1
|
Zhao X, Gao Y, Gong Q, Zhang K, Li S. Elucidating the Architectural dynamics of MuB filaments in bacteriophage Mu DNA transposition. Nat Commun 2024; 15:6445. [PMID: 39085263 PMCID: PMC11292022 DOI: 10.1038/s41467-024-50722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingguo Gong
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Zhang M, Hao Y, Yi Y, Liu S, Sun Q, Tan X, Tang S, Xiao X, Jian H. Unexplored diversity and ecological functions of transposable phages. THE ISME JOURNAL 2023; 17:1015-1028. [PMID: 37069234 PMCID: PMC10284936 DOI: 10.1038/s41396-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.
Collapse
Affiliation(s)
- Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
3
|
Twenty Years of Collaboration to Sort out Phage Mu Replication and Its Dependence on the Mu Central Gyrase Binding Site. Viruses 2023; 15:v15030637. [PMID: 36992345 PMCID: PMC10052514 DOI: 10.3390/v15030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
For 20 years, the intricacies in bacteriophage Mu replication and its regulation were elucidated in collaboration between Ariane Toussaint and her co-workers in the Laboratory of Genetics at the Université Libre de Bruxelles, and the groups of Martin Pato and N. Patrick Higgins in the US. Here, to honor Martin Pato’s scientific passion and rigor, we tell the history of this long-term sharing of results, ideas and experiments between the three groups, and Martin’s final discovery of a very unexpected step in the initiation of Mu replication, the joining of Mu DNA ends separated by 38 kB with the assistance of the host DNA gyrase.
Collapse
|
4
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
5
|
Bartlau N, Wichels A, Krohne G, Adriaenssens EM, Heins A, Fuchs BM, Amann R, Moraru C. Highly diverse flavobacterial phages isolated from North Sea spring blooms. THE ISME JOURNAL 2022; 16:555-568. [PMID: 34475519 PMCID: PMC8776804 DOI: 10.1038/s41396-021-01097-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
It is generally recognized that phages are a mortality factor for their bacterial hosts. This could be particularly true in spring phytoplankton blooms, which are known to be closely followed by a highly specialized bacterial community. We hypothesized that phages modulate these dense heterotrophic bacteria successions following phytoplankton blooms. In this study, we focused on Flavobacteriia, because they are main responders during these blooms and have an important role in the degradation of polysaccharides. A cultivation-based approach was used, obtaining 44 lytic flavobacterial phages (flavophages), representing twelve new species from two viral realms. Taxonomic analysis allowed us to delineate ten new phage genera and ten new families, from which nine and four, respectively, had no previously cultivated representatives. Genomic analysis predicted various life styles and genomic replication strategies. A likely eukaryote-associated host habitat was reflected in the gene content of some of the flavophages. Detection in cellular metagenomes and by direct-plating showed that part of these phages were actively replicating in the environment during the 2018 spring bloom. Furthermore, CRISPR/Cas spacers and re-isolation during two consecutive years suggested that, at least part of the new flavophages are stable components of the microbial community in the North Sea. Together, our results indicate that these diverse flavophages have the potential to modulate their respective host populations.
Collapse
Affiliation(s)
- Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Biologische Anstalt Helgoland, Heligoland, Germany
| | - Georg Krohne
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Anneke Heins
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
6
|
inPOSE: A Flexible Toolbox for Chromosomal Cloning and Amplification of Bacterial Transgenes. Microorganisms 2022; 10:microorganisms10020236. [PMID: 35208691 PMCID: PMC8875745 DOI: 10.3390/microorganisms10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cloning the genes and operons encoding heterologous functions in bacterial hosts is now almost exclusively carried out using plasmid vectors. This has multiple drawbacks, including the need for constant selection and variation in copy numbers. The chromosomal integration of transgenes has always offered a viable alternative; however, to date, it has been of limited use due to its tedious nature and often being limited to a single copy. We introduce here a strategy that uses bacterial insertion sequences, which are the simplest autonomous transposable elements to insert and amplify genetic cargo into a bacterial chromosome. Transgene insertion can take place either as transposition or homologous recombination, and copy number amplification is achieved using controlled copy-paste transposition. We display the successful use of IS1 and IS3 for this purpose in Escherichia coli cells using various selection markers. We demonstrate the insertion of selectable genes, an unselectable gene and a five-gene operon in up to two copies in a single step. We continue with the amplification of the inserted cassette to double-digit copy numbers within two rounds of transposase induction and selection. Finally, we analyze the stability of the cloned genetic constructs in the lack of selection and find it to be superior to all investigated plasmid-based systems. Due to the ubiquitous nature of transposable elements, we believe that with proper design, this strategy can be adapted to numerous other bacterial species.
