1
|
Maufront J, Guichard B, Cao LY, Cicco AD, Jégou A, Romet-Lemonne G, Bertin A. Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Mol Biol Cell 2022; 34:ar2. [PMID: 36383775 PMCID: PMC9816646 DOI: 10.1091/mbc.e22-10-0472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fine regulation of actin polymerization is essential to control cell motility and architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Different models have been extrapolated to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using negative stain electron microscopy, we directly identified for the first time two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the speculated open and closed conformations of the "stair-stepping" model. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end while they interact with three actin subunits in the closed conformation. In addition, we identified and characterized the structure of single FH2 dimers encircling the core of actin filaments, and reveal their ability to spontaneously depart from barbed ends.
Collapse
Affiliation(s)
- Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Lu-Yan Cao
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Guillaume Romet-Lemonne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| |
Collapse
|
2
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
3
|
Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken) 2014; 71:211-29. [PMID: 24574087 DOI: 10.1002/cm.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
Mutations in all six actins in humans have now been shown to cause diseases. However, a number of factors have made it difficult to gain insight into how the changes in actin functions brought about by these pathogenic mutations result in the disease phenotype. These include the presence of multiple actins in the same cell, limited accessibility to pure mutant material, and complexities associated with the structures and their component cells that manifest the diseases. To try to circumvent these difficulties, investigators have turned to the use of model systems. This review describes these various approaches, the initial results obtained using them, and the insight they have provided into allosteric mechanisms that govern actin function. Although results so far have not explained a particular disease phenotype at the molecular level, they have provided valuable insight into actin function at the mechanistic level which can be utilized in the future to delineate the molecular bases of these different actinopathies.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
4
|
A novel actin mRNA splice variant regulates ACTG1 expression. PLoS Genet 2013; 9:e1003743. [PMID: 24098136 PMCID: PMC3789816 DOI: 10.1371/journal.pgen.1003743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic actins are abundant, ubiquitous proteins in nucleated cells. However, actin expression is regulated in a tissue- and development-specific manner. We identified a novel cytoplasmic-γ-actin (Actg1) transcript that includes a previously unidentified exon (3a). Inclusion of this exon introduces an in-frame termination codon. We hypothesized this alternatively-spliced transcript down-regulates γ-actin production by targeting these transcripts for nonsense-mediated decay (NMD). To address this, we investigated conservation between mammals, tissue-specificity in mice, and developmental regulation using C2C12 cell culture. Exon 3a is 80% similar among mammals and varies in length from 41 nucleotides in humans to 45 in mice. Though the predicted amino acid sequences are not similar between all species, inclusion of exon 3a consistently results in the in the introduction of a premature termination codon within the alternative Actg1 transcript. Of twelve tissues examined, exon 3a is predominantly expressed in skeletal muscle, cardiac muscle, and diaphragm. Splicing to include exon 3a is concomitant with previously described down-regulation of Actg1 in differentiating C2C12 cells. Treatment of differentiated C2C12 cells with an inhibitor of NMD results in a 7-fold increase in exon 3a-containing transcripts. Therefore, splicing to generate exon 3a-containing transcripts may be one component of Actg1 regulation. We propose that this post-transcriptional regulation occurs via NMD, in a process previously described as “regulated unproductive splicing and translation” (RUST). Actin is a well-studied protein that plays an essential role in nearly all cell types. Cytoplasmic actins are considered to be ubiquitously expressed in most tissues of the body with the exception of developing skeletal muscle, where muscle specific actins are up-regulated and γ-actin is repressed. Interest in the regulation of this transcript led to the hypothesis that intron retention is responsible for down-regulation of cytoplasmic γ-actin in skeletal muscle during development. Since the publication of the sequence of γ-actin cDNA over two and a half decades ago, no additional splice variants or cDNAs of this gene have been described. In this paper, we identify an alternatively spliced transcript in muscle that allowed us to elucidate how the γ-actin is downregulated during the important transition from myoblast to differentiated muscle cells. This is the first description of regulation of an actin transcript by regulated unproductive splicing and translation.
Collapse
|
5
|
Amid A, Samah NA, Yusof F. Identification of troponin I and actin, alpha cardiac muscle 1 as potential biomarkers for hearts of electrically stimulated chickens. Proteome Sci 2012; 10:1. [PMID: 22230661 PMCID: PMC3398311 DOI: 10.1186/1477-5956-10-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/10/2012] [Indexed: 11/17/2022] Open
Abstract
Methods In this study, proteomics methods have been used to study the effects of different currents and voltages used to stun chickens. Protein profiles of chicken hearts were constructed to detect differences in protein expression and modification. The different voltages studied were 10 V, 40 V and 70 V, while the currents examined were 0.25 A, 0.5 A, and 0.75 A. The profiles obtained from these stunning conditions were compared to the non-stunned (0 A, 0 V) sample. Results Proteomics analyses using 2D Platinum ImageMaster 6.0 and Matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF) identified troponin I and alpha cardiac muscle actin 1 in the electrically stimulated heart samples. The overexpression of the proteins was further confirmed at the transcriptional level by Real Time PCR. Conclusion The results from MALDI-TOF and Real Time PCR agreed; therefore, this method for identifying biomarkers of electrically stimulated chicken hearts provides a novel approach for differentiation the hearts of increased electrically stimulated chickens from those of non-stunned chickens.
Collapse
Affiliation(s)
- Azura Amid
- Bioprocess and Molecular Engineering Research Unit, Faculty of Engineering, International Islamic University Malaysia, P,O, Box 10, 50728 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
6
|
Weymouth N, Shi Z, Rockey DC. Smooth muscle α actin is specifically required for the maintenance of lactation. Dev Biol 2011; 363:1-14. [PMID: 22123032 DOI: 10.1016/j.ydbio.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Smooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively. The phenotype was rescued in cross fostering experiments with wild type mice, excluding a developmental defect in Acta2 null pups. The mechanism for the underlying phenotype is due to myoepithelial dysfunction postpartum resulting in precocious involution. Further, we demonstrate a specific defect in myoepithelial cell contractility in Acta2 null mammary glands, despite normal expression of cytoplasmic actins. We conclude that Acta2 specifically mediates myoepithelial cell contraction during lactation and that this actin isoform therefore exhibits functional specificity.
