1
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
2
|
Katrivas L, Kempinski B, Kuchuk K, Sivan U, Kotlyar A. Multiply Modified Repeating DNA Templates for Production of Novel DNA-Based Nanomaterial. Bioconjug Chem 2019; 30:2201-2208. [PMID: 31343869 DOI: 10.1021/acs.bioconjchem.9b00433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report synthesis of long (thousands of base pairs), uniform double-stranded (ds) DNA comprising short (6-15 base pairs) tandem repeats. The synthesis method is based on self-assembly of short (6-15 bases) half-complementary 5'-end phosphorylated single-stranded oligonucleotides into long ds polymer molecules and covalent association of the oligonucleotide fragments in the polymer by DNA ligase to yield complete non-nicked ds DNA. The method is very flexible in regard to the sequence of the oligonucleotides and their length. Human telomeric DNA comprising thousands of base pairs as well as methylated, mismatched, and fluorescent dye-modified uniform dsDNA molecules can be synthesized. We have demonstrated by high resolution frequency-modulation atomic force microscopy that the structure of DNA containing mismatches is strongly different from that of the non-mismatched one. The DNA molecules comprising groups capable of anchoring metal particles and other redox active elements along the whole length of the nucleic acid polymer should find use as wires or transistors in future nanoelectronic applications.
Collapse
Affiliation(s)
- Liat Katrivas
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Benjamin Kempinski
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| | - Kfir Kuchuk
- Department of Physics and the Russell Berrie Nanotechnology Institute , Technion - Israel Institute of Technology , Haifa , 3200003 , Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute , Technion - Israel Institute of Technology , Haifa , 3200003 , Israel
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and the Center of Nanoscience and Nanotechnology , Tel Aviv University , Ramat Aviv , Tel Aviv 69978 , Israel
| |
Collapse
|
3
|
Jasinski DL, Binzel DW, Guo P. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly. ACS NANO 2019; 13:4603-4612. [PMID: 30888787 PMCID: PMC6542271 DOI: 10.1021/acsnano.9b00649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From the original sequencing of the human genome, it was found that about 98.5% of the genome did not code for proteins. Subsequent studies have now revealed that a much larger portion of the genome is related to short or long noncoding RNAs that regulate cellular activities. In addition to the milestones of chemical and protein drugs, it has been proposed that RNA drugs or drugs targeting RNA will become the third milestone in drug development ( Shu , Y. ; Adv. Drug Deliv. Rev. 2014 , 66 , 74 . ). Currently, the yield and cost for RNA nanoparticle or RNA drug production requires improvement in order to advance the RNA field in both research and clinical translation by reducing the multiple tedious manufacturing steps. For example, with 98.5% incorporation efficiency of chemical synthesis of a 100 nucleotide RNA strand, RNA oligos will result with 78% contamination of aborted byproducts. Thus, RNA nanotechnology is one of the remedies, because large RNA can be assembled from small RNA fragments via bottom-up self-assembly. Here we report the one-pot production of RNA nanoparticles via automated processing and self-assembly. The continuous production of RNA by rolling circle transcription (RCT) using a circular dsDNA template is coupled with self-cleaving ribozymes encoded in the concatemeric RNA transcripts. Production was monitored in real-time. Automatic production of RNA fragments enabled their assembly either in situ or via one-pot co-transcription to obtain RNA nanoparticles of desired motifs and functionalities from bottom-up assembly of multiple RNA fragments. In combination with the RNA nanoparticle construction process, a purification method using a large-scale electrophoresis column was also developed.