Collapse
|
7
|
Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nat Microbiol 2021; 6:1516-1525. [PMID: 34819640 DOI: 10.1038/s41564-021-00996-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022]
Abstract
CRISPR loci are composed of short DNA repeats separated by sequences, known as spacers, that match the genomes of invaders such as phages and plasmids. Spacers are transcribed and processed to generate RNA guides used by CRISPR-associated nucleases to recognize and destroy the complementary nucleic acids of invaders. To counteract this defence, phages can produce small proteins that inhibit these nucleases, termed anti-CRISPRs (Acrs). Here we demonstrate that the ΦAP1.1 temperate phage utilizes an alternative approach to antagonize the type II-A CRISPR response in Streptococcus pyogenes. Immediately after infection, this phage expresses a small anti-CRISPR protein, AcrIIA23, that prevents Cas9 function, allowing ΦAP1.1 to integrate into the direct repeats of the CRISPR locus, neutralizing immunity. However, acrIIA23 is not transcribed during lysogeny and phage integration/excision cycles can result in the deletion and/or transduction of spacers, enabling a complex modulation of the type II-A CRISPR immune response. A bioinformatic search identified prophages integrated not only in the CRISPR repeats, but also the cas genes, of diverse bacterial species, suggesting that prophage disruption of the CRISPR-cas locus is a recurrent mechanism to counteract immunity.
Collapse
|
8
|
Characterization and Genomic Analysis of ɸSHP3, a New Transposable Bacteriophage Infecting Stenotrophomonas maltophilia. J Virol 2021; 95:JVI.00019-21. [PMID: 33536173 DOI: 10.1128/jvi.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
This study describes a novel transposable bacteriophage, ɸSHP3, continuously released by Stenotrophomonas maltophilia strain c31. Morphological observation and genomic analysis revealed that ɸSHP3 is a siphovirus with a 37,611-bp genome that encodes 51 putative proteins. Genomic comparisons indicated that ɸSHP3 is a B3-like transposable phage. Its genome configuration is similar to that of Pseudomonas phage B3, except for the DNA modification module. Similar to B3-like phages, the putative transposase B of ɸSHP3 is a homolog of the type two secretion component ExeA, which is proposed to serve as a potential virulence factor. Moreover, most proteins of ɸSHP3 have homologs in transposable phages, but only ɸSHP3 carries an RdgC-like protein encoded by gene 3, which exhibits exonuclease activity in vitro Two genes and their promoters coding for ɸSHP3 regulatory proteins were identified and appear to control the lytic-lysogenic switch. One of the proteins represses one promoter activity and confers immunity to ɸSHP3 superinfection in vivo The short regulatory region, in addition to the canonical bacterial promoter sequences, displays one LexA and two CpxR recognition sequences. This suggests that LexA and the CpxR/CpxA two-component system might be involved in the control of the ɸSHP3 genetic switch.IMPORTANCE S. maltophilia is an emerging global pathogenic bacterium that displays genetic diversity in both environmental and clinical strains. Transposable phages have long been known to improve the genetic diversity of bacterial strains by transposition. More than a dozen phages of S. maltophilia have been characterized. However, no transposable phage infecting S. maltophilia has been reported to date. Characterization of the first transposable phage, ɸSHP3, from S. maltophilia will contribute to our understanding of host-phage interactions and genetic diversity, especially the interchange of genetic materials among S. maltophilia.
Collapse
|
9
|
Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, Youngblut ND, Hewson I, Reyes A, Ley RE. Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host Microbe 2019; 25:261-272.e5. [PMID: 30763537 PMCID: PMC6411085 DOI: 10.1016/j.chom.2019.01.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Abstract
The virome is one of the most variable components of the human gut microbiome. Within twin pairs, viromes have been shown to be similar for infants, but not for adults, indicating that as twins age and their environments and microbiomes diverge, so do their viromes. The degree to which the microbiome drives the vast virome diversity is unclear. Here, we examine the relationship between microbiome and virome diversity in 21 adult monozygotic twin pairs selected for high or low microbiome concordance. Viromes derived from virus-like particles are unique to each individual, are dominated by Caudovirales and Microviridae, and exhibit a small core that includes crAssphage. Microbiome-discordant twins display more dissimilar viromes compared to microbiome-concordant twins, and the richer the microbiomes, the richer the viromes. These patterns are driven by bacteriophages, not eukaryotic viruses. Collectively, these observations support a strong role of the microbiome in patterning for the virome.
Collapse
Affiliation(s)
- J Leonardo Moreno-Gallego
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Shao-Pei Chou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sara C Di Rienzi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Julia K Goodrich
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
10
|
Gilcrease EB, Casjens SR. The genome sequence of Escherichia coli tailed phage D6 and the diversity of Enterobacteriales circular plasmid prophages. Virology 2018; 515:203-214. [PMID: 29304472 PMCID: PMC5800970 DOI: 10.1016/j.virol.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
The temperate Escherichia coli bacteriophage D6 can exist as a circular plasmid prophage, and we report here its 91,159bp complete genome sequence. It is a distant relative of the well-studied phage P1, but it is sufficiently different that it typifies a previously undescribed tailed phage type or cluster. Examination of the database of bacterial genome sequences revealed that phage P1 and D6 prophage plasmids are common in the Enterobacteriales, and in addition, previously described Salmonella phage SSU5 represents a different type of temperate tailed phage with a circular plasmid prophage that is also very common in this host order. This analysis also discovered additional divergent clusters of putative circular plasmid prophages within the two larger P1 and SSU5 groups (superclusters) that inhabit the Enterobacteriales as well as bacteria in several other orders in the Gamma-proteobacteria class. Very few of these sequences are annotated as putative prophages.
