1
|
Costi R, Crucitti GC, Pescatori L, Messore A, Scipione L, Tortorella S, Amoroso A, Crespan E, Campiglia P, Maresca B, Porta A, Granata I, Novellino E, Gouge J, Delarue M, Maga G, Di Santo R. New nucleotide-competitive non-nucleoside inhibitors of terminal deoxynucleotidyl transferase: discovery, characterization, and crystal structure in complex with the target. J Med Chem 2013; 56:7431-41. [PMID: 23968551 DOI: 10.1021/jm4010187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Terminal deoxynucletidyl transferase (TdT) is overexpressed in some cancer types, where it might compete with pol μ during the mutagenic repair of double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. Here we report the discovery and characterization of pyrrolyl and indolyl diketo acids that specifically target TdT and behave as nucleotide-competitive inhibitors. These compounds show a selective toxicity toward MOLT-4 compared to HeLa cells that correlate well with in vitro selectivity for TdT. The binding site of two of these inhibitors was determined by cocrystallization with TdT, explaining why these compounds are competitive inhibitors of the deoxynucleotide triphosphate (dNTP). In addition, because of the observed dual localization of the phenyl substituent, these studies open the possibility of rationally designing more potent compounds.
Collapse
Affiliation(s)
- Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , P.le Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 2011; 24:429-44. [PMID: 21384090 DOI: 10.1007/s10534-011-9434-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/24/2011] [Indexed: 12/18/2022]
Abstract
Metallic copper surfaces have strong antimicrobial properties and kill bacteria, such as Escherichia coli, within minutes in a process called contact killing. These bacteria are exposed to acute copper stress under dry conditions which is different from chronic copper stress in growing liquid cultures. Currently, the physiological changes of E. coli during the acute contact killing process are largely unknown. Here, a label-free, quantitative proteomic approach was employed to identify the differential proteome profiles of E. coli cells after sub-lethal and lethal exposure to dry metallic copper. Of the 509 proteins identified, 110 proteins were differentially expressed after sub-lethal exposure, whereas 136 proteins had significant differences in their abundance levels after lethal exposure to copper compared to unexposed cells. A total of 210 proteins were identified only in copper-responsive proteomes. Copper surface stress coincided with increased abundance of proteins involved in secondary metabolite biosynthesis, transport and catabolism, including efflux proteins and multidrug resistance proteins. Proteins involved in translation, ribosomal structure and biogenesis functions were down-regulated after contact to metallic copper. The set of changes invoked by copper surface-exposure was diverse without a clear connection to copper ion stress but was different from that caused by exposure to stainless steel. Oxidative posttranslational modifications of proteins were observed in cells exposed to copper but also from stainless steel surfaces. However, proteins from copper stressed cells exhibited a higher degree of oxidative proline and threonine modifications.
Collapse
|
3
|
Crespan E, Zanoli S, Khandazhinskaya A, Shevelev I, Jasko M, Alexandrova L, Kukhanova M, Blanca G, Villani G, Hübscher U, Spadari S, Maga G. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda. Nucleic Acids Res 2005; 33:4117-27. [PMID: 16043633 PMCID: PMC1180669 DOI: 10.1093/nar/gki723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 11/14/2022] Open
Abstract
A novel class of non-nucleoside triphosphate analogues, bearing hydrophobic groups sterically similar to nucleosides linked to the alpha-phosphate but lacking the chemical functional groups of nucleic acids, were tested against six different DNA polymerases (polymerases). Human polymerases alpha, beta and lambda, and Saccharomyces cerevisiae polymerase IV, were inhibited with different potencies by these analogues. On the contrary, Escherichia coli polymerase I and HIV-1 reverse transcriptase were not. Polymerase beta incorporated these derivatives in a strictly Mn++-dependent manner. On the other hand, polymerase lambda could incorporate some alkyltriphosphate derivatives with both Mg++ and Mn++, but only opposite to an abasic site on the template strand. The active site mutant polymerase lambda Y505A showed an increased ability to incorporate the analogues. These results show for the first time that neither the base nor the sugar moieties of nucleotides are required for incorporation by family X DNA polymerases.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Samantha Zanoli
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Anastasiya Khandazhinskaya
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Igor Shevelev
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Maxim Jasko