Collapse
Affiliation(s)
| | | | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Abstract
Nucleic acid amplification is a hugely important technology for biology and medicine. While the polymerase chain reaction (PCR) has been highly useful and effective, its reliance on heating and cooling cycles places some constraints on its utility. For example, the heating step of PCR can destroy biological molecules under investigation and heat/cool cycles are not applicable in living systems. Thus, isothermal approaches to DNA and RNA amplification are under widespread study. Perhaps the simplest of these are the rolling circle approaches, including rolling circle amplification (RCA) and rolling circle transcription (RCT). In this strategy, a very small circular oligonucleotide (e.g., 25-100 nucleotides in length) acts as a template for a DNA or an RNA polymerase, producing long repeating product strands that serve as amplified copies of the circle sequence. Here we describe the early developments and studies involving circular oligonucleotides that ultimately led to the burgeoning rolling circle technologies currently under development. This Account starts with our studies on the design of circular oligonucleotides as novel DNA- and RNA-binding motifs. We describe how we developed chemical and biochemical strategies for synthesis of well-defined circular oligonucleotides having defined sequence and open (unpaired) structure, and we outline the unusual ways in which circular DNAs can interact with other nucleic acids. We proceed next to the discovery of DNA and RNA polymerase activity on these very small cyclic DNAs. DNA polymerase "rolling circle" activities were discovered concurrently in our laboratory and that of Andrew Fire. We describe the surprising efficiency of this process even on shockingly small circular DNAs, producing repeating DNAs thousands of nucleotides in length. RNA polymerase activity on circular oligonucleotides was first documented in our group in 1995; especially surprising in this case was the finding that the process occurs efficiently even without promoter sequences in the circle. We describe how one can encode cleavable sites into the product DNAs and RNAs from RCA/RCT, which can then be resolved into large quantities of almost pure oligonucleotides. Our Account then proceeds with a summary describing a broad variety of tools and methods built in many laboratories around the rolling circle concept. Among the important developments are the discovery of highly efficient DNA polymerases for RCA; the invention of exponential ("hyperbranched") RCA amplification made possible by use of a second primer; the development of the "padlock" process for detection of nucleic acids and proteins coupled with RCA; the use of circular oligonucleotides as vectors in cells to encode biologically active RNAs via RCT; and the use of small DNA circles to encode and extend human telomeres. Finally, we finish with some ideas about where the field may go in the future.
Collapse
Affiliation(s)
- Michael G Mohsen
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
5
|
Hollenstein M. Generation of long, fully modified, and serum-resistant oligonucleotides by rolling circle amplification. Org Biomol Chem 2016; 13:9820-4. [PMID: 26273951 DOI: 10.1039/c5ob01540e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rolling Circle Amplification (RCA) is an isothermal enzymatic method generating single-stranded DNA products consisting of concatemers containing multiple copies of the reverse complement of the circular template precursor. Little is known on the compatibility of modified nucleoside triphosphates (dN*TPs) with RCA, which would enable the synthesis of long, fully modified ssDNA sequences. Here, dNTPs modified at any position of the scaffold were shown to be compatible with rolling circle amplification, yielding long (>1 kb), and fully modified single-stranded DNA products. This methodology was applied for the generation of long, cytosine-rich synthetic mimics of telomeric DNA. The resulting modified oligonucleotides displayed an improved resistance to fetal bovine serum.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
6
|
Jia R, Wang T, Jiang Q, Wang Z, Song C, Ding B. Self-Assembled DNA Nanostructures for Drug Delivery. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
|
8
|
Nanomedicine: A Hyper-expectation and Dawning Realisation? Nanomedicine (Lond) 2014. [DOI: 10.1007/978-1-4614-2140-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Ouyang X, Li J, Liu H, Zhao B, Yan J, Ma Y, Xiao S, Song S, Huang Q, Chao J, Fan C. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3082-3087. [PMID: 23613456 DOI: 10.1002/smll.201300458] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 06/02/2023]
Abstract
Several single-stranded scaffold DNA, obtained from rolling circle amplification (RCA), are folded by different staples to form DNA nanoribbons. These DNA nanoribbons are rigid, simple to design, and cost-effective drug carriers, which are readily internalized by mammalian cells and show enhanced immunostimulatory activity.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification. Methods 2013; 67:198-204. [PMID: 23747336 DOI: 10.1016/j.ymeth.2013.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/03/2023] Open
Abstract
DNA nanostructures have recently emerged as a type of drug delivery nanocarriers due to their suitable sizes, well-defined structures and low-toxicity. Here, we present a protocol for the assembly of DNA nanoribbon structures with rolling circle amplification (RCA) and delivery of CpG oligonucleotide. DNA nanoribbons with different dimensions and patterns were assembled with long RCA strands and several short staples. Significantly, we demonstrated they exhibited high-efficiency cellular uptake and improved immunostimulatory activity compared with ss- or ds- DNA.