Collapse
Affiliation(s)
- Nate Weymouth
- University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | | | |
Collapse
|
7
|
Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 2010; 21:1350-61. [PMID: 20181827 PMCID: PMC2854093 DOI: 10.1091/mbc.e09-09-0829] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Actin arginylation regulates lamella formation in motile fibroblasts, but the underlying molecular mechanisms are unknown. To understand how arginylation affects the actin cytoskeleton, we investigated the biochemical properties and the structural organization of actin filaments in wild-type and arginyltransferase (Ate1) knockout cells. We found that Ate1 knockout results in a dramatic reduction of the actin polymer levels in vivo accompanied by a corresponding increase in the monomer level. Purified nonarginylated actin has altered polymerization properties, and actin filaments from Ate1 knockout cells show altered interactions with several associated proteins. Ate1 knockout cells have severe impairment of cytoskeletal organization throughout the cell. Thus, arginylation regulates the ability of actin to form filaments in the whole cell rather than preventing the collapse of preformed actin networks at the cell leading edge as proposed in our previous model. This regulation is achieved through interconnected mechanisms that involve actin polymerization per se and through binding of actin-associated proteins.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rai R, Wong CCL, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR, Kashina A. Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 2008; 135:3881-9. [PMID: 18948421 DOI: 10.1242/dev.022723] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-translational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of the actin cytoskeleton and in cell motility. Here, we investigated the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analyses showed that alpha cardiac actin undergoes arginylation at four sites during development. Ultrastructural analysis of the myofibrils in wild-type and Ate1 knockout mouse hearts showed that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild-type and Ate1 knockout mouse embryos revealed that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of the actin cytoskeleton in cardiac myocytes.
Collapse
Affiliation(s)
- Reena Rai
- Department of Animal Biology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Salmonids utilize a unique, class II isoactin in slow skeletal muscle. This actin contains 12 replacements when compared with those from salmonid fast skeletal muscle, salmonid cardiac muscle and rabbit skeletal muscle. Substitutions are confined to subdomains 1 and 3, and most occur after residue 100. Depending on the pairing, the 'fast', 'cardiac' and rabbit actins share four, or fewer, substitutions. The two salmonid skeletal actins differ nonconservatively at six positions, residues 103, 155, 278, 281, 310 and 360, the latter involving a change in charge. The heterogeneity has altered the biochemical properties of the molecule. Slow skeletal muscle actin can be distinguished on the basis of mass, hydroxylamine cleavage and electrophoretic mobility at alkaline pH in the presence of 8 m urea. Further, compared with its counterpart in fast muscle, slow muscle actin displays lower activation of myosin in the presence of regulatory proteins, and weakened affinity for nucleotide. It is also less resistant to urea- and heat-induced denaturation. The midpoints of the change in far-UV ellipticity of G-actin versus temperature are approximately 45 degrees C ('slow' actin) and approximately 56 degrees C ('fast' actin). Similar melting temperatures are observed when thermal unfolding is monitored in the aromatic region, and is suggestive of differential stability within subdomain 1. The changes in nucleotide affinity and stability correlate with substitutions at the nucleotide binding cleft (residue 155), and in the C-terminal region, two parts of actin which are allosterically coupled. Actin is concluded to be a source of skeletal muscle plasticity.
Collapse
|
11
|
Karakozova M, Kozak M, Wong CCL, Bailey AO, Yates JR, Mogilner A, Zebroski H, Kashina A. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 2006; 313:192-6. [PMID: 16794040 DOI: 10.1126/science.1129344] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Posttranslational arginylation is critical for mouse embryogenesis, cardiovascular development, and angiogenesis, but its molecular effects and the identity of proteins arginylated in vivo are unknown. We found that beta-actin was arginylated in vivo to regulate actin filament properties, beta-actin localization, and lamella formation in motile cells. Arginylation of beta-actin apparently represents a critical step in the actin N-terminal processing needed for actin functioning in vivo. Thus, posttranslational arginylation of a single protein target can regulate its intracellular function, inducing global changes on the cellular level, and may contribute to cardiovascular development and angiogenesis.
Collapse
Affiliation(s)
- Marina Karakozova
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hall TE, Cole NJ, Johnston IA. Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L. J Exp Biol 2003; 206:3187-200. [PMID: 12909700 DOI: 10.1242/jeb.00535] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven cDNA clones coding for different muscle-specific proteins (MSPs) were isolated from the fast muscle tissue of Atlantic cod Gadus morhua L. In situ hybridization using cRNA probes was used to characterize the temporal and spatial patterns of gene expression with respect to somite stage in embryos incubated at 4 degrees C, 7 degrees C and 10 degrees C. MyoD transcripts were first observed in the presomitic mesoderm prior to somite formation, and in the lateral compartment of the forming somites. MyoD expression was not observed in the adaxial cells that give rise to the slow muscle layer, and expression was undetectable by in situ hybridization in the lateral somitic mesoderm after the 35-somite stage, during development of the final approximately 15 somites. RT-PCR analysis, however, confirmed the presence of low levels of the transcript during these later stages. A phylogenetic comparison of the deduced aminoacid sequences of the full-length MyoD cDNA clone and those from other teleosts, and inference from the in situ expression pattern suggested homology with a second paralogue (MyoD2) recently isolated from the gilthead seabream Sparus aurata. Following MyoD expression, alpha-actin was the first structural gene to be switched on at the 16-somite stage, followed by myosin heavy chain, troponin T, troponin I and muscle creatine kinase. The final mRNA in the series to be expressed was troponin C. All genes were switched on prior to myofibril assembly. The troponin C sequence was unusual in that it showed the greatest sequence identity with the rainbow trout Oncorhynchus mykiss cardiac/slow form, but was expressed in the fast myotomal muscle and not in the heart. In addition, the third TnC calcium binding site showed a lower level of sequence conservation than the rest of the sequence. No differences were seen in the timing of appearance or rate of posterior progression (relative to somite stage) of any MSP transcripts between embryos raised at the different temperatures. It was concluded that myofibrillar genes are activated asynchronously in a distinct temporal order prior to myofibrillar assembly and that this process was highly canalized over the temperature range studied.
Collapse
Affiliation(s)
- Thomas E Hall
- Gatty Marine Laboratory, School of Biology, University of St Andrews, Fife, KY16 8LB, UK.
| | | | | |
Collapse
|
13
|
Costa ML, Escaleira RC, Rodrigues VB, Manasfi M, Mermelstein CS. Some distinctive features of zebrafish myogenesis based on unexpected distributions of the muscle cytoskeletal proteins actin, myosin, desmin, alpha-actinin, troponin and titin. Mech Dev 2002; 116:95-104. [PMID: 12128209 DOI: 10.1016/s0925-4773(02)00149-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current myofibrillogenesis model is based mostly on in vitro cell cultures and on avian and mammalian embryos in situ. We followed the expression of actin, myosin, desmin, alpha-actinin, titin, and troponin using immunofluorescence microscopy of zebrafish (Danio rerio) embryos. We could see young mononucleated myoblasts with sharp striations. The striations were positive for all the sarcomeric proteins. Desmin distribution during muscle maturation changes from dispersed aggregates to a perinuclear concentration to striated afterwards. We could not observe desmin-positive, myofibrillar-proteins-negative cells, and we could not find any non-striated distribution of sarcomeric proteins, such as stress fiber-like structures. Some steps, like fusion before striation, seem to be different in the zebrafish when compared with the previously described myogenesis sequences.
