1
|
Zou W, Lu J, Zhang L, Sun D. Tetrahedral framework nucleic acids for improving wound healing. J Nanobiotechnology 2024; 22:113. [PMID: 38491372 PMCID: PMC10943864 DOI: 10.1186/s12951-024-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. In recent years, there has been growing interest in developing innovative strategies to enhance the efficacy of wound healing. Tetrahedral framework nucleic acids (tFNAs) have emerged as a promising tool for wound healing applications due to their unique structural and functional properties. Therefore, it is of great significance to summarize the applications of tFNAs for wound healing. This review article provides a comprehensive overview of the potential of tFNAs as a novel therapeutic approach for wound healing. In this review, we discuss the possible mechanisms of tFNAs in wound healing and highlight the role of tFNAs in modulating key processes involved in wound healing, such as cell proliferation and migration, angiogenesis, and tissue regeneration. The targeted delivery and controlled release capabilities of tFNAs offer advantages in terms of localized and sustained delivery of therapeutic agents to the wound site. In addition, the latest research progress on tFNAs in wound healing is systematically introduced. We also discuss the biocompatibility and biosafety of tFNAs, along with their potential applications and future directions for research. Finally, the current challenges and prospects of tFNAs are briefly discussed to promote wider applications.
Collapse
Affiliation(s)
- Wanqing Zou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, Guangdong, China.
| |
Collapse
|
2
|
Li M, Liao HX, Bando K, Nawa Y, Fujita S, Fujita K. Label-Free Monitoring of Drug-Induced Cytotoxicity and Its Molecular Fingerprint by Live-Cell Raman and Autofluorescence Imaging. Anal Chem 2022; 94:10019-10026. [PMID: 35786862 DOI: 10.1021/acs.analchem.2c00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous observation of drug distribution at the effector site and subsequent cell response are essential in the drug development process. However, few studies have visualized the drug itself and biomolecular interactions in living cells. Here, we used label-free Raman microscopy to investigate drug-induced cytotoxicity and visualize drug uptake and subcellular localization by its specific molecular fingerprint. A redox-sensitive Raman microscope detected the decrease of reduced cytochrome c (cyt c) after Actinomycin D (ActD) treatment in a time-dependent and dose-dependent format. Immunofluorescence staining of cyt c suggested that the release of cyt c was not the major cause. Combining Raman microscopy with conventional biological methods, we reported that the oxidization of cyt c is an early cytotoxicity marker prior to the release of cyt c. Moreover, as the spectral properties of ActD are sensitive to the surrounding environment, subcellular localization of ActD was visualized sensitively by the weak autofluorescence, and the intercalation of ActD into DNA was detected by shifted Raman peaks, allowing for parallel observation of drug uptake and the mechanism of action. In this research, we achieved simultaneous observation of cytotoxicity and cellular drug uptake by Raman microscopy, which could facilitate a precise understanding of pharmacological effects and predict potential drug toxicity in the future.
Collapse
Affiliation(s)
- Menglu Li
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Hao-Xiang Liao
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasunori Nawa
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Satoshi Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Kiss A, Csikos C, Regdon Z, Polgár Z, Virág L, Hegedűs C. NMNAT1 Is a Survival Factor in Actinomycin D-Induced Osteosarcoma Cell Death. Int J Mol Sci 2021; 22:8869. [PMID: 34445574 PMCID: PMC8396190 DOI: 10.3390/ijms22168869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Csikos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| |
Collapse
|
4
|
Lee DS, Qian H, Tay CY, Leong DT. Cellular processing and destinies of artificial DNA nanostructures. Chem Soc Rev 2016; 45:4199-225. [DOI: 10.1039/c5cs00700c] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review gives a panoramic view of the many DNA nanotechnology applications in cells, mechanistic understanding of how and where their interactions occur and their subsequent outcomes.