Collapse
|
11
|
Xu J, McEachern MJ. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification. Mol Cell Biol 2012; 32:2992-3008. [PMID: 22645309 PMCID: PMC3434524 DOI: 10.1128/mcb.00430-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023] Open
Abstract
Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Genetics, Fred Davison Life Science Complex, University of Georgia, Athens, Georgia
| | | |
Collapse
|
12
|
Eric T. Kool. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Eric T. Kool. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/anie.201103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Xu Y. Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 2011; 40:2719-40. [DOI: 10.1039/c0cs00134a] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Pomerantz AK, Moerner WE, Kool ET. Visualization of long human telomere mimics by single-molecule fluorescence imaging. J Phys Chem B 2008; 112:13184-7. [PMID: 18817431 DOI: 10.1021/jp806696u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Study of long single-stranded telomeric DNA is important for a variety of basic science and biotechnological applications, yet few methods exist for synthesis and visualization of single copies of this DNA in solution at biologically relevant length scales necessary for assessment of heterogeneity in its structure and behavior. We have synthesized kilobase-long single-stranded human telomere mimics in situ by rolling circle replication (RCR) on a microscope coverslip surface and visualized individual strands by staining with SYBR Gold. Under buffer flow, differential extensibility and varying morphology of these long telomere-mimicking DNA sequences were observed at the single-molecule level in real time. Using this procedure, we detected striking differences in the extensibility of individual RCR products based on the human G-rich telomeric sequence in the presence and absence of short, complementary single-stranded oligonucleotides. We also apply this new mode of single-stranded DNA characterization to probe the interaction of kilobase-length telomere mimics with the small-molecule G-quadruplex-binding agent TMPyP4.
Collapse
|
16
|
Zhao W, Ali MM, Brook MA, Li Y. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed Engl 2008; 47:6330-7. [PMID: 18680110 DOI: 10.1002/anie.200705982] [Citation(s) in RCA: 433] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rolling circle amplification (RCA) is an isothermal, enzymatic process mediated by certain DNA polymerases in which long single-stranded (ss) DNA molecules are synthesized on a short circular ssDNA template by using a single DNA primer. A method traditionally used for ultrasensitive DNA detection in areas of genomics and diagnostics, RCA has been used more recently to generate large-scale DNA templates for the creation of periodic nanoassemblies. Various RCA strategies have also been developed for the production of repetitive sequences of DNA aptamers and DNAzymes as detection platforms for small molecules and proteins. In this way, RCA is rapidly becoming a highly versatile DNA amplification tool with wide-ranging applications in genomics, proteomics, diagnosis, biosensing, drug discovery, and nanotechnology.
Collapse
Affiliation(s)
- Weian Zhao
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, ON, L8P 4M1, Canada
| | | | | | | |
Collapse
|
17
|
Zhao W, Ali M, Brook M, Li Y. Rolling-Circle-Amplifikation: Anwendungen in der Nanotechnologie und in der Biodetektion mit funktionellen Nucleinsäuren. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705982] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Furukawa K, Abe H, Abe N, Harada M, Tsuneda S, Ito Y. Fluorescence generation from tandem repeats of a malachite green RNA aptamer using rolling circle transcription. Bioorg Med Chem Lett 2008; 18:4562-5. [PMID: 18667307 DOI: 10.1016/j.bmcl.2008.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022]
Abstract
We demonstrate a generation of tandem repeats of a malachite green (MG) RNA aptamer using rolling circle transcription. To keep the higher-order structure of each aptamer on long RNA, we designed a sequence of circular DNA with a 14-base linker. T7 RNA polymerase was superior to Escherichia coli RNA polymerase in the specific transcription of the MG RNA aptamer. Finally, the generation of the fluorescence signal was confirmed from aptamer repeats with MG.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Nano Medical Engineering Laboratory, Advanced Science Institute, RIKEN 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
19
|
In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS. BMC Biotechnol 2007; 7:69. [PMID: 17945012 PMCID: PMC2203993 DOI: 10.1186/1472-6750-7-69] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/18/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In situ detection is traditionally performed with long labeled probes often followed by a signal amplification step to enhance the labeling. Whilst short probes have several advantages over long probes (e.g. higher resolution and specificity) they carry fewer labels per molecule and therefore require higher amplification for detection. Furthermore, short probes relying only on hybridization for specificity can result in non-specific signals appearing anywhere the probe attaches to the target specimen. One way to obtain high amplification whilst minimizing the risk of false positivity is to use small circular probes (e.g. Padlock Probes) in combination with target primed rolling circle DNA synthesis. This has previously been used for DNA detection in situ, but not until now for RNA targets. RESULTS We present here a proof of principle investigation of a novel rolling circle technology for the detection of non-polyadenylated RNA molecules in situ, including a new probe format (the Turtle Probe) and optimized procedures for its use on formalin fixed paraffin embedded tissue sections and in solid support format applications. CONCLUSION The method presented combines the high discriminatory power of short oligonucleotide probes with the impressive amplification power and selectivity of the rolling circle reaction, providing excellent signal to noise ratios in combination with exact target localization due to the target primed reaction. Furthermore, the procedure is easily multiplexed, allowing visualization of several different RNAs.