Collapse
Affiliation(s)
- Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Abstract
Phage Mu is the paradigm of a growing family of bacteriophages that infect a wide range of bacterial species and replicate their genome by replicative transposition. This molecular process, which is used by other mobile genetic elements to move within genomes, involves the profound rearrangement of the host genome [chromosome(s) and plasmid(s)] and can be exploited for the genetic analysis of the host bacteria and the in vivo cloning of host genes. In this chapter we review Mu-derived constructs that optimize the phage as a series of genetic tools that could inspire the development of similarly efficient tools from other transposable phages for a large spectrum of bacteria.
Collapse
|
12
|
Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci Rep 2017; 7:16780. [PMID: 29196644 PMCID: PMC5711897 DOI: 10.1038/s41598-017-17014-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
In this work, we performed a comparative adaptive laboratory evolution experiment of the important biotechnological platform strain Corynebacterium glutamicum ATCC 13032 and its prophage-free variant MB001 towards improved growth rates on glucose minimal medium. Both strains displayed a comparable adaptation behavior and no significant differences in genomic rearrangements and mutation frequencies. Remarkably, a significant fitness leap by about 20% was observed for both strains already after 100 generations. Isolated top clones (UBw and UBm) showed an about 26% increased growth rate on glucose minimal medium. Genome sequencing of evolved clones and populations resulted in the identification of key mutations in pyk (pyruvate kinase), fruK (1-phosphofructokinase) and corA encoding a Mg2+ importer. The reintegration of selected pyk and fruK mutations resulted in an increased glucose consumption rate and ptsG expression causative for the accelerated growth on glucose minimal medium, whereas corA mutations improved growth under Mg2+ limiting conditions. Overall, this study resulted in the identification of causative key mutations improving the growth of C. glutamicum on glucose. These identified mutational hot spots as well as the two evolved top strains, UBw and UBm, represent promising targets for future metabolic engineering approaches.
Collapse
|
13
|
Muprints and Whole Genome Insertion Scans: Methods for Investigating Chromosome Accessibility and DNA Dynamics using Bacteriophage Mu. Methods Mol Biol 2017. [PMID: 29134604 DOI: 10.1007/978-1-4939-7343-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacteriophage Mu infects a broad range of gram-negative bacteria. After infection, Mu amplifies its DNA through a coupled transposition/replication cycle that inserts copies of Mu throughout all domains of the folded chromosome. Mu has the most relaxed target specificity of the known transposons (Manna et al., J Bacteriol 187: 3586-3588, 2005) and the Mu DNA packaging process, called "headful packaging", incorporates 50-150 bp of host sequences covalently bound to its left end and 2 kb of host DNA linked to its right end into a viral capsid. The combination of broad insertion coverage and easy phage purification makes Mu ideal for analyzing chromosome dynamics and DNA structure inside living cells. "Mu printing" (Wang and Higgins, Mol Microbiol 12: 665-677, 1994; Manna et al., J Bacteriol 183: 3328-3335, 2001) uses the polymerase chain reaction (PCR) to generate a quantitative fine structure map of Mu insertion sites within specific regions of a bacterial chromosome or plasmid. A complementary technique uses microarray platforms to provide quantitative insertion patterns covering a whole bacterial genome (Manna et al., J Bacteriol 187: 3586-3588, 2005; Manna et al., Proc Natl Acad Sci U S A 101: 9780-9785, 2004). These two methods provide a powerful complementary system to investigate chromosome structure inside living cells.
Collapse
|
14
|
Holmes CM, Ghafari M, Abbas A, Saravanan V, Nemenman I. Luria-Delbrück, revisited: the classic experiment does not rule out Lamarckian evolution. Phys Biol 2017; 14:055004. [PMID: 28825411 DOI: 10.1088/1478-3975/aa8230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We re-examined data from the classic Luria-Delbrück fluctuation experiment, which is often credited with establishing a Darwinian basis for evolution. We argue that, for the Lamarckian model of evolution to be ruled out by the experiment, the experiment must favor pure Darwinian evolution over both the Lamarckian model and a model that allows both Darwinian and Lamarckian mechanisms (as would happen for bacteria with CRISPR-Cas immunity). Analysis of the combined model was not performed in the original 1943 paper. The Luria-Delbrück paper also did not consider the possibility of neither model fitting the experiment. Using Bayesian model selection, we find that the Luria-Delbrück experiment, indeed, favors the Darwinian evolution over purely Lamarckian. However, our analysis does not rule out the combined model, and hence cannot rule out Lamarckian contributions to the evolutionary dynamics.