Collapse
Affiliation(s)
- Di Sheng Lee
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Department of Materials Science and Engineering
| | - Hang Qian
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- School of Materials Science and Engineering
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
5
|
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21822-31. [PMID: 24941440 DOI: 10.1021/am502591c] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel theranostic platform is made by utilizing a self-assembled DNA nanopyramid (DP) as scaffold for incorporation of both detection and therapeutic moieties to combat bacterial infection. Red-emissive glutathione-protected gold nanoclusters (GSH-Au NCs) were used for bacterial detection. Actinomycin D (AMD) that was intercalated on the DP scaffold was used as therapeutic agent. This results in the formation of theranostic DPAu/AMD. Model bacteria Escherichia coli and Staphylococcus aureus were found to be readily taken in the DPAu/AMD and be susceptible to its killing effect. In addition, DPAu/AMD was observed to outperform the free AMD in killing infectious bacteria. The degradation of the DP structure by DNase was found to be responsible for the release of AMD and the effective killing effect of the infectious bacteria. This novel strategy presents a basic platform for future improvements to detect infectious bacteria and treatment.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering 4, Singapore 117585, Singapore
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Paramanathan T, Vladescu I, McCauley MJ, Rouzina I, Williams MC. Force spectroscopy reveals the DNA structural dynamics that govern the slow binding of Actinomycin D. Nucleic Acids Res 2012; 40:4925-32. [PMID: 22328730 PMCID: PMC3367174 DOI: 10.1093/nar/gks069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Actinomycin D (ActD) is a small molecule with strong antibiotic and anticancer activity. However, its biologically relevant DNA-binding mechanism has never been resolved, with some studies suggesting that the primary binding mode is intercalation, and others suggesting that single-stranded DNA binding is most important. To resolve this controversy, we develop a method to quantify ActD’s equilibrium and kinetic DNA-binding properties as a function of stretching force applied to a single DNA molecule. We find that destabilization of double stranded DNA (dsDNA) by force exponentially facilitates the extremely slow ActD-dsDNA on and off rates, with a much stronger effect on association, resulting in overall enhancement of equilibrium ActD binding. While we find the preferred ActD–DNA-binding mode to be to two DNA strands, major duplex deformations appear to be a pre-requisite for ActD binding. These results provide quantitative support for a model in which the biologically active mode of ActD binding is to pre-melted dsDNA, as found in transcription bubbles. DNA in transcriptionally hyperactive cancer cells will therefore likely efficiently and rapidly bind low ActD concentrations (∼10 nM), essentially locking ActD within dsDNA due to its slow dissociation, blocking RNA synthesis and leading to cell death.
Collapse
|
8
|
Hamoir G, Sonveaux E. 3′-5′ Cyclic Oligothymidylic Acids: Conformation and Complexation of Intercalating Agents. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bscb.19931020506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Chen FM, Sha F, Chin KH, Chou SH. Unique actinomycin D binding to self-complementary d(CXYGGCCY'X'G) sequences: duplex disruption and binding to a nominally base-paired hairpin. Nucleic Acids Res 2003; 31:4238-46. [PMID: 12853642 PMCID: PMC167638 DOI: 10.1093/nar/gkg477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Actinomycin D (ACTD) has been shown to bind weakly to the sequence -GGCC-, despite the presence of a GpC site. It was subsequently found, however, that d(CATGGCCATG) binds relatively well to ACTD but exhibits unusually slow association kinetics, contrary to the strong-binding -XGCY- sites. In an effort to elucidate the nature of such binding and to delineate the origin of its interesting kinetic behavior, studies have now been extended to include oligomers with the general sequence motifs of d(CXYGGCCY'X'G)(2). It was found that analogous binding characteristics are observed for these self-duplex decamers and comparative studies with progressively base-truncated oligomers from the 5'-end led to the finding that d(GGCCY'X'G) oligomers bind ACTD considerably stronger than their parent decamers and exhibit 1:1 drug/strand binding stoichiometry. Melting profiles monitored at the drug spectral region indicated additional drug binding prior to the onset of eventual complex disruptions with near identical melting temperatures for all the oligomers studied. These results are consistent with the notion that the related oligomers share a common strong binding mode of a hairpin-type, with the 3'-terminus G folding back to base-pair with the C base of GGC. A binding scheme is proposed in which the oligomers d(CXYGGCCY'X'G) exist predominantly in the duplex form and bind ACTD initially at the central GGCC weak site but subsequently disrupt to accommodate the stronger hairpin binding and thus the slow association kinetics. Such a mechanism is supported by the observation of distinct biphasic fluorescence kinetic traces in the binding of 7-amino-ACTD to these duplexes.