Collapse
|
20
|
Abstract
Chromosomes may be either circular or linear, the latter being prone to erosion caused by incomplete replication, degradation and inappropriate repair. Despite these problems, the linear form of DNA is frequently found in viruses, bacteria, eukaryotic nuclei and organelles. The high incidence of linear chromosomes and/or genomes evokes why and how they emerged in evolution. Here we suggest that the primordial terminal structures (telomeres) of linear chromosomes in eukaryotic nuclei were derived from selfish element(s), which caused the linearization of ancestral circular genome. The telomeres were then essential in solving the emerged problems. Molecular fossils of such elements were recently identified in phylogenetically distant genomes and were shown to generate terminal arrays of tandem repeats. These arrays might mediate the formation of higher order structures at chromosomal termini that stabilize the linear chromosomal form by fulfilling essential telomeric functions.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Comenius University, Bratislava, Slovakia.
| | | | | |
Collapse
|
21
|
Nilsson M, Dahl F, Larsson C, Gullberg M, Stenberg J. Analyzing genes using closing and replicating circles. Trends Biotechnol 2006; 24:83-8. [PMID: 16378651 DOI: 10.1016/j.tibtech.2005.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/07/2005] [Indexed: 01/08/2023]
Abstract
During the past two years, significant breakthroughs have been achieved in genetic analyses through the application of technologies based on analytical DNA-circularization reactions. Padlock probes and molecular inversion probes have enabled parallel, high-throughput single nucleotide polymorphism (SNP) genotyping at increased scales, whereas, at the other end of the analysis spectrum, DNA molecules in individual cells have been genotyped, in situ, using padlock probes and rolling-circle amplification (RCA). This review describes the recent developments in the technologies that use specific DNA circularization, coupled to DNA amplification through PCR or rolling-circle amplification, and addresses the great potential of these tools.
Collapse
Affiliation(s)
- Mats Nilsson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Bhattacharyya MK, Lustig AJ. Telomere dynamics in genome stability. Trends Biochem Sci 2006; 31:114-22. [PMID: 16406636 DOI: 10.1016/j.tibs.2005.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 10/19/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
The past several years have seen an increasing interest in telomere recombinational interactions that provide many functions in telomere capping, in telomere size homeostasis and in overcoming the catastrophic effects of telomerase deficiency. Several key recombination mechanisms have emerged from recent investigations. In the yeasts, these mechanisms include exchange between subtelomeric regions and telomere sequences, rapid telomere expansion and telomere deletion. These processes proceed by pathways that use both the cellular recombination machinery and novel mechanisms such as rolling circle replication. The insights gained from recent studies extend our understanding of similar processes in higher eukaryotes and suggest that the recombinational dynamics of telomeres have additional roles that contribute to genomic stability and instability.
Collapse
Affiliation(s)
- Mrinal K Bhattacharyya
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
23
|
Hartig JS, Fernandez-Lopez S, Kool ET. Guanine-rich DNA nanocircles for the synthesis and characterization of long cytosine-rich telomeric DNAs. Chembiochem 2005; 6:1458-62. [PMID: 16052615 DOI: 10.1002/cbic.200500015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Short synthetic oligonucleotides derived from the human telomeric repeat have been studied recently for their ability to fold into four-stranded structures that are thought to be important to their biological function. Because telomeric DNAs are several kilobases in length, however, their folding might well be affected by cooperative or high-order interactions in these long sequences. Here, we present a new molecular system that allows for easy synthesis of very long stretches of the cytosine-rich strand of human telomeric DNA. Small circular DNAs composed of the G-rich sequence of human telomeres were prepared and used as templates in a rolling-circle replication mechanism. To facilitate the synthesis of the repetitive G-rich circles, an orthogonal base-protection strategy that made use of dimethylformamidine-protected guanine nucleobases was developed. Nanometer-scale circles ranging in size from 42 to 54 nucleotides were prepared. Subsequently, we tested the action of various DNA polymerases on these circular templates, and identified DNA Pol I (Klenow fragment) and T7 DNA polymerase as enzymes that are able to generate very long, C-rich telomeric DNA strands. Purification and initial structural examination of these C-rich polymeric products revealed evidence of a folded structure in the polymer.