Collapse
Affiliation(s)
- Caroline M Holmes
- Department of Physics, Emory University, Atlanta, GA 30322, United States of America. Department of Biology, Emory University, Atlanta, GA 30322, United States of America
| | | | | | | | | |
Collapse
|
15
|
Toussaint A, Rice PA. Transposable phages, DNA reorganization and transfer. Curr Opin Microbiol 2017; 38:88-94. [PMID: 28551392 DOI: 10.1016/j.mib.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Transposable bacteriophages have long been known to necessarily and randomly integrate their DNA in their host genome, where they amplify by successive rounds of replicative transposition, profoundly reorganizing that genome. As a result of such transposition, a conjugative element (plasmid or genomic island), can either become integrated in the chromosome or receive chromosome segments, which can then be transferred to new hosts by conjugation. In recent years, more and more transposable phages have been isolated or detected by sequence similarity searches in a wide range of bacteria, supporting the idea that this mode of HGT may be pervasive in natural bacterial populations.
Collapse
Affiliation(s)
- Ariane Toussaint
- Génétique et Physiologie Bactérienne, Université Libre de Bruxelles, IBMM-DBM, 12 Rue des Professeurs Jeneer et Brachet, B 6041 Gosselies, Belgium.
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
| |
Collapse
|
16
|
Akashi M, Harada S, Moki S, Okouji Y, Takahashi K, Kada S, Yamagami K, Sekine Y, Watanabe S, Chibazakura T, Yoshikawa H. Transposition of insertion sequence IS256Bsu1 in Bacillus subtilis 168 is strictly dependent on recA. Genes Genet Syst 2017; 92:59-71. [PMID: 28344191 DOI: 10.1266/ggs.16-00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We developed an insertion sequence transposition detection system called the "jumping cat assay" and applied it to the Bacillus subtilis chromosome using IS256Bsu1 derived from B. subtilis natto. The high frequency of transposition enabled us to explore host factors; combining the assay and genetic analyses revealed that recA is essential for the transposition of IS256Bsu1. Detailed analyses using various domain mutants of recA demonstrated that this essentiality is not related to the function of recA in homologous recombination. Instead, the ATP binding and hydrolysis function seemed to be crucial for IS transposition. To elucidate the role of recA, we focused on the muB gene of the enterobacteriophage Mu. Based on information from the NCBI Conserved Domain Database, both MuB and RecA belong to the P-loop dNTPase superfamily. Further experiments revealed that muB complements the transposition-defective phenotype of a recA deletant, although it could not rescue UV sensitivity. These results suggest that recA shares a common function with muB that helps the transposition of IS256Bsu1 in B. subtilis.
Collapse
Affiliation(s)
| | - Shota Harada
- Department of Bioscience, Tokyo University of Agriculture
| | - Syunsuke Moki
- Department of Bioscience, Tokyo University of Agriculture
| | - Yuki Okouji
- Department of Bioscience, Tokyo University of Agriculture
| | | | - Shigeki Kada
- Central Research Institute, Mitsukan Group Co., Ltd
| | | | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St Paul's) University
| | | | | | | |
Collapse
|
17
|
Berg DE. Julian Davies and the discovery of kanamycin resistance transposon Tn5. J Antibiot (Tokyo) 2016; 70:339-346. [PMID: 27731334 DOI: 10.1038/ja.2016.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022]
Abstract
This paper recounts some of my fond memories of a collaboration between Julian Davies and myself that started in 1974 in Geneva and that led to our serendipitous discovery of the bacterial kanamycin resistance transposon Tn5, and aspects of the lasting positive impact of our interaction and discovery on me and the community. Tn5 was one of the first antibiotic resistance transposons to be found. Its analysis over the ensuing decades provided valuable insights into mechanisms and control of transposition, and led to its use as a much-valued tool in diverse areas of molecular genetics, as also will be discussed here.
Collapse
Affiliation(s)
- Douglas E Berg
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc Natl Acad Sci U S A 2016; 113:8266-71. [PMID: 27382184 DOI: 10.1073/pnas.1520056113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.
Collapse
|
19
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
20
|
Davies EV, Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett 2016; 363:fnw015. [PMID: 26825679 DOI: 10.1093/femsle/fnw015] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages are viruses that infect bacteria. There are an estimated 10(31) phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection.
Collapse
Affiliation(s)
- Emily V Davies
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Chloe E James
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
21
|
Yang J, Kong Y, Li X, Yang S. A novel transposable Mu-like prophage in Bacillus alcalophilus CGMCC 1.3604 (ATCC 27647). Virol Sin 2015; 30:63-5. [PMID: 25628219 DOI: 10.1007/s12250-014-3497-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Ariane Toussaint
- Université Libre de Bruxelles; Génétique et physiologie bactérienne (LGPB) ; Campus de Gosselies - CP300 ; Charleroi (Gosselies), Belgium
| |
Collapse
|
23
|
Reticulate Evolution Everywhere. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [PMCID: PMC7115103 DOI: 10.1007/978-3-319-16345-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Hulo C, Masson P, Le Mercier P, Toussaint A. A structured annotation frame for the transposable phages: a new proposed family "Saltoviridae" within the Caudovirales. Virology 2014; 477:155-163. [PMID: 25500185 DOI: 10.1016/j.virol.2014.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/17/2022]
Abstract
Enterobacteriophage Mu is the best studied and paradigm member of the transposable phages. Mu-encoded proteins have been annotated in detail in UniProtKB and linked to a controlled vocabulary describing the various steps involved in the phage lytic and lysogenic cycles. Transposable phages are ubiquitous temperate bacterial viruses with a dsDNA linear genome. Twenty-six of them, that infect α, β and γ-proteobacteria, have been sequenced. Their conserved properties are described. Based on these characteristics, we propose a reorganization of the Caudovirales, to allow for the inclusion of a "Saltoviridae" family and two newly proposed subfamilies, the "Myosaltovirinae" and "Siphosaltovirinae". The latter could temporarily be included in the existing Myoviridae and Siphoviridae families.