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Ludmila Alexandrova
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Marina Kukhanova
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
| | - Giuseppina Blanca
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Giuseppe Villani
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Ulrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Spadari
- Istituto di Genetica Molecolare IGM-CNRvia Abbiategrasso 207, I-27100 Pavia, Italy
- Engelhardt Institute of Molecular Biology, RAS32 Vavilov Street, 119991 Moscow, Russian Federation, Russia
- Institute of Veterinary Biochemistry and Molecular Biology University of Zürich–IrchelWinterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Giovanni Maga
- To whom correspondence should be addressed. Tel: +39 0382546354; Fax: +39 0382422286;
| |
Collapse
|
4
|
Henneke G, Flament D, Hübscher U, Querellou J, Raffin JP. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 2005; 350:53-64. [PMID: 15922358 DOI: 10.1016/j.jmb.2005.04.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
DNA polymerases carry out DNA synthesis during DNA replication, DNA recombination and DNA repair. During the past five years, the number of DNA polymerases in both eukarya and bacteria has increased to at least 19 and multiple biological roles have been assigned to many DNA polymerases. Archaea, the third domain of life, on the other hand, have only a subset of the eukaryotic-like DNA polymerases. The diversity among the archaeal DNA polymerases poses the intriguing question of their functional tasks. Here, we focus on the two identified DNA polymerases, the family B DNA polymerase B (PabpolB) and the family D DNA polymerase D (PabpolD) from the hyperthermophilic euryarchaeota Pyrococcus abyssi. Our data can be summarized as follows: (i) both Pabpols are DNA polymerizing enzymes exclusively; (ii) their DNA binding properties as tested in gel shift competition assays indicated that PabpolD has a preference for a primed template; (iii) PabPolD is a primer-directed DNA polymerase independently of the primer composition whereas PabpolB behaves as an exclusively DNA primer-directed DNA polymerase; (iv) PabPCNA is required for PabpolD to perform efficient DNA synthesis but not PabpolB; (v) PabpolD, but not PabpolB, contains strand displacement activity; (vii) in the presence of PabPCNA, however, both Pabpols D and B show strand displacement activity; and (viii) we show that the direct interaction between PabpolD and PabPCNA is DNA-dependent. Our data imply that PabPolD might play an important role in DNA replication likely together with PabpolB, suggesting that archaea require two DNA polymerases at the replication fork.
Collapse
Affiliation(s)
- Ghislaine Henneke
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, DRV/VP/LM2E, BP 70, F-29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
5
|
Locatelli GA, Di Santo R, Crespan E, Costi R, Roux A, Hübscher U, Shevelev I, Blanca G, Villani G, Spadari S, Maga G. Diketo hexenoic acid derivatives are novel selective non-nucleoside inhibitors of mammalian terminal deoxynucleotidyl transferases, with potent cytotoxic effect against leukemic cells. Mol Pharmacol 2005; 68:538-50. [PMID: 15901847 DOI: 10.1124/mol.105.013326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian terminal deoxyribonucleotidyl transferase (TDT) catalyzes the non-template-directed polymerization of deoxyribonucleoside triphosphates and has a key role in V(D)J recombination during lymphocyte and repertoire development. More than 90% of leukemic cells in acute lymphocytic leukemia and approximately 30% of leukemic cells in the chronic myelogenous leukemia crisis show elevated TDT activity. This finding is connected to a poor prognosis and response to chemotherapy and reduced survival time. On the other hand, recent data indicated that TDT is not the only terminal deoxyribonucleotidyl transferase in mammalian cells. Its close relative, DNA polymerase lambda, can synthesize DNA both in a template-dependent (polymerase) and template-independent (terminal deoxyribonucleotidyl transferase) fashion. DNA polymerase lambda might be involved in the nonhomologous end-joining recombinational repair pathway of DNA double-strand breaks. In this work, we report the characterization of the mechanism of action of three diketo hexenoic acid (DKHA) derivatives, which proved to be extremely selective for the terminal deoxyribonucleotidyl transferase activity of DNA polymerase lambda and TDT. They seem to be the first non-nucleoside-specific inhibitors of mammalian terminal transferases reported. Moreover, the DKHA analog 6-(1-phenylmethyl-1H-indol-3-yl)-2,4-dioxo-5-hexenoic acid (RDS2119) was not toxic toward HeLa cells (CC(50) > 100 muM), whereas it showed significant cytotoxicity against the TDT(+) leukemia cell line MOLT-4 (CC(50) = 14.9 muM), thus having the potential to be further developed as a novel antitumor agent.