Collapse
Affiliation(s)
- Jörg S Hartig
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | | |
Collapse
|
24
|
Lin CY, Chang HH, Wu KJ, Tseng SF, Lin CC, Lin CP, Teng SC. Extrachromosomal telomeric circles contribute to Rad52-, Rad50-, and polymerase delta-mediated telomere-telomere recombination in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:327-36. [PMID: 15701795 PMCID: PMC549320 DOI: 10.1128/ec.4.2.327-336.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the telomerase reverse transcriptase. In both tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. By using an in vivo inducible Cre-loxP system to generate and trace the fate of marked telomeric DNA-containing rings, the efficiency of telomere-telomere recombination can be determined quantitatively. We show that the telomeric loci are the primary sites at which a marked telomeric ring-containing DNA is observed among wild-type and surviving cells lacking telomerase. Marked telomeric DNAs can be transferred to telomeres and form tandem arrays through Rad52-, Rad50-, and polymerase delta-mediated recombination. Moreover, increases of extrachromosomal telomeric and Y' rings were observed in telomerase-deficient cells. These results imply that telomeres can use looped-out telomeric rings to promote telomere-telomere recombination in telomerase-deficient Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Chi-Ying Lin
- Department of Microbiology, National Taiwan University College of Medicine,Taipei 10018, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Hartig JS, Kool ET. Efficient isothermal expansion of human telomeric and minisatellite repeats by Thermococcus litoralis DNA polymerase. Nucleic Acids Res 2005; 33:4922-7. [PMID: 16284196 PMCID: PMC1199558 DOI: 10.1093/nar/gki803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Repeating DNA sequences, such as telomeres, centromeres, and micro- and mini-satellites, comprise 50% of the genome and play important roles in regulatory and pathogenic mechanisms. In order to study structures and functions of such repeating sequences, it is important to have simple and efficient methods for making them in vitro. Here, we describe the efficient and convenient expansion of repetitive telomeric and minisatellite DNA sequences starting from small synthetic templates to final product lengths of several hundreds to thousands of nucleotides by the thermostable DNA polymerase from Thermococcus litoralis (Vent DNA polymerase). This enzyme was so far unknown to catalyze repeat expansion. Either single-stranded or double-stranded DNAs could be produced, depending on nucleotides present. Compared to earlier results obtained with other enzymes, the expansion reaction is highly efficient both in its yield and product length, and proceeds without thermal cycling. Moreover, the products are characterized by a narrow length distribution.
Collapse
Affiliation(s)
| | - Eric T. Kool
- To whom correspondence should be addressed. Tel: +1 650 724 4741; Fax: +1 650 725 0259;
| |
Collapse
|
26
|
Zhao GQ, Wang T, Zhao Q, Yang HY, Tan XH, Dong ZM. Mutation of DNA polymerase β in esophageal carcinoma of different regions. World J Gastroenterol 2005; 11:4618-22. [PMID: 16094698 PMCID: PMC4615399 DOI: 10.3748/wjg.v11.i30.4618] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the variation of DNA polymerase β (polβ) in esophageal carcinoma.
METHODS: Thirty specimens containing adjacent normal epithelial tissues were collected from patients in Linzhou region (a high risk area for esophageal squamous carcinoma) and 25 specimens were from a non-high risk area. Total RNA was extracted from the samples and reverse transcription polymerase chain reaction (RT-PCR) was performed. PCR products were cloned and sequenced to investigate the polβ gene with DNASIS and OMIGA. Statistical significance was evaluated using the χ2 test.
RESULTS: High-incidence area group: polβ gene variation was detected in 13 of 30 esophageal carcinoma tissue specimens, and only one variation was found in 30 corresponding adjacent normal tissue specimens. Non high-incidence area group: polβ gene variation was detected in 5 of 25 esophageal carcinoma tissue specimens, and no variation was found in 25 corresponding adjacent normal tissue specimens. The incidence of polβ gene variation observed in the high-incidence area group was significantly higher than in the non-high incidence area group. Two mutation hot spots (454-466 and 648-670 nt) and a 58 bp deletion (177-234 nt) were found.