Collapse
Affiliation(s)
- Manoel L Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Hellsten M, Roos UP. The actomyosin cytoskeleton of amoebae of the cellular slime molds acrasis rosea and protostelium mycophaga: structure, biochemical properties, and function. Fungal Genet Biol 1998; 24:123-45. [PMID: 9742198 DOI: 10.1006/fgbi.1998.1048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In amoebae of the cellular slime molds (mycetozoans) Acrasis rosea and Protostelium mycophaga, bundles of F-actin radiate from the endoplasm-ectoplasm interface into the pseudopodia, where G-actin is also located. We conclude that these actin bundles form a core scaffold driving pseudopod extension which is subsequently completed by filling with a more loosely organized meshwork of F-actin. Some bipolar, elongate amoebae of A. rosea also contained long bundles of F-actin that traverse the cells lengthwise and remotely resemble stress fibers. Rodlets of F-actin were scattered in the body of amoebae of A. rosea or formed star-shaped or polygonal complexes near or around contractile vacuoles, where they may play a role in contraction. In total protein extracts analyzed by SDS-PAGE and immunoblots the actins migrated like the rabbit skeletal muscle control. The relative proportion of actin in total protein extracts was 7.9% for A. rosea and 34.5% for P. mycophaga. We detected four or five isoactins in extracts of both species and we determined that the genome of each species contains approximately six actin genes. Whether they are all expressed or if posttranslational modifications occur remains to be determined. Myosin II was enriched in actomyosin extracts; its Mr was 187.8 kDa for A. rosea and 220.7 kDa for P. mycophaga. Cell models ("ghosts") contracted upon the addition of ATP. We conclude that amoebae of A. rosea and P. mycophaga, although behaving differently from those of Dictyostelium discoideum, contain the basic repertoire of molecules that enable pseudopod extension by actin polymerization and ATP-induced contraction of the cell cortex. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- M Hellsten
- Institut fur Pflanzenbiologie, Universitat Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | | |
Collapse
|
15
|
Abstract
The need for biochemical quantities of nonmuscle actin has been increased by observations that actin isoform composition of a cell influences the cell's motile and structural properties. In addition, the number of actin binding proteins that exhibit different binding interactions with beta- and gamma-actin compared to alpha-actin from skeletal muscle is growing. We report a procedure designed to purify actin from nonmuscle tissues employing extraction of monomeric actin from tissues with high concentrations of Tris, chromatography on DE-53 cellulose, and affinity chromatography of DNase I-agarose. The preparation is easy to perform and yields quantities of nonmuscle actin sufficient for biochemical and cell biological assays. Actin from bovine erythrocytes and from brains of adult and embryonic chickens was obtained using this method, which can be readily used with other sources of tissue. Coomassie-Blue-stained SDS gels of the purified actin show no contaminants; capping protein, a common contaminant of actin preparations, is absent by immunoblotting. This method for purifying nonmuscle actin will be useful to investigate functional differences in the biology of actin isoforms or their regulating proteins.
Collapse
Affiliation(s)
- D A Schafer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
16
|
Abstract
In summary, phosphorylation of the regulatory light chain of myosin by Ca2+/CaM-dependent MLCK plays an important role in smooth muscle contraction. Although there have been major advances in our understanding of the regulation and physiological functions of contractile proteins in smooth muscle in recent years, very little information exists on the functional status of these proteins in human myometrium during pregnancy. The simple view that contractile force in smooth muscle is proportionate to cytoplasmic Ca2+ concentrations (Ca2+i) and myosin light chain phosphorylation is now more complex as more experiments provide insights into mechanisms of regulation of the contractile elements. MLCK can be phosphorylated, which desensitizes its activation by Ca2+/CaM, and protein phosphatase activity toward myosin may also be regulated. Examples in smooth muscle tissue are sparse, and the different mechanisms by which these processes may be adapted in uterine smooth muscle during pregnancy are not well-defined. Much research is needed to define further the cellular, biochemical, and molecular basis for these physiological processes involved in the regulation of uterine smooth muscle contraction and relaxation.
Collapse
Affiliation(s)
- R A Word
- Department of Obsterics and Gynecology, University of Texas Southwestern Medical Center at Dallas 75235-9032, USA
| |
Collapse
|
17
|
Word RA, Stull JT, Casey ML, Kamm KE. Contractile elements and myosin light chain phosphorylation in myometrial tissue from nonpregnant and pregnant women. J Clin Invest 1993; 92:29-37. [PMID: 8392087 PMCID: PMC293522 DOI: 10.1172/jci116564] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Smooth muscle contraction is initiated primarily by an increase in intracellular Ca2+, Ca(2+)-dependent activation of myosin light chain kinase, and phosphorylation of myosin light chain. In this investigation, we identified pregnancy-associated alterations in myosin light chain phosphorylation, force of contraction, and content of contractile proteins in human myometrium. Steady-state levels of myosin light chain phosphorylation and contractile stress were correlated positively in both tissues, but the myometrial strips from pregnant women developed more stress at any given level of myosin light chain phosphorylation. During spontaneous contractions and during conditions that favor maximal generation of stress, the rate and extent of myosin light chain phosphorylation were attenuated in myometrial strips from pregnant women. The content of myosin and actin per milligram of protein and per tissue cross-sectional area was similar between myometrium of nonpregnant and pregnant women. Although cell size was significantly increased in tissues obtained from pregnant women, the amounts of contractile proteins per cellular cross-sectional area were similar. In addition, myosin light chain kinase and phosphatase activities were similar in the two tissues. The content of caldesmon was significantly increased in myometrium of pregnant women, whereas that of calponin (a smooth muscle-specific protein associated with the thin filaments) was not different. We conclude that adaptations of human myometrium during pregnancy include (a) cellular mechanisms that preclude the development of high levels of myosin light chain phosphorylation during contraction and (b) an increase in the stress generating capacity for any given level of myosin light chain phosphorylation.
