxi Xu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianjian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Bizzarri AR, Cannistraro S. Time-Resolved Fluorescence and Essential Dynamics Study on the Structural Heterogeneity of p53DBD Bound to the Anticancer p28 Peptide. J Phys Chem B 2020; 124:9820-9828. [PMID: 33103427 DOI: 10.1021/acs.jpcb.0c06778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time-resolved fluorescence emission was combined with molecular dynamics (MD) simulations to investigate the DNA-binding domain (DBD) of the tumor suppressor p53 alone and its complex with the anticancer peptide p28 (DBD/p28). The fluorescence emission decay of the lone Trp residue, from both DBD and DBD/p28, was well-described by a stretched exponential function. Such a behavior was ascribed to heterogeneity in the Trp relaxation behavior, likely due to the coexistence of different conformational states. The increase of the stretching parameter, on passing from DBD to DBD/p28, indicates a reduced heterogeneity in the Trp146 environment for DBD/p28. Moreover, the effects of p28 on the global dynamics of DBD were analyzed by the essential dynamics method on 30 ns long MD trajectories of both DBD and DBD/p28. We found the establishment of wide-amplitude anharmonic modes throughout the DBD molecule, with a particularly high amplitude being detected in the DNA-binding region. These modes are significantly reduced when DBD is bound to p28, consistently with a structure stabilization. In summary, the results indicate that p28 binding has a strong effect on both the local and global heterogeneity of DBD, thus providing some hints to the understanding of its anticancer activity.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
20
|
Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020; 8:405. [PMID: 32509731 PMCID: PMC7248394 DOI: 10.3389/fchem.2020.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.
Collapse
Affiliation(s)
| | - Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Romeo MA, Gilardini Montani MS, Benedetti R, Garufi A, D’Orazi G, Cirone M. PBA Preferentially Impairs Cell Survival of Glioblastomas Carrying mutp53 by Reducing Its Expression Level, Stabilizing wtp53, Downregulating the Mevalonate Kinase and Dysregulating UPR. Biomolecules 2020; 10:biom10040586. [PMID: 32290231 PMCID: PMC7226434 DOI: 10.3390/biom10040586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Phenylbutyrate (PBA) is a derivative of Butyric Acid (BA), which has the characteristics of being a histone deacetylase (HDAC) inhibitor and acting as a chemical chaperone. It has the potential to counteract a variety of different diseases, from neurodegeneration to cancer. In this study, we investigated the cytotoxic effect of PBA against glioblastoma cells carrying wt or mutant (mut) p53 and found that it exerted a higher cytotoxic effect against the latter in comparison with the former. This could be due to the downregulation of mutp53, to whose pro-survival effects cancer cells become addicted. In correlation with mutp53 reduction and wtp53 activation, PBA downregulated the expression level of mevalonate kinase (MVK), a key kinase of the mevalonate pathway strongly involved in cancer cell survival. Here we differentiated the chaperoning function of PBA from the others anti-cancer potentiality by comparing its effects to those exerted by NaB, another HDACi that derives from BA but, lacking the phenyl group, cannot act as a chemical chaperone. Interestingly, we observed that PBA induced a stronger cytotoxic effect compared to NaB against U373 cells as it skewed the Unfolded Protein Response (UPR) towards cell death induction, upregulating CHOP and downregulating BIP, and was more efficient in downregulating MVK. The findings of this study suggest that PBA represents a promising molecule against glioblastomas, especially those carrying mutp53, and its use, approved by FDA for urea cycle disorders, should be extended to the glioblastoma anticancer therapy.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.)
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.)
| | - Rossella Benedetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.)
| | - Alessia Garufi
- Department of Research, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.D.)
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66013 Chieti, Italy
| | - Gabriella D’Orazi
- Department of Research, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.D.)
| | - Mara Cirone
- Department of Experimental Medicine, “Sapienza” University of Rome, Italy, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (M.A.R.); (M.S.G.M.); (R.B.)