Collapse
Affiliation(s)
- Fu-Ming Chen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA.
| | | | | | | |
Collapse
|
10
|
Chen FM, Sha F, Chin KH, Chou SH. Binding of actinomycin D to single-stranded DNA of sequence motifs d(TGTCT(n)G) and d(TGT(n)GTCT). Biophys J 2003; 84:432-9. [PMID: 12524296 PMCID: PMC1302624 DOI: 10.1016/s0006-3495(03)74863-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Our recent binding studies with oligomers derived from base replacements on d(CGTCGTCG) had led to the finding that actinomycin D (ACTD) binds strongly to d(TGTCATTG) of apparent single-stranded conformation without GpC sequence. A fold-back binding model was speculated in which the planar phenoxazone inserts at the GTC site with a loop-out T base whereas the G base at the 3'-terminus folds back to form a basepair with the internal C and stacks on the opposite face of the chromophore. To provide a more concrete support for such a model, ACTD equilibrium binding studies were carried out and the results are reported herein on oligomers of sequence motifs d(TGTCT(n)G) and d(TGT(n)GTC). These oligomers are not expected to form dimeric duplexes and contain no canonical GpC sequences. It was found that ACTD binds strongly to d(TGTCTTTTG), d(TGTTTTGTC), and d(TGTTTTTGTC), all exhibiting 1:1 drug/strand binding stoichiometry. The fold-back binding model with displaced T base is further supported by the finding that appending TC and TCA at the 3'-terminus of d(TGTCTTTTG) results in oligomers that exhibit enhanced ACTD affinities, consequence of the added basepairing to facilitate the hairpin formation of d(TGTCTTTTGTC) and d(TGTCTTTTGTCA) in stabilizing the GTC/GTC binding site for juxtaposing the two G bases for easy stacking on both faces of the phenoxazone chromophore. Further support comes from the observation of considerable reduction in ACTD affinity when GTC is replaced by GTTC in an oligomer, in line with the reasoning that displacing two T bases to form a bulge for ACTD binding is more difficult than displacing a single base. Based on the elucidated binding principle of phenoxazone ring requiring its opposite faces to be stacked by the 3'-sides of two G bases for tight ACTD binding, several oligonucleotide sequences have been designed and found to bind well.
Collapse
Affiliation(s)
- Fu-Ming Chen
- Department of Chemistry, Tennessee State University, Nashville 37209, USA.
| | | | | | | |
Collapse
|
11
|
Wadkins RM, Tung CS, Vallone PM, Benight AS. The role of the loop in binding of an actinomycin D analog to hairpins formed by single-stranded DNA. Arch Biochem Biophys 2000; 384:199-203. [PMID: 11147831 DOI: 10.1006/abbi.2000.2113] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our recent work has indicated that the potent antibiotic and antitumor agent actinomycin D has the ability to selectively bind and stabilize single-stranded DNA that is capable of adopting a hairpin conformation. This mechanism of DNA binding has been implicated in the drug's ability to inhibit transcription by HIV reverse transcriptase from single-stranded DNA templates. In this report, we studied the importance of the hairpin loop on the ability of the 7-amino analog of actinomycin D to selectively bind DNA hairpins. Binding dissociation constant (Kd) values were determined to be 0.22 +/- 0.11 microM for the hairpin formed from the single-stranded DNA 5'-AAAAAAATAGTTTTAAATATTTTTTT-3' (dubbed HP1). The hairpin stem without the loop resulted in binding with Kd = 2.6 +/- 0.9 microM. The drug showed low affinity for the HP1 strand fully duplexed to its complementary sequence (estimated to be at least Kd > 21 microM). Evaluation of 7-aminoactinomycin D binding to a library of thermodynamically characterized DNA hairpins revealed an affinity for the hairpin-forming sequence 5'-GGATACCCCCGTATCC-3' (dubbed ACC4) of Kd = 6.8 +/- 2.2 microM. Replacement of the terminal guanines of this sequence to generate 5'-ATATACCCCCGTATAT-3' resulted in a 10-fold increase in affinity for this hairpin compared to ACC4, to Kd = 0.74 +/- 0.06 microM. A molecular model of the ACC4actinomycin D complex reveals that significant interactions between the hairpin loop and the pentapeptide rings of the drug must occur during drug binding. Taken together, our data indicate that the composition of the stem-loop interface is critical for the selectivity of actinomycin D and its 7-amino analog for DNA hairpins and suggests that novel drugs may be designed based on selection for the desired hairpin composition.