Collapse
Affiliation(s)
- R A Word
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas 75235-9032
| | | | | | | |
Collapse
|
18
|
Terashima M, Mishima K, Yamada K, Tsuchiya M, Wakutani T, Shimoyama M. ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:305-11. [PMID: 1740142 DOI: 10.1111/j.1432-1033.1992.tb16638.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We reported the purification and characterization of an arginine-specific ADP-ribosyltransferase and acceptor protein p33 in granules of chicken peripheral polymorphonuclear leukocytes (heterophils) [Mishima, K., Terashima, M., Obara, S., Yamada, K., Imai, K. & Shimoyama, M. (1991) J. Biochem. (Tokyo) 110, 388-394]. In the present study, we obtained evidence that chicken non-muscle beta/gamma-actin, skeletal muscle alpha-actin and smooth-muscle gamma-actin were ADP ribosylated by the heterophil ADP-ribosyltransferase. The stoichiometry of ADP-ribose incorporation into these actins was 1.2 mol, 1.0 mol and 2.0 mol ADP-ribose/mol of beta/gamma-actin, alpha-actin and gamma-actin, respectively. The optimal pH for the ADP ribosylation was at pH 8.5, with the respective actin. Km values for NAD were calculated to be 30 microM with beta/gamma-actin, 35 microM with alpha-actin and 20 microM with gamma-actin. The Km values for the actin isoforms were 15 microM for beta/gamma-actin, 2.5 microM for alpha-actin and 10 microM for gamma-actin. ADP ribosylation of actin inhibited its capacity to polymerize, as determined by the increase in fluorescence intensity with N-(1-pyrenyl)iodoacetamide-labelled actin. Filamentous actin (F-actin) polymerized with the respective actin isoform was also ADP ribosylated, although the extent of the modification of F-actin was lower than that of globular actin (G-actin). In situ ADP ribosylation of beta/gamma-actin was evidenced with chicken peripheral heterophils permeabilized with saponin. Thus, the endogenous ADP ribosylation of actin in the heterophils may be involved in the cellular processes such as phagocytosis, secretion and migration.
Collapse
Affiliation(s)
- M Terashima
- Department of Biochemistry, Shimane Medical University, Izumo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Oko R, Hermo L, Hecht NB. Distribution of actin isoforms within cells of the seminiferous epithelium of the rat testis: evidence for a muscle form of actin in spermatids. Anat Rec (Hoboken) 1991; 231:63-81. [PMID: 1750712 DOI: 10.1002/ar.1092310108] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a cDNA that coded for an enteric smooth muscle gamma-actin (SMGA) that was expressed in post-meiotic mouse testicular cells was identified. To determine the cellular location(s) of the protein encoded by this cDNA, this SMGA was probed for by immunocytochemistry in the cells of the seminiferous epithelium with two different monoclonal antibodies (Mabs), B4 and HUC 1-1, known to be muscle actin selective. As a control, we also examined the immunoreactivity of a third Mab, C4, that reacts with all non-muscle and muscle vertebrate isoactins. Using light and electron microscopy, a progressive increase in immunolabeling was observed with the muscle selective HUC 1-1 Mab over a loose actin filamentous network distributed throughout the cytoplasm of steps 4-16 spermatids. Thereafter, the labeling decreased such that at step 17 spermatids, only cytoplasmic labeling in the tail of the spermatids was observed. No labeling of this network was noted with the C4 or B4 Mabs. However, myoid cells enveloping seminiferous tubules and smooth muscle cells of interstitial blood vessels demonstrated comparable intense labeling with each of the three Mabs. The C4 Mab intensely labeled actin filaments of the Sertoli-Sertoli and Sertoli-spermatid ectoplasmic specializations. Also well labeled were numerous actin filaments found in the apical Sertoli cell processes encapsulating the heads of late step 19 spermatids at stage VII of the cycle of the seminiferous epithelium. In addition, actin filamentous bundles enveloping tubulobulbar complexes of the late spermatids within the Sertoli cell apical processes were intensely labeled. The actin filaments in the Sertoli apical processes and surrounding the tubulobulbar complexes were also strongly immunolabeled with the HUC 1-1 Mab. The C4 Mab but not the B4 or HUC 1-1 Mabs, recognized actin in the subacrosomal space of steps 4-18 spermatids. This study suggests that there are muscle isoforms of actin within the cytoplasm of developing spermatids and within apical processes of Sertoli cells.
Collapse
Affiliation(s)
- R Oko
- Department of Anatomy, McGill University, Montreal, Canada
| | | | | |
Collapse
|
20
|
AyresSá L, Neto VM, de Oliveira MM, Chagas C. Heterogeneity of purified actin in the electric organ of the electric eelElectrophorus electricus. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/jez.1402570106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Abstract
Actin is a protein that plays an important role in cell structure, cell motility, and the generation of contractile force in both muscle and nonmuscle cells. In many organisms, multiple forms of actin, or isoactins, are found. These are products of different genes and have different, although very similar, amino acid sequences. Furthermore, these isoactins are expressed in a tissue specific fashion that is conserved across species, suggesting that their presence is functionally important and their behavior can be distinguished quantitatively from one another in vitro. In muscle cells, they are differentially distributed within the cell and some are specifically associated with structures such as costameres, mitochondria, and neuromuscular junctions. There is also good evidence for specific isoactin function in microvascular pericytes and in the intestinal brush border. However, the necessity of specific isoactins for various functions has not yet been conclusively demonstrated.
Collapse
Affiliation(s)
- P A Rubenstein
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City 52242
| |
Collapse
|
22
|
Beach RL, Jeffery WR. Temporal and spatial expression of a cytoskeletal actin gene in the ascidian Styela clava. DEVELOPMENTAL GENETICS 1990; 11:2-14. [PMID: 2361333 DOI: 10.1002/dvg.1020110103] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have cloned and characterized the temporal and spatial expression of ScCA15, a cDNA clone encoding an actin gene in the ascidian Styela clava. The partial nucleotide and derived amino acid sequences of this singlecopy gene suggest that it is a cytoskeletal actin. Northern analysis shows that ScCA15 corresponds to a 1.8-kb mRNA that is transcribed during oogenesis, during embryonic development, and in the adult. In situ hybridization shows that maternal ScCA15 mRNA is distributed uniformly in the cytoplasm of the oocyte and unfertilized egg. During the period of ooplasmic segregation following fertilization, however, ScCA15 mRNA appears to be translocated into the ectoplasm, a specialized cytoplasmic region of the egg. During the early cleavages, the ectoplasmic transcripts are partitioned to ectodermal cells in the animal hemisphere, which are precursors of the epidermis and nervous system of the larva. Maternal ScCA15 mRNA is degraded just before gastrulation and replaced by zygotic transcripts which begin to accumulate between the neurula and mid-tailbud stages. Zygotic ScCA15 mRNA accumulates primarily in the epidermal and neural cells, although lower levels of these transcripts may also be present in tail muscle cells. These results show that two mechanisms are used to concentrate ScCA15 mRNA in the ectodermal cells during development: 1) localization and differential segregation of maternal transcripts and 2) specific expression of the ScCA15 gene. ScCA15 mRNA is detected by in situ hybridization in the testes, ovaries, alimentary tract, and endostyle of adults. In the testes, ScCA15 mRNA is present in developing sperm, whereas in the ovary, these transcripts are present in the germinal epithelium and developing oocytes. In the alimentary tract, ScCA15 mRNA is confined to the gastric epithelium of the esophagus, stomach, and intestine. Since the ScCA15 gene is expressed in embryonic and adult tissues that are undergoing rapid cell division, this actin is likely to function in some aspect of cell proliferation.