Collapse
Affiliation(s)
- Giada A Locatelli
- Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Maga G, Ramadan K, Locatelli GA, Shevelev I, Spadari S, Hübscher U. DNA elongation by the human DNA polymerase lambda polymerase and terminal transferase activities are differentially coordinated by proliferating cell nuclear antigen and replication protein A. J Biol Chem 2004; 280:1971-81. [PMID: 15537631 DOI: 10.1074/jbc.m411650200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase lambda contains template-dependent (DNA polymerase) and template-independent (terminal transferase) activities. In this study we enzymologically characterized the terminal transferase activity of polymerase lambda (pol lambda-tdt). Pol lambda-tdt activity was strongly influenced by the nature of the 3'-terminal sequence of the DNA substrate, and it required a single-stranded (ss) DNA 3'-overhang of about 9-12 nucleotides for optimal activity. The strong preference observed for pyrimidine versus purine nucleotide incorporation was found to be due, at least partially, to a steric block imposed by the residue Tyr-505 in the active site of pol lambda. Pol lambda-tdt was found to be able to elongate a 3'-ssDNA end by two alternative mechanisms: first, a template-independent one resulting in addition of 1 or 2 nucleotides, and second, a template-dependent one where a homopolymeric tract as short as 3 nucleotides at the 3'-end could be used as a template to direct DNA polymerization by a looping back mechanism. Furthermore repetitive cycles of DNA synthesis resulted in the expansion of such a short homopolymeric terminal sequence. Most importantly we found that the proliferating cell nuclear antigen was able to selectively block the looping back mechanism while stimulating the single terminal nucleotide addition. Finally replication protein A completely suppressed the transferase activity of pol lambda while stimulating the polymerase activity, suggesting that proliferating cell nuclear antigen and replication protein A can coordinate the polymerase and the terminal transferase activities of pol lambda.
Collapse
Affiliation(s)
- Giovanni Maga
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Shevelev I, Blanca G, Villani G, Ramadan K, Spadari S, Hübscher U, Maga G. Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Nucleic Acids Res 2004; 31:6916-25. [PMID: 14627824 PMCID: PMC290264 DOI: 10.1093/nar/gkg896] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA polymerase (pol) lambda is homologous to pol beta and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activities. In order to precisely define the nucleotide-binding site of human pol lambda, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol beta, which are involved in nucleotide binding. Our analysis demonstrated that pol lambda Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol lambda, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.
Collapse
Affiliation(s)
- Igor Shevelev
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Toueille M, El-Andaloussi N, Frouin I, Freire R, Funk D, Shevelev I, Friedrich-Heineken E, Villani G, Hottiger MO, Hübscher U. The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Res 2004; 32:3316-24. [PMID: 15314187 PMCID: PMC443528 DOI: 10.1093/nar/gkh652] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, checkpoints are activated in response to DNA damage. This requires the action of DNA damage sensors such as the Rad family proteins. The three human proteins Rad9, Rad1 and Hus1 form a heterotrimeric complex (called the 9-1-1 complex) that is recruited onto DNA upon damage. DNA damage also triggers the recruitment of DNA repair proteins at the lesion, including specialized DNA polymerases. In this work, we showed that the 9-1-1 complex can physically interact with DNA polymerase beta in vitro. Functional analysis revealed that the 9-1-1 complex had a stimulatory effect on DNA polymerase beta activity. However, the presence of 9-1-1 complex neither affected DNA polymerase lambda, another X family DNA polymerase, nor the two replicative DNA polymerases alpha and delta. DNA polymerase beta stimulation resulted from an increase in its affinity for the primer-template and the interaction with the 9-1-1 complex stimulated deoxyribonucleotides misincorporation by DNA polymerase beta. In addition, the 9-1-1 complex enhanced DNA strand displacement synthesis by DNA polymerase beta on a 1 nt gap DNA substrate. Our data raise the possibility that the 9-1-1 complex might attract DNA polymerase beta to DNA damage sites, thus connecting directly checkpoints and DNA repair.