Collapse
Affiliation(s)
- Chantal Hulo
- Swiss-Prot Group, Swiss Institute of Bioinformatics, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | - Patrick Masson
- Swiss-Prot Group, Swiss Institute of Bioinformatics, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | - Philippe Le Mercier
- Swiss-Prot Group, Swiss Institute of Bioinformatics, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | - Ariane Toussaint
- Université Libre de Bruxelles, Génétique et Physiologie Bactérienne (LGPB), 12 rue des Professeurs Jeener et Brachet, 6041 Charleroi (Gosselies), Belgium.
| |
Collapse
|
25
|
Abstract
Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Victor N Krylov
- Mechnikov Research Institute for Vaccines & Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
26
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
27
|
Toussaint A. Transposable Mu-like phages in Firmicutes: new instances of divergence generating retroelements. Res Microbiol 2013; 164:281-7. [DOI: 10.1016/j.resmic.2013.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
28
|
|
29
|
Harshey RM. The Mu story: how a maverick phage moved the field forward. Mob DNA 2012; 3:21. [PMID: 23217166 PMCID: PMC3562280 DOI: 10.1186/1759-8753-3-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
This article traces the pioneering contributions of phage Mu to our current knowledge of how movable elements move/transpose. Mu provided the first molecular evidence of insertion elements in E. coli, postulated by McClintock to control gene activity in maize in the pre-DNA era. An early Mu-based model successfully explained all the DNA rearrangements associated with transposition, providing a blueprint for navigating the deluge of accumulating reports on transposable element activity. Amplification of the Mu genome via transposition meant that its transposition frequencies were orders of magnitude greater than any rival, so it was only natural that the first in vitro system for transposition was established for Mu. These experiments unraveled the chemistry of the phosphoryl transfer reaction of transposition, and shed light on the nucleoprotein complexes within which they occur. They hastened a similar analysis of other transposons and ushered in the structural era where many transpososomes were crystallized. While it was a lucky break that the mechanism of HIV DNA integration turned out to be similar to that of Mu, it is no accident that current drugs for HIV integrase inhibitors owe their discovery to trailblazing experiments done with Mu. Shining the light on how movable elements restructure genomes, Mu has also given of itself generously to understanding the genome.
Collapse
Affiliation(s)
- Rasika M Harshey
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
30
|
Harada K, Yamashita E, Nakagawa A, Miyafusa T, Tsumoto K, Ueno T, Toyama Y, Takeda S. Crystal structure of the C-terminal domain of Mu phage central spike and functions of bound calcium ion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:284-91. [PMID: 22922659 DOI: 10.1016/j.bbapap.2012.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/30/2012] [Accepted: 08/16/2012] [Indexed: 11/16/2022]
Abstract
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92-Gln197) at 1.5Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.
Collapse
Affiliation(s)
- Kenichi Harada
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gain and loss of phototrophic genes revealed by comparison of two Citromicrobium bacterial genomes. PLoS One 2012; 7:e35790. [PMID: 22558224 PMCID: PMC3338782 DOI: 10.1371/journal.pone.0035790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a ‘photosynthesis gene cluster’ (abbreviated as the PGC) with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes), Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA) in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy.
Collapse
|
32
|
Jang S, Sandler SJ, Harshey RM. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli. PLoS Genet 2012; 8:e1002642. [PMID: 22511883 PMCID: PMC3325207 DOI: 10.1371/journal.pgen.1002642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/22/2012] [Indexed: 11/21/2022] Open
Abstract
Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5′ flaps attached to the ends of the incoming Mu genome, followed by filling the remaining 5 bp gaps at each end of the Mu insertion. It is widely assumed that the gaps are repaired by a gap-filling host polymerase. Using the E. coli Keio Collection to screen for mutants defective in recovery of stable Mu insertions, we show in this study that the gaps are repaired by the machinery responsible for the repair of double-strand breaks in E. coli—the replication restart proteins PriA-DnaT and homologous recombination proteins RecABC. We discuss alternate models for recombinational repair of the Mu gaps. Transposon activity shapes genome structure and evolution. The movement of these elements generates target site duplications as a result of staggered cuts in the target made initially by the transposase. For replicative transposons, the single-stranded gaps generated after the initial strand transfer event are filled by target-primed replication. However, the majority of known transposable elements transpose by a non-replicative mechanism. Despite a wealth of information available for the mechanism of transposase action, little is known about how the cell repairs gaps left in the wake of transposition of these majority elements. Phage Mu is unique in using both replicative and non-replicative modes of transposition. Our study finds that during its non-replicative pathway, the gaps created by Mu insertion are repaired by the primary machinery for double-strand break repair in E. coli, not by gap-filling polymerases as previously thought. This first report of specific host processes involved in repair of transposon insertions in bacteria is likely to have a broad significance, given also that double-strand break repair pathways have been implicated in repair of the retroviral and Line retroelement insertions.