Collapse
Affiliation(s)
- R L Beach
- Department of Zoology, University of Texas, Austin
| | | |
Collapse
|
23
|
Shires AK, Rubenstein PA. Nonuniform behavior of multiple isoactins in the same cell is a cell-dependent phenomenon. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:263-70. [PMID: 2611893 DOI: 10.1002/cm.970140212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The functional significance of multiple isoactins in the same cell is still not understood. To address this question, we examined the response of smooth muscle and cardiac muscle alpha-isoactins to a serial extraction procedure applied to both muscle and nonmuscle cell types. We compared these extraction results with results obtained with the beta- and gamma-nonmuscle actin isoforms from the same cells. In differentiated BC3H1 nonfusing muscle cells (smooth muscle alpha-isoactin), in human rhabdomyosarcoma cells (cardiac alpha-isoactin), and in chick skeletal muscle cells (cardiac alpha-isoactin), different fractions were found selectively enriched in either the nonmuscle or the muscle-specific actin isoforms compared with their relative abundance in whole cell extracts. Conversely, when these same isoactins were examined either in undifferentiated BC3H1 cells or in mouse nonmuscle cells stably transfected with a cardiac alpha-isoactin gene, no enrichment of these isoforms above their relative abundance in whole cell extracts was observed. These results indicate that within the muscle or muscle-like cells examined, the different actin isoforms were either selectively utilized or localized. These results further show that isoactin-specific responses observed were apparently related to the cell type in which they were found and not to differences in inherent physical properties such as solubility of the different isoactins examined.
Collapse
Affiliation(s)
- A K Shires
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|
24
|
Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G. Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 1988; 39:161-6. [PMID: 2468547 DOI: 10.1111/j.1432-0436.1988.tb00091.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actin isoform expression may change during development, and in certain physiological, experimental and pathological situations. It is accepted that during sarcomeric (skeletal and cardiac) muscle development, the alpha-skeletal and alpha-cardiac isoforms of actin accumulate rapidly at the onset of muscle fibre formation, while there is a rapid fall in the expression of nonmuscle (beta and gamma) actin isoforms. Here we show that, before birth, both skeletal and myocardial cells express significant amounts of alpha-smooth muscle actin mRNA and protein. This expression is transient and disappears over the 1-7 days following birth. Our findings show that the program regulating actin isoform expression in sarcomeric muscle development is complex and that alpha-smooth muscle actin participates in this process.
Collapse
Affiliation(s)
- J Woodcock-Mitchell
- Department of Physiology and Biophysics, University of Vermont, Burlington 05405
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lessard JL. Two monoclonal antibodies to actin: one muscle selective and one generally reactive. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:349-62. [PMID: 2460261 DOI: 10.1002/cm.970100302] [Citation(s) in RCA: 245] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two IgG1, kappa monoclonal antibodies (Mab) against actin have been obtained from a fusion in which chicken gizzard actin was used as the immunogen. One Mab, designated B4, shows a preferential reactivity toward enteric smooth muscle actin but also cross-reacts with skeletal, cardiac, and aorta actins on the basis of immunoblots, ELISA assays, and indirect immunofluorescence. However, this antibody does not react with either cytoplasmic actin in any of these assay systems. A second Mab, designated C4, reacts with all six known vertebrate isoactins as well as Dictyostelium discoideum and Physarum polycephalum actins. Thus B4 Mab appears to react with an epitope that is at least partially shared among the muscle actins but not found in cytoplasmic actins, while C4 Mab binds to an antigenic determinant that has been highly conserved among the actins. The binding sites of both Mabs on skeletal actin overlap that of pancreatic DNase I. Both antibodies bind a SV8 proteolytic product comprising the amino-terminal two-thirds of the actin molecule, and their epitopes appear to overlap since C4 can compete for the binding of B4 to skeletal actin. Neither antibody is able to prevent actin polymerization.
Collapse
Affiliation(s)
- J L Lessard
- Molecular Cytology Laboratory, Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| |
Collapse
|
26
|
Vinters HV, Reave S, Costello P, Girvin JP, Moore SA. Isolation and culture of cells derived from human cerebral microvessels. Cell Tissue Res 1987; 249:657-67. [PMID: 3664609 DOI: 10.1007/bf00217338] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microvessels were isolated from non-neoplastic human cerebral cortical fragments resected for treatment of intractable seizure disorder. The microvessels were incubated in modified Lewis medium with 20 or 30% fetal bovine serum. Within 1-2 weeks, two cell populations emerged from the isolates. One type of cells had polygonal morphology, showed density-dependent contact inhibition at confluence in vitro, showed lectin-binding characteristics of endothelium (but only moderate positivity for factor VIII antigen), demonstrated induction of gamma-glutamyl transpeptidase when exposed to astrocyte-conditioned media, and responded to insulin by a pronounced increase in DNA synthesis. The other variety of cells grew in vitro more slowly in irregular strands separated by clear zones, showed ultrastructural features of smooth muscle, and isoelectric focusing of cell proteins revealed the presence of smooth-muscle-specific alpha-isoactin. Both types of cells could be serially subcultured. The ability to isolate and grow the two cell types, tentatively identified as human cerebral microvascular endothelium and smooth muscle, may facilitate studies of human blood-brain barrier function as well as the pathogenesis of cerebral microangiopathies unique to the human brain.
Collapse
Affiliation(s)
- H V Vinters
- Department of Pathology, University Hospital, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Otey CA, Kalnoski MH, Bulinski JC. Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 1987; 34:113-24. [PMID: 3597556 DOI: 10.1002/jcb.240340205] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cytoskeletal protein actin exists in vertebrates as six different isoforms, which are difficult to identify conclusively because of a high degree (greater than 90%) of overall sequence homology. We have used IEF immunoblotting in combination with a panel of isoform-specific and -selective antibodies to analyze the actin isoform composition of nine tissues from adult rat. In three nonmuscle tissues (lung, spleen, and testis), we detected a previously unreported isoform that we identified as smooth muscle alpha. The IEF immunoblot technique was also used to quantify the proportions of the isoforms expressed in these nine rat tissues.
Collapse
|
28
|
Tsukada T, Tippens D, Gordon D, Ross R, Gown AM. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. THE AMERICAN JOURNAL OF PATHOLOGY 1987; 126:51-60. [PMID: 3544852 PMCID: PMC1899551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A monoclonal antibody to muscle cell actin isotypes was produced and characterized. Immunocytochemical analysis of methanol-Carnoy's-fixed, paraffin-embedded human tissue revealed that this antibody, termed HHF35, reacts with skeletal muscle cells, cardiac muscle cells, smooth muscle cells, pericytes, and myoepithelial cells, but is nonreactive with endothelial, epithelial, neural, or connective tissue cells. When assayed by indirect immunofluorescence, HHF35 reacts with microfilament bundles from various cultured mammalian smooth muscle cells, but does not react with cultured human dermal fibroblasts or various epithelial tumor cell lines. In one-dimensional gel electrophoresis immunoblot experiments this antibody detects a 42-kd polypeptide from tissue extracts of uterus, ileum, aorta, diaphragm, and heart and extract from smooth muscle cells. The antibody also reacts with a comigrating 42-kd band of highly purified rabbit skeletal muscle actin. HHF35 is nonreactive on immunoblots of extracts from all tested nonmuscle cell extracts. Immunoelectrophoresis followed by immunoblotting performed in the presence of urea and reducing agents reveals recognition of the alpha isoelectrophoretic variant of actin from skeletal, cardiac, and smooth muscle sources and of the gamma variant from smooth muscle sources. Because HHF35 reacts with virtually all muscle cells, it will be useful as a marker for muscle and muscle-derived cells.