CONCLUSION: Variations of polβ perform different functions between the high-incidence areas and the other areas, and may play a more important role in the high-incidence areas.
Collapse
Affiliation(s)
- Guo-Qiang Zhao
- Basic Medical College, Zhengzhou University, Henan Province, China.
| | | | | | | | | | | |
Collapse
|
27
|
Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L. Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem 2005; 280:10840-5. [PMID: 15657051 DOI: 10.1074/jbc.m409295200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative (telomerase-independent) lengthening of telomeres mediated through homologous recombination is often accompanied by a generation of extrachromosomal telomeric circles (t-circles), whose role in direct promotion of recombinational telomere elongation has been recently demonstrated. Here we present evidence that t-circles in a natural telomerase-deficient system of mitochondria of the yeast Candida parapsilosis replicate independently of the linear chromosome via a rolling-circle mechanism. This is supported by an observation of (i) single-stranded DNA consisting of concatameric arrays of telomeric sequence, (ii) lasso-shaped molecules representing rolling-circle intermediates, and (iii) preferential incorporation of deoxyribonucleotides into telomeric fragments and t-circles. Analysis of naturally occurring variant t-circles revealed conserved motifs with potential function in driving the rolling-circle replication. These data indicate that extrachromosomal t-circles observed in a wide variety of organisms, including yeasts, plants, Xenopus laevis, and certain human cell lines, may represent independent replicons generating telomeric sequences and, thus, actively participating in telomere dynamics. Moreover, because of the promiscuous occurrence of t-circles across phyla, the results from yeast mitochondria have implications related to the primordial system of telomere maintenance, providing a paradigm for evolution of telomeres in nuclei of early eukaryotes.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Mlynska dolina CH-1, Comenius University, 842 15 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
28
|
Hansma HG, Kasuya K, Oroudjev E. Atomic force microscopy imaging and pulling of nucleic acids. Curr Opin Struct Biol 2004; 14:380-5. [PMID: 15193320 DOI: 10.1016/j.sbi.2004.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent advances in atomic force microscopy (AFM) imaging of nucleic acids include the visualization of DNA and RNA incorporated into devices and patterns, and into structures based on their sequences or sequence recognition. AFM imaging of nuclear structures has contributed to advances in telomere research and to our understanding of nucleosome formation. Highlights of force spectroscopy or pulling of nucleic acids include the use of DNA as a programmable force sensor, and the analysis of RNA flexibility and drug binding to DNA.
Collapse
Affiliation(s)
- Helen G Hansma
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
29
|
Larsson C, Koch J, Nygren A, Janssen G, Raap AK, Landegren U, Nilsson M. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 2004; 1:227-32. [PMID: 15782198 DOI: 10.1038/nmeth723] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/20/2004] [Indexed: 11/09/2022]
Abstract
Methods are needed to study single molecules to reveal variability, interactions and mechanisms that may go undetected at the level of populations of molecules. We describe here an integrated series of reaction steps that allow individual nucleic acid molecules to be detected with excellent specificity. Oligonucleotide probes are circularized after hybridization to target sequences that have been prepared so that localized amplification reactions can be initiated from the target molecules. The process results in strong, discrete detection signals anchored to the target molecules. We use the method to observe the distribution, within and among human cells, of individual normal and mutant mitochondrial genomes that differ at a single nucleotide position.
Collapse
Affiliation(s)
- Chatarina Larsson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Se-75185 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Hartig JS, Kool ET. Small circular DNAs for synthesis of the human telomere repeat: varied sizes, structures and telomere-encoding activities. Nucleic Acids Res 2004; 32:e152. [PMID: 15520461 PMCID: PMC528825 DOI: 10.1093/nar/gnh149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe the construction, structural properties and enzymatic substrate abilities of a series of circular DNA oligonucleotides that are entirely composed of the C-rich human telomere repeat, (CCCTAA)n. The nanometer-sized circles range in length from 36 to 60 nt, and act as templates for synthesis of human telomere repeats in vitro. The circles were constructed successfully by the application of a recently developed adenine-protection strategy, which allows for cyclization/ligation with T4 DNA ligase. Thermal denaturation studies showed that at pH 5.0, all five circles form folded structures with similar stability, while at pH 7.0 no melting transitions were seen. Circular dichroism spectra at the two pH conditions showed evidence for i-motif structures at the lower pH value. The series was tested as rolling circle templates for a number of DNA polymerases at pH = 7.3-8.5, using 18mer telomeric primers. Results showed that surprisingly small circles were active, although the optimum size varied from enzyme to enzyme. Telomeric repeats >>1000 nt in length could be synthesized in 1 h by the Klenow (exo-) DNA polymerase. The results establish a convenient way to make long human telomeric repeats for in vitro study of their folding and interactions, and establish optimum molecules for carrying this out.