Collapse
Affiliation(s)
- R M Wadkins
- Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
12
|
Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 2000; 4:199-220. [PMID: 10731095 DOI: 10.1179/135100099101534927] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
13
|
Abstract
We have studied the binding of echinomycin to DNA fragments containing GC-rich regions flanked by blocks of alternating AT by DNase I footprinting and diethylpyrocarbonate modification. Regions of alternating AT flanking the sequences CCCG, CCGC, CGGC and GG show a four base pair DNase I cleavage pattern and reaction of alternate adenines with diethylpyrocarbonate. This pattern is strongest when the AT-block is immediately adjacent to the CpG ligand binding site. We explain these phenomena by suggesting that echinomycin binds to the dinucleotide step ApT in a cooperative fashion. The cooperative effects can be transmitted through the dinucleotide step GC but not CC or AA. No such repetitive patterns are seen with surrounding regions of (ATT).(AAT). Evidence is presented for secondary drug binding sites at CpC and TpG with weaker interaction at the CpG site within the hexanucleotide TTCGAA.
Collapse
Affiliation(s)
- K R Fox
- Department of Physiology & Pharmacology, University of Southampton, UK
| | | | | |
Collapse
|
14
|
Chen FM. Observation of an anomalously slow association kinetics in the binding of actinomycin D to d(CATGGCCATG). Biochemistry 1990; 29:7684-90. [PMID: 2271527 DOI: 10.1021/bi00485a018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unusually slow association process which accounts for the bulk of its dichroic changes at 293 nm is observed for d(CAT-GGCC-ATG) when it reacts with actinomycin D (ACTD). This is in contrast to an order of magnitude faster association rates exhibited by oligomers containing a self-complementary tetranucleotide ACTD binding sequence (-TGCA-, -AGCT-, or -CGCG-). The number of drug molecules bound and the melting temperature increase upon ACTD binding are significantly higher for d(CAT-GGCC-ATG) than for other decamers studied. Temperature-dependent spectral measurements of this oligomer in the presence of ACTD suggest additional drug binding prior to denaturation. This particular decamer sequence may be unique, as other decamers containing central -GGCC- sequence and even those differing only by the terminal bases such as d(TAT-GGCC-ATA) and d(GAT-GGCC-ATC) are only weakly binding and do not exhibit such anomalously slow ACTD association kinetics, whereas the dodecamer d(CCAT-GGCC-ATGG) does. CD evidence indicates that, in contrast to the other -GGCC- containing oligomers, both d(CCAT-GGCC-ATGG) and its parent decamer exhibit nonstandard B conformations. The observed slow association kinetics and its interesting D/P dependence are rationalized in terms of a model in which the ACTD molecules initially end-stack and distort the oligomer duplex to a favorable ACTD-binding conformation so that intercalation at the central G-C sequence can occur via DNA breathing.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F M Chen
- Department of Chemistry, Tennessee State University, Nashville 37209-1561
| |
Collapse
|
15
|
Rill RL, Marsch GA, Graves DE. 7-Azido-actinomycin D: a photoaffinity probe of the sequence specificity of DNA binding by actinomycin D. J Biomol Struct Dyn 1989; 7:591-605. [PMID: 2627300 DOI: 10.1080/07391102.1989.10508509] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actinomycin D (ActD) is a DNA-binding antitumor antibiotic that appears to act in vivo by inhibiting RNA polymerase. The mechanism of DNA binding of ActD has attracted much attention because of its strong preference for 5'-dGpdC-3' sequences. Binding is thought to involve intercalation of the tricyclic aromatic phenoxazone ring into a GC step, with the two equivalent cyclic pentapeptide lactone substituents lying in the minor groove and making hydrogen bond contacts with the 2-amino groups of the nearest neighbor guanines. Recent studies have indicated, however, that binding is also influenced by next-nearest neighboring bases. We have examined this higher order specificity using 7-azido-actinomycin-D as a photoaffinity probe, and DNA sequencing techniques to quantitatively monitor sites of covalent photoaddition. We found that GC doublets were strongly preferred only if the 5'-flanking base was a pyrimidine and the 3'-flanking base was not cytosine. In addition we observed a previously unreported preference for binding at a GG doublet in the sequence 5'-TGGG-3'.