Collapse
|
29
|
Baldwin E, Kayalar C. Metalloendoprotease inhibitors that block fusion also prevent biochemical differentiation in L6 myoblasts. Proc Natl Acad Sci U S A 1986; 83:8029-33. [PMID: 3534879 PMCID: PMC386860 DOI: 10.1073/pnas.83.21.8029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of metalloendoprotease inhibitors on the biochemical differentiation of the rat skeletal muscle line, L6, was investigated. Confluent unfused L6 cells exposed briefly to 1,10-phenanthroline, a chelator of divalent metal cations, or continuously to dipeptide amide metalloendoprotease substrates that are blocked at the NH2-terminals, N-carbobenzyloxyserylleucyl amide and N-carbobenzyloxyglycylleucyl amide, did not fuse or express creatine kinase, myosin heavy chain, or alpha-actin. These effects were reversible and dose-dependent. Exposure to N-carbobenzyloxylglycylglycyl amide, which is not a metalloendoprotease inhibitor, had no effect. As the differentiation in a culture progressed, 1,10-phenanthroline became less effective in blocking the accumulation of creatine kinase and myosin heavy chain. Exposure of partially fused cultures to N-carbobenzyloxyserylleucyl amide prevented any further accumulation of muscle-specific proteins. In confluent cultures where cell division was blocked before the onset of differentiation, N-carbobenzyloxyserylleucyl amide still prevented fusion and the induction of creatine kinase. This indicates that these inhibitors do not act by interfering with the cell cycle. Experiments that measured DNA synthesis rates, plating efficiencies, and the effects of sequential dipeptide and dimethyl sulfoxide treatments indicate that L6 myoblasts do not irreversibly withdraw from the cell cycle when exposed to N-carbobenzyloxyserylleucyl amide. These results are consistent with the role of a metalloendoprotease in initiating the terminal differentiation of cultured muscle cells.
Collapse
|
30
|
Kedersha NL, Broek D, Berg RA. A novel isoform of cytoplasmic actin that binds poly-L-proline. Biochem J 1986; 238:561-70. [PMID: 3541913 PMCID: PMC1147170 DOI: 10.1042/bj2380561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An actin-like protein was purified to apparent homogeneity from chick-embryo homogenates and chick-embryo fibroblasts by the use of poly-L-proline-agarose affinity chromatography; we therefore refer to this protein as PBP (poly-L-proline-binding protein). PBP binds to deoxyribonuclease-agarose, co-migrates with known actin standards on SDS/polyacrylamide-gel electrophoresis, and has an amino acid composition similar to that of actin. Linear peptide maps after digestion with Staphylococcus aureus proteinase reveal its apparent homology with gamma-actin; however, isoelectric-focusing experiments show that PBP is clearly more acidic than any of the three major isoforms of actin. PBP polymerizes in the presence of ATP to form fibrillar structures resembling actin paracrystalline aggregates. In chick-embryo fibroblasts, immunofluorescence with antibodies to PBP shows that its distribution is cytoplasmic: perinuclear staining of the cytoplasm, generalized cytoplasmic staining and peripheral fibrillar structures are evident. In contrast, antibodies specific for the (alpha, gamma)-actins reveal the typical stress fibre structures characteristic of fibroblastic cells. PBP appears to constitute a novel isoform of cellular actin, distinct from the known actin isoforms in terms of its lower isoelectric point, its ability to bind poly-L-proline and its distinct subcellular localization.
Collapse
|
31
|
Côté A, Doucet JP, Trifaró JM. Adrenal medullary tropomyosins: purification and biochemical characterization. J Neurochem 1986; 46:1771-82. [PMID: 3517231 DOI: 10.1111/j.1471-4159.1986.tb08495.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tropomyosins have been isolated from bovine adrenal medulla. Purified from a heat-stable extract, the adrenal medullary tropomyosins show the same chromatographic patterns as platelet tropomyosin components purified under very similar conditions on ion-exchange (DEAE-Sephacel) and hydroxylapatite columns. When analyzed by polyacrylamide gel electrophoresis, the purified fraction, reduced and denatured, yielded three polypeptides with apparent molecular weights of 38,000, 35,500, and 32,000. The molar ratio of the two major polypeptides (38 kd and 32 kd) was 2:1. The predominant form of 38 kd is different from other nonmuscle tropomyosins previously isolated and with which an apparent molecular weight of 30,000 is normally associated. The three adrenal medullary tropomyosins have similar isoelectric points of about 4.7. When adrenal tropomyosins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea, each form showed a shift to a higher molecular weight, which is a characteristic of muscle tropomyosin. The 38,000 adrenal medullary tropomyosin exhibits a stronger affinity for F-actin than the other forms. Peptide profiles obtained after limited proteolytic digestion show some similarity between the two predominant tropomyosins of the bovine adrenal medulla and also between these and the alpha and beta forms of bovine skeletal muscle tropomyosin.
Collapse
|
32
|
Taniguchi S, Kawano T, Kakunaga T, Baba T. Differences in expression of a variant actin between low and high metastatic B16 melanoma. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38498-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Kuo HJ, Malencik DA, Liou RS, Anderson SR. Factors affecting the activation of rabbit muscle phosphofructokinase by actin. Biochemistry 1986; 25:1278-86. [PMID: 2938627 DOI: 10.1021/bi00354a013] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions.
Collapse
|
34
|
Strauch AR, Offord JD, Chalkley R, Rubenstein PA. Characterization of actin mRNA levels during BC3H1 cell differentiation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36173-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Sobieszek A, Jertschin P. Urea-glycerol-acrylamide gel electrophoresis of acidic low molecular weight muscle proteins: Rapid determination of myosin light chain phosphorylation in myosin, actomyosin and whole muscle samples. Electrophoresis 1986. [DOI: 10.1002/elps.1150070906] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Abstract
We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.