Collapse
Affiliation(s)
- Magali Toueille
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Wintherturerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ramadan K, Maga G, Shevelev IV, Villani G, Blanco L, Hübscher U. Human DNA polymerase lambda possesses terminal deoxyribonucleotidyl transferase activity and can elongate RNA primers: implications for novel functions. J Mol Biol 2003; 328:63-72. [PMID: 12683997 DOI: 10.1016/s0022-2836(03)00265-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA polymerase lambda is a novel enzyme of the family X of DNA polymerases. The recent demonstration of an intrinsic 5'-deoxyribose-5'-phosphate lyase activity, a template/primer dependent polymerase activity, a distributive manner of DNA synthesis and sequence similarity to DNA polymerase beta suggested a novel beta-like enzyme. All these properties support a role of DNA polymerase lambda in base excision repair. On the other hand, the biochemical properties of the polymerisation activity of DNA polymerase lambda are still largely unknown. Here we give evidence that human DNA polymerase lambda has an intrinsic terminal deoxyribonucleotidyl transferase activity that preferentially adds pyrimidines onto 3'OH ends of DNA oligonucleotides. Furthermore, human DNA polymerase lambda efficiently elongates an RNA primer hybridized to a DNA template. These two novel properties of human DNA polymerase lambda might suggest additional roles for this enzyme in DNA replication and repair processes.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N, Blanco L, Blanca G, Spadari S, Hübscher U. Human DNA polymerase lambda functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis. J Biol Chem 2002; 277:48434-40. [PMID: 12368291 DOI: 10.1074/jbc.m206889200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) has been shown to interact with a variety of DNA polymerases (pol) such as pol delta, pol epsilon, pol iota, pol kappa, pol eta, and pol beta. Here we show that PCNA directly interacts with the newly discovered pol lambda cloned from human cells. This interaction stabilizes the binding of pol lambda to the primer template, thus increasing its affinity for the hydroxyl primer and its processivity in DNA synthesis. However, no effect of PCNA was detected on the rate of nucleotide incorporation or discrimination efficiency by pol lambda. PCNA was found to stimulate efficient synthesis by pol lambda across an abasic (AP) site. When compared with pol delta, human pol lambda showed the ability to incorporate a nucleotide in front of the lesion. Addition of PCNA led to efficient elongation past the AP site by pol lambda but not by pol delta. However, when tested on a template containing a bulky DNA lesion, such as the major cisplatin Pt-d(GpG) adduct, PCNA could not allow translesion synthesis by pol lambda. Our results suggest that the complex between PCNA and pol lambda may play an important role in the bypass of abasic sites in human cells.
Collapse
Affiliation(s)
- Giovanni Maga
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maga G, Villani G, Tillement V, Stucki M, Locatelli GA, Frouin I, Spadari S, Hübscher U. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase delta by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. Proc Natl Acad Sci U S A 2001; 98:14298-303. [PMID: 11724925 PMCID: PMC64676 DOI: 10.1073/pnas.251193198] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase (pol) delta is essential for both leading and lagging strand DNA synthesis during chromosomal replication in eukaryotes. Pol delta has been implicated in the Okazaki fragment maturation process for the extension of the newly synthesized fragment and for the displacement of the RNA/DNA segment of the preexisting downstream fragment generating an intermediate flap structure that is the target for the Dna2 and flap endonuclease-1 (Fen 1) endonucleases. Using a single-stranded minicircular template with an annealed RNA/DNA primer, we could measure strand displacement by pol delta coupled to DNA synthesis. Our results suggested that pol delta alone can displace up to 72 nucleotides while synthesizing through a double-stranded DNA region in a distributive manner. Proliferating cell nuclear antigen (PCNA) reduced the template dissociation rate of pol delta, thus increasing the processivity of both synthesis and strand displacement, whereas replication protein A (RP-A) limited the size of the displaced fragment down to 20-30 nucleotides, by generating a "locked" flap DNA structure, which was a substrate for processing of the displaced fragment by Fen 1 into a ligatable product. Our data support a model for Okazaki fragment processing where the strand displacement activity of DNA polymerase delta is modulated by the concerted action of PCNA, RP-A and Fen 1.
Collapse
Affiliation(s)
- G Maga
- Istituto di Genetica Biochimica ed Evoluzionistica-Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, Forti L, Pagnoni UM, Albini A, Prosperi E, Vannini V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 2001; 276:22586-94. [PMID: 11316812 DOI: 10.1074/jbc.m101846200] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine, which shows antioxidant and antiproliferative activities. In this study we have investigated whether these properties are dependent on similar or different structural determinants of the molecule. To this purpose, resveratrol derivatives, in which all or each single hydroxylic function were selectively substituted with methyl groups, were synthesized. Analogues with the stilbenic double bond reduced or with the stereoisometry modified were also investigated. The antioxidant activity of these compounds was evaluated by measuring the inhibition of citronellal thermo-oxidation, or the reduction of 2,2-diphenyl-1-picrylhydrazyl radical. In addition, the protection against lipid peroxidation was determined in rat liver microsomes, and in human primary cell cultures. The antiproliferative activity was evaluated by a clonogenic assay, and by analysis of cell cycle progression and DNA synthesis. The results showed that the hydroxyl group in 4' position is not the sole determinant for antioxidant activity. In contrast, the presence of 4'-OH together with stereoisometry in the trans-conformation (4'-hydroxystyryl moiety) was absolutely required for inhibition of cell proliferation. Enzymatic assays in vitro demonstrated that inhibition of DNA synthesis was induced by a direct interaction of resveratrol with DNA polymerases alpha and delta.