Collapse
Affiliation(s)
- R L Rill
- Department of Chemistry, Florida State University, Tallahassee 32306
| | | | | |
Collapse
|
16
|
Chen FM. Kinetic and equilibrium binding studies of actinomycin D with some d(TGCA)-containing dodecamers. Biochemistry 1988; 27:1843-8. [PMID: 3378033 DOI: 10.1021/bi00406a008] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Comparative kinetic, melting, and equilibrium binding studies of actinomycin D (ACTD) with d(ATATACGTATAT), four d(TGCA)-containing dodecamers, and poly(dG-dC).poly(dG-dC) revealed that (1) the affinity of ACTD for the dC-dG sequence is much less than for the dG-dC sequence; (2) ACTD forms 1:1 and 2:1 drug-duplex complexes with d(TATATGCATATA) and d(TATGCATGCATA), respectively, and their SDS driven dissociations exhibit single-exponential characteristics with rates (approximately 5 X 10(-4)s-1 at 20 degrees C) slightly slower than that of poly(dG-dC).poly(dG-dC); (3) although the melting temperature of d(CATGCATGCATG) is 8-9 deg higher than that of d(TATGCATGCATA), the rates of ACTD dissociation from these two oligomers are not greatly different and binding constants of (1-5) X 10(7) M-1 have been estimated for both; (4) a 3:1 stoichiometry is exhibited by ACTD binding to duplex d(TGCATGCATGCA) and the complex dissociates with two characteristic times, the fast component (1/k = approximately 100 s) comprising 2/3 of the contribution and the slow process (approximately 2000 s) contributing the other 1/3; and (5) the slow dissociation kinetics of an oligomer appears to be correlated to the higher percentage of slow association kinetics detectable by non-stop-flow techniques. These results indicate that the d(TGCA) sequence is a stronger binding and a slower dissociation site than the d(CGCG) sequence and suggest that base pairs flanking the dG-dC intercalative site may modulate interactions of the pentapeptide rings of ACTD with the DNA minor groove.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F M Chen
- Department of Chemistry, Tennessee State University, Nashville 37203
| |
Collapse
|
17
|
Study of structures of complexes of proflavine with dinucleotides in aqueous solution by the1H NMR method. J STRUCT CHEM+ 1987. [DOI: 10.1007/bf00755201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Abstract
Batch calorimetry, differential scanning calorimetry (DSC), uv/vis absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD), have been used to detect, monitor, and thermodynamically characterize the binding of daunomycin, dipyrandenium, dipyrandium, and netropsin to poly d(AT) and actinomycin D to salmon testes (ST) DNA. The following thermodynamic binding profiles have been obtained. (table; see text) All the poly d(AT) binding studies were done at 25 degrees C while actinomycin binding to ST DNA was performed at 1 degree C to enhance drug solubility. These thermodynamic parameters are interpreted in terms of specific interactions that have been proposed as part of models for the binding of each drug.
Collapse
Affiliation(s)
- L A Marky
- Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903
| | | | | | | |
Collapse
|
19
|
Lane MJ, Dabrowiak JC, Vournakis JN. Sequence specificity of actinomycin D and Netropsin binding to pBR322 DNA analyzed by protection from DNase I. Proc Natl Acad Sci U S A 1983; 80:3260-4. [PMID: 6304702 PMCID: PMC394020 DOI: 10.1073/pnas.80.11.3260] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A direct approach to determining the sequence specificities of equilibrium binding drugs by using the DNase protection technique is described. The method utilizes singly end-labeled restriction fragments and partial digestion of the drug fragment complex with DNase I. Microdensitometry of autoradiograms produced after electrophoretic separation of digestion products allows determination of sequences that are affected by drug binding. The feasibility of the technique for locating small ligands bound to DNA and its eventual use as a quantitative thermodynamic approach to studying ligand binding to heterogeneous DNA as a function of sequence is illustrated by using actinomycin D and Netropsin.