- Correspondence: ; Tel.: +39-06-4997-3319; Fax: +39-06-4456-229
| |
Collapse
|
22
|
Li L, Li X, Tang Y, Lao Z, Lei J, Wei G. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Phys Chem Chem Phys 2020; 22:9225-9232. [DOI: 10.1039/c9cp06671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer mutations R175H and R273H induce p53C towards aggregation-prone conformations by increasing their SASA, water exposure of H-bonds and flexibility of loop2.
Collapse
Affiliation(s)
- Le Li
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Xuhua Li
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Yiming Tang
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Zenghui Lao
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| |
Collapse
|
23
|
Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Proc Natl Acad Sci U S A 2019; 116:17470-17479. [PMID: 31395738 PMCID: PMC6717262 DOI: 10.1073/pnas.1909393116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The most frequently mutated protein in human cancer is p53, a transcription factor (TF) that regulates myriad genes instrumental in diverse cellular outcomes including growth arrest and cell death. Cell context-dependent p53 modulation is critical for this life-or-death balance, yet remains incompletely understood. Here we identify sequence signatures enriched in genomic p53-binding sites modulated by the transcription cofactor iASPP. Moreover, our p53-iASPP crystal structure reveals that iASPP displaces the p53 L1 loop-which mediates sequence-specific interactions with the signature-corresponding base-without perturbing other DNA-recognizing modules of the p53 DNA-binding domain. A TF commonly uses multiple structural modules to recognize its cognate DNA, and thus this mechanism of a cofactor fine-tuning TF-DNA interactions through targeting a particular module is likely widespread. Previously, all tumor suppressors and oncoproteins that associate with the p53 DNA-binding domain-except the oncogenic E6 from human papillomaviruses (HPVs)-structurally cluster at the DNA-binding site of p53, complicating drug design. By contrast, iASPP inhibits p53 through a distinct surface overlapping the E6 footprint, opening prospects for p53-targeting precision medicine to improve cancer therapy.
Collapse
Affiliation(s)
- Shuo Chen
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jiale Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan Zhong
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yuntong Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingyi Ma
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunhao Wang
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Xin Lu
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom;
| |
Collapse
|
24
|
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019; 47:1637-1652. [PMID: 30649466 PMCID: PMC6393305 DOI: 10.1093/nar/gky1314] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic β-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.
Collapse
Affiliation(s)
- Mohan R Pradhan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Wei Siau
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Minh N Nguyen
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Zohra Ouaray
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Chee Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Farid Ghadessy
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| |
Collapse
|
25
|
Constructing Kinetically Controlled Denaturation Isotherms of Folded Proteins Using Denaturant-Pulse Chaperonin Binding. Methods Mol Biol 2019. [PMID: 30341618 DOI: 10.1007/978-1-4939-8820-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Methods to assess the kinetic stability of proteins, particularly those that are aggregation prone, are very useful in establishing ligand induced stabilizing effects. Because aggregation prone proteins are by nature difficult to work with, most solution based methods are compromised by this inherent instability. Here, we describe a label-free method that examines the denaturation of immobilized proteins where the dynamic unfolded protein populations are captured and detected by chaperonin binding.
Collapse
|
26
|
Li Y, Wang Z, Chen Y, Petersen RB, Zheng L, Huang K. Salvation of the fallen angel: Reactivating mutant p53. Br J Pharmacol 2019; 176:817-831. [PMID: 30632144 PMCID: PMC6433646 DOI: 10.1111/bph.14572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is known as the guardian of the genome for its powerful anti-tumour capacity. However, mutations of p53 that undermine their protein structure, resulting in loss of tumour suppressor function and gain of oncogenic function, have been implicated in more than half of human cancers. The crucial role of mutant forms of p53 in cancer makes it an attractive therapeutic target. A large number of candidates, including low MW compounds, peptides, and nucleic acids, have been identified or designed to rescue p53 mutants and reactivate their anti-tumour capacity through a variety of mechanisms. In this review, we summarize the progress made in the reactivation of mutant forms of p53, focusing on the pharmacological mechanisms of the reactivators of p53 mutants.