Collapse
|
37
|
Gown AM, Vogel AM, Gordon D, Lu PL. A smooth muscle-specific monoclonal antibody recognizes smooth muscle actin isozymes. J Cell Biol 1985; 100:807-13. [PMID: 3972897 PMCID: PMC2113501 DOI: 10.1083/jcb.100.3.807] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Injection of chicken gizzard actin into BALB/c mice resulted in the isolation of a smooth muscle-specific monoclonal antibody designated CGA7. When assayed on methanol-Carnoy's fixed, paraffin-embedded tissue, it bound to smooth muscle cells and myoepithelial cells, but failed to decorate striated muscle, endothelium, connective tissue, epithelium, or nerve. CGA7 recognized microfilament bundles in early passage cultures of rat aortic smooth muscle cells and human leiomyosarcoma cells but did not react with human fibroblasts. In Western blot experiments, CGA7 detected actin from chicken gizzard and monkey ileum, but not skeletal muscle or fibroblast actin. Immunoblots performed on two-dimensional gels demonstrated that CGA7 recognizes gamma-actin from chicken gizzard and alpha- and gamma-actin from rat colon muscularis. This antibody was an excellent tissue-specific smooth muscle marker.
Collapse
|
38
|
Mannherz HG, Kabsch W, Suck D, Friebel K, Frimmer M. Crystallization of cytoplasmic actin in complex with deoxyribonuclease I. Biochem J 1985; 225:517-22. [PMID: 3977843 PMCID: PMC1144618 DOI: 10.1042/bj2250517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Crystals of cytoplasmic (porcine liver) actin in complex with deoxyribonuclease I (DNAase I) were prepared for structural determination by X-ray-diffraction analysis. The crystallization of porcine liver actin-DNAase I complex is preceded by a brief treatment with immobilized trypsin, whereby a C-terminal tri- or di-peptide including cysteine-374 is removed from the actin without any noticeable degradation of both proteins as judged by sodium dodecyl-sulphate/polyacrylamide-gel electrophoresis. Analysis of the crystals obtained does not reveal any differences in the three-dimensional structure of porcine liver actin from its skeletal compartment at up to 0.6 nm resolution. However, in contrast with crystalline skeletal-muscle actin-DNAase I complex, heavy-atom substitution of crystals of porcine liver actin-DNAase I complex could not be achieved with methyl mercuriacetate. Evidence is presented that, in porcine liver actin, the N-terminal cysteine residue is not located at position no. 10, as in skeletal- and smooth-muscle actin, but most probably at position no. 17. Thus, because this site is covered by DNAase I, the cysteine becomes inaccessible to titration with 5,5'-dithiobis-(2-nitrobenzoic acid) after complex-formation with DNAase I.
Collapse
|
39
|
McKenna N, Meigs JB, Wang YL. Identical distribution of fluorescently labeled brain and muscle actins in living cardiac fibroblasts and myocytes. J Cell Biol 1985; 100:292-6. [PMID: 3965475 PMCID: PMC2113464 DOI: 10.1083/jcb.100.1.292] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have investigated whether living muscle and nonmuscle cells can discriminate between microinjected muscle and nonmuscle actins. Muscle actin purified from rabbit back and leg muscles and labeled with fluorescein isothiocyanate, and nonmuscle actin purified from lamb brain and labeled with lissamine rhodamine B sulfonyl chloride, were co-injected into chick embryonic cardiac myocytes and fibroblasts. When fluorescence images of the two actins were compared using filter sets selective for either fluorescein isothiocyanate or lissamine rhodamine B sulfonyl chloride, essentially identical patterns of distribution were detected in both muscle and nonmuscle cells. In particular, we found no structure that, at this level of resolution, shows preferential binding of muscle or nonmuscle actin. In fibroblasts, both actins are associated primarily with stress fibers and ruffles. In myocytes, both actins are localized in sarcomeres. In addition, the distribution of structures containing microinjected actins is similar to that of structure containing endogenous F-actin, as revealed by staining with fluorescent phalloidin or phallacidin. Our results suggest that, at least under these experimental conditions, actin-binding sites in muscle and nonmuscle cells do not discriminate among different forms of actins.
Collapse
|
40
|
Moore SA, Strauch AR, Yoder EJ, Rubenstein PA, Hart MN. Cerebral microvascular smooth muscle in tissue culture. IN VITRO 1984; 20:512-20. [PMID: 6235174 DOI: 10.1007/bf02619625] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cerebral endothelium is being studied rather extensively in tissue culture, but no reports are available describing the tissue culture of cerebral microvascular smooth muscle. The present paper describes for the first time the isolation and culture of non-neoplastic mouse cerebral vascular smooth muscle. Microvessels from a dounce homogenate of mouse brain are plated onto plastic culture dishes in Dulbecco's modified Eagle media plus 20% fetal bovine serum and treated briefly with collagenase. Cells migrate from vessels and proliferate sufficiently to be transferred out of primary culture in 2 to 3 wk. Light microscopy reveals generally broad, polygonal cells that grow collectively in a "hill and valley" pattern. By transmission electron microscopy the cells possess many characteristics of smooth muscle: basal laminas, clusters of pinocytotic vesicles, and bundles of thin filaments. Several ill-defined cell-to-cell junctions are also present. Isoelectric focusing and sodium dodecyl sulfate-electrophoresis of cellular proteins on polyacrylamide gels after pulse labeling cultures with [S-35]methionine demonstrate that these cells actively synthesize a smooth-muscle-specific isoactin, alpha-actin. The identity of alpha-actin is confirmed by analysis of NH2-terminal peptides after actin digestion with trypsin and subsequent peptide cleavage with thermolysin. Both their morphology and active synthesis of alpha-actin strongly suggest that these cells are of smooth-muscle origin. Future studies of their metabolism and interactions with endothelium and astrocytes should provide a better understanding of the cerebral microcirculation.
Collapse
|
41
|
Sussman DJ, Sellers JR, Flicker P, Lai EY, Cannon LE, Szent-Györgyi AG, Fulton C. Actin of Naegleria gruberi. Absence of N tau-methylhistidine. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39878-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Strauch AR, Rubenstein PA. Induction of vascular smooth muscle alpha-isoactin expression in BC3H1 cells. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43274-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol Cell Biol 1984. [PMID: 6689196 DOI: 10.1128/mcb.3.11.1985] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes derived from alpha-skeletal, beta- and gamma-actin cDNAs and from an alpha-cardiac actin genomic clone, we showed that 28 of the cDNAs correspond to alpha-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from alpha-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle alpha-cardiac actin cDNAs are derived from transcripts of the cloned alpha-cardiac actin gene. Direct measurements of actin isotype mRNA expression in human skeletal muscle showed that alpha-cardiac actin mRNA is expressed at 5% the level of alpha-skeletal actin. Furthermore, the alpha-cardiac actin gene expressed in skeletal muscle is the same gene which produces alpha-cardiac actin mRNA in the human heart. Of equal surprise, we found that alpha-skeletal actin mRNA accounts for about half of the total actin mRNA in adult heart. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. We conclude that alpha-skeletal and alpha-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (beta and gamma) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, we postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.