Collapse
|
20
|
Helene C, Maurizot JC. Interactions of oligopeptides with nucleic acids. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1981; 10:213-58. [PMID: 6260429 DOI: 10.3109/10409238109113600] [Citation(s) in RCA: 156] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Chen Chiao YC, Gurudath Rao K, Hook JW, Krugh TR, Sengupta SK. 7-Amino-actinomycin D complexes with deoxynucleotides as models for the binding of the drug to DNA. Biopolymers 1979; 18:1749-62. [PMID: 540129 DOI: 10.1002/bip.1979.360180712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Fasy T, Kallos J, Bick M. Increased binding of actinomycin D to halodeoxyuridine-substituted DNAs. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Reinhardt CG, Krugh TR. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry 1978; 17:4845-54. [PMID: 718859 DOI: 10.1021/bi00616a001] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Auer HE, Thompson TN. Actinomycin D-deoxynucleotide interactions: binding isotherms at the benzenoid and quinoid portions of the drug. Proc Natl Acad Sci U S A 1978; 75:4729-33. [PMID: 283386 PMCID: PMC336193 DOI: 10.1073/pnas.75.10.4729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Titrations of actinomycin D (AMD) with dG and with dG-dC were monitored by circular dichroism at 380 nm and 470 nm. These wavelengths are sensitive predominantly to nucleotide binding processes at the benzenoid and quinoid portions, respectively, of the phenoxazone ring of the drug chromophore [Auer, H.E., Pawlowski-Konopnicki, B.E., Chiao, Y.C.C. & Krugh, T.R. (1978), Biopolymers, 17, 1891-1911.]. The temperature dependence of these isotherms was analyzed by the van't Hoff equation to obtain values for the enthalpy and entropy changes. For dG these are about -11 kcal mol-1 and -20 cal mol-1 deg-1, respectively, for complex formation at both the benzenoid and quinoid sites (1 cal = 4.184 J). The enthalpy and entropy changes for complex formation with dG-dC remain unchanged at the benzenoid site, but both values are more negative at the quinoid site. These results indicate that the additional process of binding C in the intercalated AMD-(dG-dC)2 complex, with respect to the simply stacked AMD-dG2 complex, has distinctive properties at the two sites, reflecting their structural differences. The ability to resolve binding processes at the two sites by circular dichroism has permitted us to suggest assignments for the two 31P magnetic resonance lines from the phosphodiester groups observed in the AMD-(pdG-dC)2 complex.
Collapse
|
25
|
Chapter 32. Stereochemistry of Drug-Nucleic Acid Interactions and its Biological Implications. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1978. [DOI: 10.1016/s0065-7743(08)60635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
|
27
|
Krugh TR, Young MA. Daunorubicin and adriamycin facilitate actinomycin D binding to poly(dA-dT)-poly(dA-dT). Nature 1977; 269:627-8. [PMID: 917115 DOI: 10.1038/269627a0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Allen FS, Jones MB, Hollstein U. First-neighbor specificities of actinomycin-DNA bindings by circular dichroism. Biophys J 1977; 20:69-78. [PMID: 71168 PMCID: PMC1473336 DOI: 10.1016/s0006-3495(77)85537-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The circular dichroism spectra of eleven double-stranded DNAs, five natural with known nearest neighbor frequencies and six synthetic polydimers and polytrimers, were measured from 210 to 310 nm in the absence and presence of increasing amounts of actinomycin up to saturation. Based on the fact that the circular dichroism of nucleic acids is a nearest-neighbor frequency-dependent property, matrix analysis of the problem revealed which neighbor sets were perturbed by actinomycin, presumably by intercalation of the planar moiety of the molecule. The intercalation sites can be separated into three families. The first-neighbor units GpC and CpG are very favorable binding sites for actinomycin. ApG, CpC, ApC, TpC, and TpG appear to be less attractive sites, while ApT, TpA, and ApA are unfavorable sites.
Collapse
|
29
|
Patel DJ, Canuel LL. Sequence specificity of mutagen-nucleic acid complexes in solution: intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes. Proc Natl Acad Sci U S A 1977; 74:2624-8. [PMID: 268613 PMCID: PMC431217 DOI: 10.1073/pnas.74.7.2624] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex.