Collapse
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Robert B. Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMichiganUSA
| | - Ling Zheng
- College of Life SciencesWuhan UniversityWuhanHubeiChina
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
27
|
Sundar D, Yu Y, Katiyar SP, Putri JF, Dhanjal JK, Wang J, Sari AN, Kolettas E, Kaul SC, Wadhwa R. Wild type p53 function in p53 Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:103. [PMID: 30808373 PMCID: PMC6390572 DOI: 10.1186/s13046-019-1099-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Background Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. Methods We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. Results We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. Conclusion The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation. Electronic supplementary material The online version of this article (10.1186/s13046-019-1099-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Yue Yu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Jaspreet Kaur Dhanjal
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jia Wang
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, and Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110, Ioannina, Greece
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
28
|
Bizzarri AR, Moscetti I, Cannistraro S. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Biochim Biophys Acta Gen Subj 2019; 1863:342-350. [DOI: 10.1016/j.bbagen.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
|
29
|
Babikir HA, Afjei R, Paulmurugan R, Massoud TF. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev 2018; 71:19-31. [DOI: 10.1016/j.ctrv.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
30
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
31
|
Binayke A, Mishra S, Suman P, Das S, Chander H. Awakening the "guardian of genome": reactivation of mutant p53. Cancer Chemother Pharmacol 2018; 83:1-15. [PMID: 30324219 DOI: 10.1007/s00280-018-3701-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
The role of tumor suppressor protein p53 is undeniable in the suppression of cancer upon oncogenic stress. It induces diverse conditions such as cell-cycle arrest, cell death, and senescence to protect the cell from carcinogenesis. The rate of mutations in p53 gene nearly accounts for 50% of the human cancers. Upon mutations, the conformation gets altered and becomes non-native. Mutant p53 displays long half-life and accumulates in the nucleus and interacts with oncoproteins to promote carcinogenesis and these interactions present a formidable challenge for clinicians in therapy of the disease. Variety of approaches have been developed, through which native-like function of p53 can be restored, such as restoration of the native-like structure of p53, activating the p53 family members, etc. Modern scientific techniques have led to the discovery of a variety of molecules to reactivate mutant p53 and restore its transcriptional activity. These compounds include small molecules, various peptides, and phytochemicals. In this review article, we comprehensively discuss these molecules to reactivate mutant p53 to restore the normal function with a particular focus on molecular mechanisms.
Collapse
Affiliation(s)
- Akshay Binayke
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Sarthak Mishra
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Prabhat Suman
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Suman Das
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Harish Chander
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
32
|
Omar SI, Lepre MG, Morbiducci U, Deriu MA, Tuszynski JA. Virtual screening using covalent docking to find activators for G245S mutant p53. PLoS One 2018; 13:e0200769. [PMID: 30192754 PMCID: PMC6128461 DOI: 10.1371/journal.pone.0200769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 11/19/2022] Open
Abstract
TP53 is the most mutated gene in all cancers. The mutant protein also accumulates in cells. The high frequency of p53 mutations makes the protein a promising target for anti-cancer therapy. Only a few molecules have been found, using in vitro screening, to reactivate the mutant protein. APR-246 is currently the most successful mutant p53 activator, which reactivates the transcriptional activity of p53 by covalently binding to C124 of the protein. We have recently created in silico models of G245S-mp53 in its apo and DNA-bound forms. In this paper we further report on our in silico screening for potential activators of G245S-mp53. We filtered the ZINC15 database (13 million compounds) to only include drug-like molecules with moderate to standard reactivity. Our filtered database of 130,000 compounds was screened using the DOCKTITE protocol in the Molecular Operating Environment software. We performed covalent docking at C124 of G245S-mp53 to identify potential activators of the mutant protein. The docked compounds were ranked using a consensus scoring approach. We also used ADMET Predictor™ to predict pharmacokinetics and the possible toxicities of the compounds. Our screening procedure has identified compounds, mostly thiosemicarbazones and halo-carbonyls, with the best potential as G245S-mp53 activators, which are described in this work. Based on its binding scores and ADMET risk score, compound 2 is likely to have the best potential as a G245S-mp53 activator compared to the other top hits.