Collapse
|
44
|
Nagata K, Ichikawa Y. Changes in actin during cell differentiation. CELL AND MUSCLE MOTILITY 1984; 5:171-93. [PMID: 6142761 DOI: 10.1007/978-1-4684-4592-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Gunning P, Ponte P, Blau H, Kedes L. alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol Cell Biol 1983; 3:1985-95. [PMID: 6689196 PMCID: PMC370066 DOI: 10.1128/mcb.3.11.1985-1995.1983] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes derived from alpha-skeletal, beta- and gamma-actin cDNAs and from an alpha-cardiac actin genomic clone, we showed that 28 of the cDNAs correspond to alpha-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from alpha-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle alpha-cardiac actin cDNAs are derived from transcripts of the cloned alpha-cardiac actin gene. Direct measurements of actin isotype mRNA expression in human skeletal muscle showed that alpha-cardiac actin mRNA is expressed at 5% the level of alpha-skeletal actin. Furthermore, the alpha-cardiac actin gene expressed in skeletal muscle is the same gene which produces alpha-cardiac actin mRNA in the human heart. Of equal surprise, we found that alpha-skeletal actin mRNA accounts for about half of the total actin mRNA in adult heart. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. We conclude that alpha-skeletal and alpha-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (beta and gamma) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, we postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.
Collapse
|
46
|
Lewis W, Galizi M, Puszkin S. Compartmentalization of adriamycin and daunomycin in cultured chick cardiac myocytes. Effects on synthesis of contractile and cytoplasmic proteins. Circ Res 1983; 53:352-62. [PMID: 6883654 DOI: 10.1161/01.res.53.3.352] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The affinity of two anthracycline antineoplastics [( 14C]adriamycin and [14C]daunomycin) for cultured embryonic chick heart cells was determined by measuring their uptake, compartmentalization into subcellular fractions, and effects on the synthesis of cytoplasmic and cytoskeletal proteins. Both drugs, at micromolar concentrations, were readily uptaken by myocytes and found to be concentrated in a light-buoyant-density fraction containing no lysosomes. Nuclear 14C drug content accounted for 20-25% of the drug incorporated. Binding of adriamycin was saturable within 90 minutes of drug exposure, and the uptake of [14C]adriamycin was inhibited 50% by verapamil and adenosine triphosphate. Uptake of [14C]daunomycin was not influenced by these compounds. Cytosolic and contractile protein synthesis measured by [35S]methionine incorporation into proteins was blocked 70% overall in each fraction after 6 hours of incubation with 2 microM adriamycin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography and quantitative densitometry, revealed that actin synthesis was the least affected of the major proteins. Cardiac myocytes incubated for short periods of time with 2 microM adriamycin revealed subtle cytoplasmic changes in their organelles with the appearance of clear zones of cytoplasm containing short unorganized microfilaments. The deleterious effects of anthracyclines in heart cells are manifested early by rapid drug incorporation into myocytes and inhibition of cytoplasmic protein synthesis.
Collapse
|
47
|
Witt DP, Brown DJ, Gordon JA. Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus. J Biophys Biochem Cytol 1983; 96:1766-71. [PMID: 6304115 PMCID: PMC2112459 DOI: 10.1083/jcb.96.6.1766] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transformation by Rous sarcoma virus (RSV) has been reported to block the expression of differentiated cell products in chicken cells. The expression of these proteins may or may not be suppressed when temperature-sensitive mutants are shifted from the nonpermissive to the permissive temperature. A general characteristic of cellular transformation is the disruption of the microfilament system. In passaged chick embryo fibroblast cultures (CEF), this system is principally composed of isomeric forms of actin designated alpha, beta, and gamma by their isoelectric focusing and when subjected to SDS-PAGE behavior. We present evidence that an alpha-actin in CEF cultures, identified by its electrofocusing behavior, retention in the cytoskeleton, and DNase 1 binding properties, is selectively and dramatically reduced in amount upon transformation by RSV. Little or no reduction is observed in the beta- and gamma-isoactins. The reduction of alpha-actin is shown to be reversible and transformation related by use of a temperature-sensitive mutant, tsNY68. The decrease in this transformation-sensitive isoactin is apparently due to a decrease in synthesis, though other possibilities are discussed. A specific decrease in a particular isoactin after transformation may give insight into the mechanism by which the microfilaments are normally maintained.
Collapse
|
48
|
Bulinski JC, Kumar S, Titani K, Hauschka SD. Peptide antibody specific for the amino terminus of skeletal muscle alpha-actin. Proc Natl Acad Sci U S A 1983; 80:1506-10. [PMID: 6572911 PMCID: PMC393630 DOI: 10.1073/pnas.80.6.1506] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The NH2-terminal peptide of skeletal muscle alpha-actin (S alpha N peptide), which contains a primary sequence unique to this actin isozyme, was used to prepare an isozyme-specific peptide antibody. S alpha N peptide was purified from chicken breast muscle actin by preparative reverse-phase HPLC and was coupled to hemocyanin. This complex was used to immunize rabbits in order to elicit actin antibodies specific for the skeletal muscle alpha-actin isozyme. The antibody obtained, called S alpha N antibody, was reactive with S alpha N peptide and with skeletal muscle alpha-actin as well as with cardiac muscle alpha-actin. S alpha N antibody did not react with either of the actin isozymes present in smooth muscle (smooth muscle alpha and gamma) or in brain (nonmuscle beta and gamma). S alpha N antibody was used to detect muscle-specific actin in differentiating mouse and human myoblasts by using immunoblots of myoblast extracts and immunofluorescent staining of fixed cells.
Collapse
|
49
|
Heywood SM, Thibault MC, Siegel E. Control of gene expression in muscle development. CELL AND MUSCLE MOTILITY 1983; 3:157-93. [PMID: 6367952 DOI: 10.1007/978-1-4615-9296-9_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Zechel K, Stadler H. Identification of actin in highly purified synaptic vesicles from the electric organ of Torpedo marmorata. J Neurochem 1982; 39:788-95. [PMID: 7097285 DOI: 10.1111/j.1471-4159.1982.tb07961.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Evidence has been obtained that actin is a major constituent of highly purified synaptic vesicles isolated from the electric organ of Torpedo marmorata. The mobility of a prominent spot in the polypeptide pattern of vesicles in high-resolution two-dimensional polyacrylamide gel electrophoresis is very similar to the mobility of the main component in the actin preparation purified from the whole electric organ by affinity chromatography on immobilized pancreatic deoxyribonuclease I. The comparison of tryptic peptide maps obtained from the putative vesicle actin and authentic actin from the electric organ, both purified by two-dimensional gel electrophoresis and labeled in situ with 125I, showed about 88% homology, thereby supporting the conclusion that the vesicle actin is indeed an actin isoform.
Collapse
|