Collapse
|
30
|
Auer HE, Pawloski-Konopnicki BE, Krugh TR. The absorption spectrum of actinomycin D. Evidence for three transitions in the visible band. FEBS Lett 1977; 73:167-70. [PMID: 851482 DOI: 10.1016/0014-5793(77)80973-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
|
32
|
Abstract
Three classes of kinetic behavior are observed in the complexes of actinomycin or ethidium with deoxydinucleotides. First, the initial dinucleotide binding to form a 1:1 complex is a rapid bimolecular process, whose rate could be measured for combination of actinomycin with d(pTpG) d(pGpT), d(pGpA), d(pGpG) d(pCpGpG), and d(pCpG) andfor combination of ethidium with d(pGpC). Second, with one exception, all reactions in which a second dinucleotide is added to form a 2:1 dinucleotide-drug complex are limited by a first-order step at high concentration. This class includes the combination of actinomycin with all dinucleotides tested except d(pGpC), and the reaction of ethidium with nucleotides of complementary sequence pyrimidine-purine, such as d(pCpG). The final class is the special case of d(pGpC) interacting to form a 2:1 complex with actinomycin. Third-order kinetics is observed, with no evidence for a first-order, rate-limiting step.
Collapse
|
33
|
Abstract
Echinomycin is a peptide antibiotic which binds strongly to double-helical DNA up to a limit of approximately one molecule per five base-pairs. There is no detectable interaction with rRNA and only extremely feeble non-specific interaction with poly(rA)-poly(rU). Heat denaturation of DNA greatly decreases the binding, and similarly limited interaction is observed with naturally occurring single-stranded DNA. Association constants for binding to nine double-helical DNA species from different sources are presented; they vary by a factor of approximately 10, but are not simply related to the gross base composition. The interaction with DNA is ionic-strength-dependent, the binding constant falling by a factor of 4 when the ionic strength is raised from 0.01 to 0.10mol/litre. From the effect of temperature on the association constant for calf thymus DNA, the enthalpy of interaction is calculated to be about -13kJ/mol (-3kcal/mol). Binding of echinomycin persists in CsCl gradients and the buoyant density of nicked bacteriophage PM2 DNA is decreased by 25 mg/ml. Echinomycin interacts strongly with certain synthetic poly-deoxynucleotides, the binding constant decreasing in the order poly(dG)-poly(dC) greater than poly(dG-dC) greater than poly(dA-dT). For the latter two polymers the number of base-pairs occluded per bound antibiotic molecule is calculated to be three, whereas for poly(dG)-poly(dC) it is estimated to be four to five. Poly(dA)-poly(dT) and poly(dI)-poly(dC) interact only very weakly with the antibiotic. Poly(dI-dC) interacts to a slightly greater extent, but the binding curve is quite unlike that seen with the three strongly binding synthetic polynucleotides. Echinomycin affects the supercoiling of closed circular duplex bacteriophage PM2 DNA in the characteristic fashion of intercalating drugs. At low ionic strength the unwinding angle is almost twice that of ethidium. Likewise the extension of the helix, determined from changes in the viscosity of rod-like sonicated DNA fragments, is nearly double that expected for a simple (monofunctional) intercalation process. On this basis the interaction process is characterized as bifunctional intercalation. At higher ionic strength the unwinding angle relative to that of ethidium and the helix extension per bound echinomycin molecule fall, indicating a smooth progression towards more nearly monofunctional intercalation. Two simpler compounds which act as analogues of the quinoxaline chromophores of echinomycin, quinoxaline-2-carboxamide and the trypanocidal drug Bayer 7602, interact with DNA very much more weakly than does echinomycin, showing that the peptide portion of the antibiotic plays an essential role in determining the strength and specificity of the interaction.
Collapse
|
34
|
Hilfrich J, Haas H, Kmoch N, Montesano R, Mohr U, Magee PN. The modification of the renal carcinogenicity of dimethylnitrosamine by actinomycin D and a protein deficient diet. Br J Cancer 1975; 32:578-87. [PMID: 1212416 PMCID: PMC2024814 DOI: 10.1038/bjc.1975.264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The effect of a single treatment with 30 mg dimethylnitrosamine (DMN) and 6 mug actinomycin D (ACT), given at different time intervals (ACT application to DMN, 2 h before, simultaneously, 5, 9 or 48 h later), was tested in female Sprague-Dawley rats in relation to renal carcinogenesis; additionally, the animals were fed either a normal or a protein deficient diet. The ACT treatment did not significantly modify either the kidney tumour incidence or the survival time in the different groups fed a normal diet. Nevertheless, there are indications that additional ACT application may shorten the latency period for DMN induced renal neoplasms or, when administered 5 h later than DMN, a slightly decreased and delayed tumour induction can be assumed. In groups fed a protein deficient diet, a significantly higher percentage of kidney tumour bearing animals as well as a shortened latency period were found when compared with the DMN group on normal diet, but these differences were independent of the additional ACT treatment 9 h later than DMN and were due to the protein deprivation. Morphologically, the tumours were of epithelial and mesenchymal type with a clear preponderance of the former type. Biochemical and morphological aspects are discussed.