Collapse
Affiliation(s)
- Sara Ibrahim Omar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marco Gaetano Lepre
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Marco Agostino Deriu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Jack A. Tuszynski
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
33
|
Pedrote MM, de Oliveira GAP, Felix AL, Mota MF, Marques MDA, Soares IN, Iqbal A, Norberto DR, Gomes AMO, Gratton E, Cino EA, Silva JL. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem 2018; 293:11374-11387. [PMID: 29853637 PMCID: PMC6065177 DOI: 10.1074/jbc.ra118.003285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, probably representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. p53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53.
Collapse
Affiliation(s)
- Murilo M Pedrote
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908.
| | - Adriani L Felix
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Michelle F Mota
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Iaci N Soares
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Douglas R Norberto
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, California 92697-2717
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| |
Collapse
|
34
|
APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 2018; 9:439. [PMID: 29670092 PMCID: PMC5906465 DOI: 10.1038/s41419-018-0463-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
The TP53 tumor suppressor gene is frequently inactivated in human tumors by missense mutations in the DNA binding domain. TP53 mutations lead to protein unfolding, decreased thermostability and loss of DNA binding and transcription factor function. Pharmacological targeting of mutant p53 to restore its tumor suppressor function is a promising strategy for cancer therapy. The mutant p53 reactivating compound APR-246 (PRIMA-1Met) has been successfully tested in a phase I/IIa clinical trial. APR-246 is converted to the reactive electrophile methylene quinuclidinone (MQ), which binds covalently to p53 core domain. We identified cysteine 277 as a prime binding target for MQ in p53. Cys277 is also essential for MQ-mediated thermostabilization of wild-type, R175H and R273H mutant p53, while both Cys124 and Cys277 are required for APR-246-mediated functional restoration of R175H mutant p53 in living tumor cells. These findings may open opportunities for rational design of novel mutant p53-targeting compounds.
Collapse
|
35
|
Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JSN, Garofalo F, Zhu Y, Friedler A, Prives C. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Genes Dev 2018; 32:430-447. [PMID: 29549180 PMCID: PMC5900715 DOI: 10.1101/gad.304071.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/16/2018] [Indexed: 12/26/2022]
Abstract
The p53 tumor suppressor protein is the most well studied as a regulator of transcription in the nucleus, where it exists primarily as a tetramer. However, there are other oligomeric states of p53 that are relevant to its regulation and activities. In unstressed cells, p53 is normally held in check by MDM2 that targets p53 for transcriptional repression, proteasomal degradation, and cytoplasmic localization. Here we discovered a hydrophobic region within the MDM2 N-terminal domain that binds exclusively to the dimeric form of the p53 C-terminal domain in vitro. In cell-based assays, MDM2 exhibits superior binding to, hyperdegradation of, and increased nuclear exclusion of dimeric p53 when compared with tetrameric wild-type p53. Correspondingly, impairing the hydrophobicity of the newly identified N-terminal MDM2 region leads to p53 stabilization. Interestingly, we found that dimeric mutant p53 is partially unfolded and is a target for ubiquitin-independent degradation by the 20S proteasome. Finally, forcing certain tumor-derived mutant forms of p53 into dimer configuration results in hyperdegradation of mutant p53 and inhibition of p53-mediated cancer cell migration. Gaining insight into different oligomeric forms of p53 may provide novel approaches to cancer therapy.
Collapse
Affiliation(s)
- Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Joshua H Choe
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Francesca Garofalo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
36
|
Chira S, Gulei D, Hajitou A, Berindan-Neagoe I. Restoring the p53 'Guardian' Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9. Trends Biotechnol 2018; 36:653-660. [PMID: 29478674 DOI: 10.1016/j.tibtech.2018.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
With an increasing prevalence in the human population, cancer has become one of the most investigated fields of medicine. Among the potential targets for cancer therapy is the tumor suppressor gene TP53, which is found in a mutated state in approximately 50% of human cancers and is often associated with poor prognosis. We propose a novel, highly tumor-specific delivery system for TP53, based on the CRISPR/Cas9 genome editing technology. This system will restore the normal p53 phenotype in tumor cells by replacing the mutant TP53 gene with a functional copy, leading to sustained expression of p53 protein and tumor regression.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Abstract
The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.