Collapse
Affiliation(s)
- Sooin Jang
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven J. Sandler
- Department of Microbiology, Morill Science Center, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Rasika M. Harshey
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Bacteria and bacteriophages have evolved DNA modification as a strategy to protect their genomes. Mom protein of bacteriophage Mu modifies the phage DNA, rendering it refractile to numerous restriction enzymes and in turn enabling the phage to successfully invade a variety of hosts. A strong fortification, a combined activity of the phage and host factors, prevents untimely expression of mom and associated toxic effects. Here, we identify the bacterial chromatin architectural protein Fis as an additional player in this crowded regulatory cascade. Both in vivo and in vitro studies described here indicate that Fis acts as a transcriptional repressor of mom promoter. Further, our data shows that Fis mediates its repressive effect by denying access to RNA polymerase at mom promoter. We propose that a combined repressive effect of Fis and previously characterized negative regulatory factors could be responsible to keep the gene silenced most of the time. We thus present a new facet of Fis function in Mu biology. In addition to bringing about overall downregulation of Mu genome, it also ensures silencing of the advantageous but potentially lethal mom gene.
Collapse
Affiliation(s)
- Shweta Karambelkar
- Department of Microbiology and Cell Biology, Indian Institute of Science and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | | | | |
Collapse
|
34
|
Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 2011; 421:211-21. [DOI: 10.1016/j.virol.2011.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/25/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
35
|
Smith ML, Avanigadda LN, Liddell PW, Kenwright KM, Howe MM. Identification of the J and K genes in the bacteriophage Mu genome sequence. FEMS Microbiol Lett 2010; 313:29-32. [DOI: 10.1111/j.1574-6968.2010.02128.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol 2010; 192:6418-27. [PMID: 20935093 DOI: 10.1128/jb.00621-10] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Random transposon mutagenesis is the strategy of choice for associating a phenotype with its unknown genetic determinants. It is generally performed by mobilization of a conditionally replicating vector delivering transposons to recipient cells using broad-host-range RP4 conjugative machinery carried by the donor strain. In the present study, we demonstrate that bacteriophage Mu, which was deliberately introduced during the original construction of the widely used donor strains SM10 λpir and S17-1 λpir, is silently transferred to Escherichia coli recipient cells at high frequency, both by hfr and by release of Mu particles by the donor strain. Our findings suggest that bacteriophage Mu could have contaminated many random-mutagenesis experiments performed on Mu-sensitive species with these popular donor strains, leading to potential misinterpretation of the transposon mutant phenotype and therefore perturbing analysis of mutant screens. To circumvent this problem, we precisely mapped Mu insertions in SM10 λpir and S17-1 λpir and constructed a new Mu-free donor strain, MFDpir, harboring stable hfr-deficient RP4 conjugative functions and sustaining replication of Π-dependent suicide vectors. This strain can therefore be used with most of the available transposon-delivering plasmids and should enable more efficient and easy-to-analyze mutant hunts in E. coli and other Mu-sensitive RP4 host bacteria.
Collapse
|
37
|
The C-terminal domain is sufficient for host-binding activity of the Mu phage tail-spike protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1738-42. [DOI: 10.1016/j.bbapap.2010.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/28/2010] [Accepted: 05/10/2010] [Indexed: 11/17/2022]
|
38
|
Wynne EC, Pemberton JM. Cloning of a Gene Cluster from Cellvibrio mixtus which Codes for Cellulase, Chitinase, Amylase, and Pectinase. Appl Environ Microbiol 2010; 52:1362-7. [PMID: 16347240 PMCID: PMC239234 DOI: 10.1128/aem.52.6.1362-1367.1986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil isolate Cellvibrio mixtus UQM2294 degraded a variety of polysaccharides including microcrystalline cellulose. Among 6,000 cosmid clones carrying C. mixtus DNA, constructed in Escherichia coli with pHC79, 50 expressed the ability to degrade one or more of the following substrates: carboxymethyl cellulose, chitin, pectin (polygalacturonic acid), cellobiose, and starch. These degradative genes are encoded in a single 94.1-kilobase segment of the C. mixtus genome; a preliminary order of the genes is starch hydrolysis, esculin hydrolysis, cellobiose utilization, chitin hydrolysis, carboxymethyl cellulose hydrolysis, and polygalacturonic acid hydrolysis. A restriction endonuclease cleavage map was constructed, and the genes for starch, carboxymethyl cellulose, cellobiose, chitin, and pectin hydrolysis were subcloned.
Collapse
Affiliation(s)
- E C Wynne
- Department of Microbiology, University of Queensland, St. Lucia, 4067, Queensland, Australia
| | | |
Collapse
|
39
|
Miller WJ, Capy P. Applying mobile genetic elements for genome analysis and evolution. Mol Biotechnol 2010; 33:161-74. [PMID: 16757803 DOI: 10.1385/mb:33:2:161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host genomes, these parasitc DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus during evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical "toolbox," essential for studying a diverse spectrum of biological questions. In this review, we aim to summarize both the evolutionary impact of TEs on genome evolution and their valuable and diverse methodological applications as molecular tools.