Collapse
|
35
|
Wartell RM, Larson JE, Wells RD. The compatibility of netropsin and actinomycin binding to natural deoxyribonucleic acid. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41658-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Zipper P, Bünemann H. The interaction of actinomycin C3 and actinomine with DNA. A small-angle x-ray scattering study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 51:3-17. [PMID: 47290 DOI: 10.1111/j.1432-1033.1975.tb03900.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-angle X-ray scattering was applied to solutions of calf thymus DNA and calf thymus DNA complexed with various amounts of actinomycin C3 or actinomine in phosphate-saline buffer at pH 6.9 and I equals 0.2. From the measurements of DNA in the absence of dye, two cross-section radii of gyration of R-c equals 0.875 plus or minus 0.015 nm and R-c2 equals 0.81 plus or minus 0.02 nm, and a mass per unit length of M/l equals 1906 plus or minus 43 daltons/nm resulted. The investigation of DNA complexed with dye revealed a decrease of the cross-section radii of gyration as compared to those for the DNA in the absence of dye and a relatively low increase of the mass per unit length on binding of actinomycin and a slight decrease of M/l on binding of actinomine. The latter results are interpreted on the basis of a length increase of the DNA double helix by 0.47 plus or minus 0.03 nm per actinomycin molecule and by 0.355 plus or minus 0.03 nm per actinomine molecule bound. The results for R-c and R-c2 obtained for the various samples of complexed DNA were extrapolated to the limiting binding ratio where each dye molecule is associated with a minimum of six nucleotide pairs. According to this extrapolation, the cross-section radii of gyration of such a complex would amount to (R-c)b equals 0.805 plus or minus 0.015 nm and (R-c2)b equals 0.76 plus or minus 0.015 nm for the complex with actinomycin, and to (R-c)b equals 0.77 plus or minus 0.015 nm and (R-c2)b equals 0.75 plus or minus 0.01 nm for the actinomine complex. On the basis of a core and shell model for solvated DNA, these results can be understood as to indicate a decrease of the radial dimensions of both the core and the shell when the dye is bound. The experimental results are compared with theoretical data calculated from the atomic coordinates of the detailed intercalation model for the actinomycin - DNA complex as recently proposed by Sobell and Jain. The model proves to be consistent fairly well with our data on the length increase of the double helix, but it appears to be unable to explain the experimentally observed decrease of R-c2 on binding of dye.
Collapse
|
37
|
Krugh TR, Wittlin FN, Cramer SP. Ethidium bromide-dinucleotide complexes. Evidence for intercalation and sequence preferences in binding to double-stranded nucleic acids. Biopolymers 1975; 14:197-210. [PMID: 1174653 DOI: 10.1002/bip.1975.360140114] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
|
39
|
|
40
|
Sequence Specificity in the Interaction of Actinomycin D with Deoxydinucleotides as a Model for the Binding of the Drug to DNA. ACTA ACUST UNITED AC 1974. [DOI: 10.1007/978-94-010-1758-9_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Lorenz PR. Stimulation of transcription in HEp-2 cells by UV-inactivated poliovirus type 1. EXPERIENTIA 1973; 29:1072-3. [PMID: 4355416 DOI: 10.1007/bf01946726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Zee-Cheng KY, Cheng CC. Interaction between DNA and coralyne acetosulfate, an antileukemic compound. J Pharm Sci 1973; 62:1572-3. [PMID: 4743121 DOI: 10.1002/jps.2600620949] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Sobell HM. The stereochemistry of actinomycin binding to DNA and its implications in molecular biology. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1973; 13:153-90. [PMID: 4573488 DOI: 10.1016/s0079-6603(08)60103-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|