Collapse
Affiliation(s)
- Vladimir J N Bykov
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Sofi E Eriksson
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Julie Bianchi
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), SE-171 77 Stockholm, Sweden
| |
Collapse
|
38
|
Wu H, Hyun J, Martinez-Yamout MA, Park SJ, Dyson HJ. Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53. Biochemistry 2018; 57:935-944. [PMID: 29334217 DOI: 10.1021/acs.biochem.7b01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer-suppressing transcription factor p53 is regulated by a wide variety of cellular factors, including many chaperones. The DNA-binding domain (DBD) of p53 is known to interact with the chaperone Hsp90, but the role of other members of the chaperone network, including co-chaperones such as p23, is unknown. Using a combination of nuclear magnetic resonance (NMR) titration, isothermal titration calorimetry, fluorescence anisotropy, and native agarose gel electrophoresis, we have identified a direct interaction between the p53 DBD and Hsp90 co-chaperone p23 that occurs in the absence of Hsp90. The affinity is relatively weak and largely determined by electrostatic interactions between the acidic C-terminal disordered tail of p23 and the two DNA-binding regions of the p53 DBD. We show by NMR and native agarose gel electrophoresis that a p53-specific double-stranded DNA sequence competes successfully with p23 for binding to the p53 DBD. The Hsp90 independence of the interaction between p23 and p53 DBD, together with the competition of p23 versus DNA for p53, raises the intriguing possibility that p23, like other small charged proteins, may affect p53 in hitherto unknown ways.
Collapse
Affiliation(s)
- Huiwen Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jashil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
39
|
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017; 170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Citation(s) in RCA: 1242] [Impact Index Per Article: 177.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
40
|
Abstract
TP53 (p53) is the single most frequently altered gene in human cancers, with mutations being present in approximately 50% of all invasive tumours. However, in some of the most difficult-to-treat cancers such as high-grade serous ovarian cancers, triple-negative breast cancers, oesophageal cancers, small-cell lung cancers and squamous cell lung cancers, p53 is mutated in at least 80% of samples. Clearly, therefore, mutant p53 protein is an important candidate target against which new anticancer treatments could be developed. Although traditionally regarded as undruggable, several compounds such as p53 reactivation and induction of massive apoptosis-1 (PRIMA-1), a methylated derivative and structural analogue of PRIMA-1, i.e. APR-246, 2-sulfonylpyrimidines such as PK11007, pyrazoles such as PK7088, zinc metallochaperone-1 (ZMC1), a third generation thiosemicarbazone developed by Critical Outcome Techonologies Inc. (COTI-2) as well as specific peptides have recently been reported to reactive mutant p53 protein by converting it to a form exhibiting wild-type properties. Consistent with the reactivation of mutant p53, these compounds have been shown to exhibit anticancer activity in preclinical models expressing mutant p53. To date, two of these compounds, i.e. APR-246 and COTI-2 have progressed to clinical trials. A phase I/IIa clinical trial with APR-246 reported no major adverse effect. Currently, APR-246 is undergoing a phase Ib/II trial in patients with advanced serous ovarian cancer, while COTI-2 is being evaluated in a phase I trial in patients with advanced gynaecological cancers. It remains to be shown however, whether any mutant p53 reactivating compound has efficacy for the treatment of human cancer.