Collapse
Affiliation(s)
- Wolfgang J Miller
- Laboratories of Genome Dynamics, Center of Anatomy and Cell Biology, Medical University of Vienna, Waehringerstr. 10, 1090 Vienna, Austria.
| | | |
Collapse
|
40
|
Jyssum K, Jyssum S. Isolation of variants with increases mutability from Neisseria meningitidis. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA 2009; 74:93-100. [PMID: 4973434 DOI: 10.1111/j.1699-0463.1968.tb03459.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Coberly LC, Wei W, Sampson KY, Millstein J, Wichman HA, Krone SM. Space, time, and host evolution facilitate coexistence of competing bacteriophages: theory and experiment. Am Nat 2009; 173:E121-38. [PMID: 19226233 DOI: 10.1086/597226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present a joint experimental/theoretical investigation into the roles of spatial structure and time in the competition between two pathogens for a single host. We suggest a natural mechanism by which competing pathogens can coexist when host evolution and competitive dynamics occur on similar timescales. Our experimental system consisted of a single bacterial host species and two competing bacteriophage strains grown on agar plates, with a serial transfer of samples of the bacteriophage population to fresh host populations after each incubation cycle. The experiments included two incubation times and two transfer protocols that either maintained or disrupted the spatial structure of the viruses at each transfer. The same bacteriophage acted as the dominant competitor under both transfer protocols. A striking difference between the treatments is that the weak competitor was able to persist in the long-incubation experiments but not in the short-incubation experiments. Mathematical and experimental evidence suggest that coexistence is due to the appearance of resistant mutant host cells that provide a transient "spatiotemporal refuge" for the weaker competitor. Our mathematical model is individual based, captures the stochastic spatial dynamics down to the level of individual cells, and helps to explain the differences in behavior under the various experimental conditions.
Collapse
Affiliation(s)
- L Caitlin Coberly
- Department of Biological Science, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Tn5 was one of the first transposons to be identified ( 10 ). As a result of Tn5's early discovery and its simple macromolecular requirements for transposition, the Tn5 system has been a very productive tool for studying the molecular mechanism of DNA transposition. These studies are of broad value because they offer insights into DNA transposition in general, because DNA transposition is a useful model with which to understand other types of protein-DNA interactions such as retroviral DNA integration and the DNA cleavage events involved in immunoglobulin gene formation, and because Tn5-derived tools are useful adjuncts in genetic experimentation.
Collapse
Affiliation(s)
- William S Reznikoff
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
43
|
Ge J, Harshey RM. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration. J Mol Biol 2008; 380:598-607. [PMID: 18556020 DOI: 10.1016/j.jmb.2008.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Phage Mu transposes promiscuously, employing protein MuB for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into hot and cold Mu targets within the Escherichia coli genome. Although higher binding of MuB to select hot versus cold genes was seen in vivo, the hot genes had an average A/T content and were less preferred targets in vitro, whereas cold genes had higher A/T values and were more efficient targets in vitro. These data suggest that A/T-rich regions are unavailable for MuB binding, and that A/T content is not a good predictor of Mu behavior in vivo. Insertion patterns within two hot genes in vivo could be superimposed on those obtained in vitro in reactions employing purified MuA transposase and MuB, ruling out the contribution of a special DNA structure or additional host factors to the hot behavior of these genes. While A/T-rich DNA is a preferred target in vitro, a fragment made up exclusively of A/T was an extremely poor target. A continuous MuB filament assembled along the A/T region likely protects it against the action of MuA. Our results suggest that MuB binds E. coli DNA in an interspersed manner utilizing local A/T richness, and facilitates capture of these bound regions by the transpososome. Actual integration events are then directed to sites that are in proximity to MuB filaments but are themselves free of MuB.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
44
|
Duan J, Yi T, Lu Z, Shen D, Feng Y. Rice endophytePantoea agglomeransYS19 forms multicellular symplasmata via cell aggregation. FEMS Microbiol Lett 2007; 270:220-6. [PMID: 17391364 DOI: 10.1111/j.1574-6968.2007.00677.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pantoea agglomerans is characterized by the formation of multicellular symplasmata. One unanswered question regarding this bacterium is how these structures are formed. In this study, the rice diazotrophic endophyte P. agglomerans YS19 was selected for exploration of this theme. YS19 was labeled with green fluorescent protein and the resulting recombinant YS19::gfp was observed to grow only slightly more slowly (a decrease of 5.5%) than the wild-type strain, and to show high GFP label stability (label loss rate 8.9218 x 10(-6) per generation, nearly reaching the generally accepted spontaneous mutation rate for most bacteria). YS19::gfp resembled the wild-type YS19 in symplasmata formation and growth profiles. Based on associated cultivation of both strains by mixing their individually cultivated single cells, symplasmata were formed and composed of both YS19::gfp and YS19, suggesting that YS19 formed symplasmata via aggregation, not proliferation, of the original single cells.