Collapse
Affiliation(s)
- Jörg S Hartig
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
31
|
Natarajan S, Groff-Vindman C, McEachern MJ. Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis. EUKARYOTIC CELL 2004; 2:1115-27. [PMID: 14555494 PMCID: PMC219379 DOI: 10.1128/ec.2.5.1115-1127.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that DNA circles containing telomeric repeats and a marker gene can promote the recombinational elongation of telomeres in Kluyveromyces lactis by a mechanism proposed to involve rolling-circle DNA synthesis. Wild-type cells acquire a long tandem array at a single telomere, while telomerase deletion (ter1-delta) cells, acquire an array and also spread it to multiple telomeres. In this study, we further examine the factors that affect the formation and spread of telomeric tandem arrays. We show that a telomerase(+) strain with short telomeres and high levels of subtelomeric gene conversion can efficiently form and spread arrays, while a telomere fusion mutant is not efficient at either process. This indicates that an elevated level of gene conversion near telomeres is required for spreading but that growth senescence and a tendency to elongate telomeres in the absence of exogenously added circles are not. Surprisingly, telomeric repeats are frequently deleted from a transforming URA3-telomere circle at or prior to the time of array formation by a mechanism dependent upon the presence of subtelomeric DNA in the circle. We further show that in a ter1-delta strain, long tandem arrays can arise from telomeres initially containing a single-copy insert of the URA3-telomere sequence. However, the reduced rate of array formation in such strains suggests that single-copy inserts are not typical intermediates in arrays formed from URA3-telomere circles. Using heteroduplex circles, we have demonstrated that either strand of a URA3-telomere circle can be utilized to form telomeric tandem arrays. Consistent with this, we demonstrate that 100-nucleotide single-stranded telomeric circles of either strand can promote recombinational telomere elongation.
Collapse
Affiliation(s)
- Shobhana Natarajan
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
32
|
Tomaska L, McEachern MJ, Nosek J. Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 2004; 567:142-6. [PMID: 15165907 DOI: 10.1016/j.febslet.2004.04.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 11/16/2022]
Abstract
Recombination is often capable of lengthening telomeres in situations where telomerase is absent. This recombinational telomere maintenance is often accompanied by telomeric instability including the accumulation of extrachromosomal telomeric circles (t-circles). Recent results of in vivo and in vitro experiments have suggested that t-circles can lead to the production of extended stretches of telomeric DNA by serving as templates for rolling-circle synthesis. This implies that t-circles can provide an efficient means of telomere elongation. The existence of t-circles in both nuclear and mitochondrial compartments of distantly related species suggests that they may be important contributors to an evolutionary conserved telomerase-independent mechanism of maintenance of telomeric tandem arrays.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina B-1, 84215 Bratislava, Slovakia.
| | | | | |
Collapse
|
33
|
Lustig AJ. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat Rev Genet 2003; 4:916-23. [PMID: 14634639 DOI: 10.1038/nrg1207] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Catastrophic losses of telomeric sequences have recently been described during apoptosis, senescence and tumorigenesis in murine and human cells, in ataxia telangiectasia patients and in immortalized cells in which telomerase is inactive. A mechanism that underlies a single-step non-reciprocal telomere deletion called telomere rapid deletion in Saccharomyces cerevisiae might provide clues for future studies of catastrophic telomere loss in higher eukaryotes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Arthur J. Lustig is at the Department of Biochemistry in the Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
34
|
Anti-aging medicine literaturewatch. JOURNAL OF ANTI-AGING MEDICINE 2003; 6:45-64. [PMID: 12971397 DOI: 10.1089/109454503765361588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
News in brief. Drug Discov Today 2003. [DOI: 10.1016/s1359-6446(02)02585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|