Collapse
|
41
|
Abstract
Protein aggregation is involved in many diseases. Often, a unique aggregation-prone sequence polymerizes to form regular fibrils. Many oncogenic mutants of the tumor suppressor p53 rapidly aggregate but form amorphous fibrils. A peptide surrounding Ile254 is proposed to be the aggregation-driving sequence in cells. We identified several different aggregating sites from limited proteolysis of harvested aggregates and effects of mutations on kinetics and products of aggregation. We present a model whereby the amorphous nature of the aggregates results from multisite branching of polymerization after slow unfolding of the protein, which may be a common feature of aggregation of large proteins. Greatly lowering the aggregation propensity of any one single site, including the site of Ile254, by mutation did not inhibit aggregation in vitro because aggregation could still occur via the other sites. Inhibition of an individual site is, accordingly, potentially unable to prevent aggregation in vivo. However, cancer cells are specifically killed by peptides designed to inhibit the Ile254 sequence and further aggregation-driving sequences that we have found. Consistent with our proposed mechanism of aggregation, we found that such peptides did not inhibit aggregation of mutant p53 in vitro. The cytotoxicity was not eliminated by knockdown of p53 in 2D cancer cell cultures. The peptides caused rapid cell death, much faster than usually expected for p53-mediated transcription-dependent apoptosis. There may also be non-p53 targets for those peptides in cancer cells, such as p63, or the peptides may alter other interactions of partly denatured p53 with receptors.
Collapse
|
42
|
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 2017; 106:598-612. [PMID: 26572807 DOI: 10.1002/bip.22772] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 01/10/2023]
Abstract
Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yu Toguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
43
|
Signorelli S, Santini S, Yamada T, Bizzarri AR, Beattie CW, Cannistraro S. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochim Biophys Acta Gen Subj 2017; 1861:910-921. [PMID: 28126403 DOI: 10.1016/j.bbagen.2017.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. METHODS Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. RESULTS We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. CONCLUSIONS These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. GENERAL SIGNIFICANCE Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Collapse
Affiliation(s)
- Sara Signorelli
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy; Department of Science, University Roma Tre, Rome, Italy
| | - Simona Santini
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy.
| | - Craig W Beattie
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | | |
Collapse
|
44
|
Teveroni E, Lucà R, Pellegrino M, Ciolli G, Pontecorvi A, Moretti F. Peptides and peptidomimetics in the p53/MDM2/MDM4 circuitry - a patent review. Expert Opin Ther Pat 2016; 26:1417-1429. [DOI: 10.1080/13543776.2017.1233179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Rossella Lucà
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | | | - Germana Ciolli
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| |
Collapse
|
45
|
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry 2016; 55:4885-908. [PMID: 27505032 DOI: 10.1021/acs.biochem.6b00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.
Collapse
Affiliation(s)
- Wendy A Lea
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | | | - Wesley McGinn-Straub
- fortéBIO (a division of Pall Life Sciences) , Menlo Park, California 94025, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Joshua R Burns
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Karen R Khar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - John Karanicolas
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
46
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
47
|
Venkatesan S, Lamfers MLM, Dirven CMF, Leenstra S. Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol 2016; 5:77-90. [PMID: 26986934 DOI: 10.2217/cns-2015-0005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| |
Collapse
|
48
|
Walerych D, Lisek K, Del Sal G. Mutant p53: One, No One, and One Hundred Thousand. Front Oncol 2015; 5:289. [PMID: 26734571 PMCID: PMC4685664 DOI: 10.3389/fonc.2015.00289] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer.
Collapse
Affiliation(s)
- Dawid Walerych
- Laboratorio Nazionale CIB, Area Science Park Padriciano , Trieste , Italy
| | - Kamil Lisek
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park Padriciano, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
49
|
Parrales A, Iwakuma T. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol 2015; 5:288. [PMID: 26732534 PMCID: PMC4685147 DOI: 10.3389/fonc.2015.00288] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center , Kansas City, KS , USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
50
|
Miletta MC, Eblé A, Janner M, Parween S, Pandey AV, Flück CE, Mullis PE. IGHD II: A Novel GH-1 Gene Mutation (GH-L76P) Severely Affects GH Folding, Stability, and Secretion. J Clin Endocrinol Metab 2015; 100:E1575-83. [PMID: 26485222 DOI: 10.1210/jc.2015-3265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrée Eblé
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Marco Janner
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Christa E Flück
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Primus-E Mullis
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, and Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|