Collapse
Affiliation(s)
- Jinyan Duan
- School of Biological Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | | | | | | | | |
Collapse
|
45
|
Abstract
Coupling the expression of a gene with an easily assayable reporter gene provides a simple genetic trick for studying the regulation of gene expression. Two types of fusions between a gene and a reporter gene are possible. Operon fusions place the transcription of a reporter gene under the control of the promoter of a target gene, but the translation of the reporter gene and target gene are independent; gene fusions place the transcription and translation of a reporter gene under the control of a target gene, and result in a hybrid protein. Such fusions can be constructed in vitro using recombinant DNA techniques or in vivo using transposon derivatives. Many different transposon derivatives are available for constructing operon and gene fusions, but two extremely useful fusion vectors are (1) Mu derivatives that form operon and gene fusions to the lacZ gene, and (2) Tn5 derivative that forms gene fusions to the phoA gene.
Collapse
Affiliation(s)
- Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
46
|
Abstract
The chemotaxis system, but not chemotaxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium. Mutants in the chemotaxis pathway exhibit fewer and shorter flagella, downregulate class 3 or 'late' motility genes, and appear to be less hydrated when propagated on a surface. We show here that the output of the chemotaxis system, CheY approximately P, modulates motor bias during swarming as it does during chemotaxis, but for a distinctly different end. A constitutively active form of CheY was found to promote swarming in the absence of several upstream chemotaxis components. Two point mutations that suppressed the swarming defect of a cheY null mutation mapped to FliM, a protein in the motor switch complex with which CheY approximately P interacts. A common property of these suppressors was their increased frequency of motor reversal. These and other data suggest that the ability to switch motor direction is important for promoting optimal surface wetness. If the surface is sufficiently wet, exclusively clockwise or counterclockwise directions of motor rotation will support swarming, suggesting also that the bacteria can move on a surface with flagellar bundles of either handedness.
Collapse
Affiliation(s)
- Susana Mariconda
- Section of Molecular Genetics and Microbiology & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
47
|
Piruzian ES. From the mechanisms of genetic transposition to the functional genomics. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Braid MD, Silhavy JL, Kitts CL, Cano RJ, Howe MM. Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J Bacteriol 2004; 186:6560-74. [PMID: 15375138 PMCID: PMC516594 DOI: 10.1128/jb.186.19.6560-6574.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage B3 is a transposable phage of Pseudomonas aeruginosa. In this report, we present the complete DNA sequence and annotation of the B3 genome. DNA sequence analysis revealed that the B3 genome is 38,439 bp long with a G+C content of 63.3%. The genome contains 59 proposed open reading frames (ORFs) organized into at least three operons. Of these ORFs, the predicted proteins from 41 ORFs (68%) display significant similarity to other phage or bacterial proteins. Many of the predicted B3 proteins are homologous to those encoded by the early genes and head genes of Mu and Mu-like prophages found in sequenced bacterial genomes. Only two of the predicted B3 tail proteins are homologous to other well-characterized phage tail proteins; however, several Mu-like prophages and transposable phage D3112 encode approximately 10 highly similar proteins in their predicted tail gene regions. Comparison of the B3 genomic organization with that of Mu revealed evidence of multiple genetic rearrangements, the most notable being the inversion of the proposed B3 immunity/early gene region, the loss of Mu-like tail genes, and an extreme leftward shift of the B3 DNA modification gene cluster. These differences illustrate and support the widely held view that tailed phages are genetic mosaics arising by the exchange of functional modules within a diverse genetic pool.
Collapse
Affiliation(s)
- Michael D Braid
- Biological Sciences Department and Environmental Biotechnology Institute, California Polytechnic State University, San Luis Obispo, California, USA
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Giuseppe Bertani
- Biology Division, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
50
|
Demongeot J, Thuderoz F, Baum TP, Berger F, Cohen O. Bio-array images processing and genetic networks modelling. C R Biol 2003; 326:487-500. [PMID: 12886876 DOI: 10.1016/s1631-0691(03)00114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The new tools available for gene expression studies are essentially the bio-array methods using a large variety of physical detectors (isotopes, fluorescent markers, ultrasounds...). Here we present first rapidly an image-processing method independent of the detector type, dealing with the noise and with the peaks overlapping, the peaks revealing the detector activity (isotopic in the presented example), correlated with the gene expression. After this primary step of bio-array image processing, we can extract information about causal influence (activation or inhibition) a gene can exert on other genes, leading to clusters of genes co-expression in which we extract an interaction matrix M and an associated interaction graph G explaining the genetic regulatory dynamics correlated to the studied tissue function. We give two examples of such interaction matrices and graphs (the flowering genetic regulatory network of Arabidopsis thaliana and the lytic/lysogenic operon of the phage Mu) and after some theoretical rigorous results recently obtained concerning the asymptotic states generated by the genetic networks having a given interaction matrix and reciprocally concerning the minimal (in the sense of having a minimal number of non-zero coefficients) matrices having given stationary stable states.
Collapse
Affiliation(s)
- Jacques Demongeot
- TIMC-IMAG, CNRS 5525, Faculty of Medicine, 38700 La Tronche, France.
| | | | | | | | | |
Collapse
|