Collapse
Affiliation(s)
- L A Stivala
- Dipartimento di Medicina Sperimentale, sez. Patologia Generale, Università di Pavia, the Centro di Studio per l'Istochimica del CNR, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maga G, Frouin I, Spadari S, Hubscher U. Replication protein A as a "fidelity clamp" for DNA polymerase alpha. J Biol Chem 2001; 276:18235-42. [PMID: 11278525 DOI: 10.1074/jbc.m009599200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current view of DNA replication in eukaryotes predicts that DNA polymerase alpha (pol alpha)-primase synthesizes the first 10-ribonucleotide-long RNA primer on the leading strand and at the beginning of each Okazaki fragment on the lagging strand. Subsequently, pol alpha elongates such an RNA primer by incorporating about 20 deoxynucleotides. pol alpha displays a low processivity and, because of the lack of an intrinsic or associated 3'--> 5' exonuclease activity, it is more error-prone than other replicative pols. Synthesis of the RNA/DNA primer catalyzed by pol alpha-primase is a critical step in the initiation of DNA synthesis, but little is known about the role of the DNA replication accessory proteins in its regulation. In this paper we provide evidences that the single-stranded DNA-binding protein, replication protein A (RP-A), acts as an auxiliary factor for pol alpha playing a dual role: (i) it stabilizes the pol alpha/primer complex, thus acting as a pol clamp; and (ii) it significantly reduces the misincorporation efficiency by pol alpha. Based on these results, we propose a hypothetical model in which RP-A is involved in the regulation of the early events of DNA synthesis by acting as a "fidelity clamp" for pol alpha.
Collapse
Affiliation(s)
- G Maga
- Istituto di Genetica Biochimica ed Evoluzionistica-Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
14
|
Henneke G, Raffin JP, Ferrari E, Jónsson ZO, Dietrich J, Hübscher U. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem Biophys Res Commun 2000; 276:600-6. [PMID: 11027519 DOI: 10.1006/bbrc.2000.3481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned the gene encoding proliferating cell nuclear antigen (PCNA) from the hyperthermophilic euryarchaeote Thermococcus fumicolans (Tfu). Tfu PCNA contains 250 amino acids with a calculated M(r) of 28,000 and is 26% identical to human PCNA. Next, Tfu PCNA was overexpressed in Escherichia coli and it showed an apparent molecular mass of 33.5 kDa. The purified Tfu PCNA was tested first with recombinant Tfu DNA polymerase I (Tfu pol) and second with calf thymus DNA polymerase delta (pol delta). When tested with the homologous Tfu pol on bacteriophage lambda DNA, large amounts of Tfu PCNA were required to obtain two- to threefold stimulation. Surprisingly, however, Tfu PCNA was much more efficient than human PCNA in stimulating calf thymus pol delta. Our data suggest that PCNA has been functionally conserved not only within eukaryotes but also from hyperthermophilic euryarchaeotes to mammals.
Collapse
|
15
|
Maga G, Stucki M, Spadari S, Hübscher U. DNA polymerase switching: I. Replication factor C displaces DNA polymerase alpha prior to PCNA loading. J Mol Biol 2000; 295:791-801. [PMID: 10656791 DOI: 10.1006/jmbi.1999.3394] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.
Collapse
Affiliation(s)
- G Maga
- Istituto di Genetica Biochimica ed Evoluzionistica IGBE-CNR, Pavia, I-27100, Italy
| | | | | | | |
Collapse
|
16
|
Schumacher SB, Stucki M, Hübscher U. The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res 2000; 28:620-5. [PMID: 10606663 PMCID: PMC102512 DOI: 10.1093/nar/28.2.620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic and biochemical studies have shown that DNA polymerase delta (Poldelta) is the major replicative Pol in the eukaryotic cell. Its functional form is the holoenzyme composed of Poldelta, proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). In this paper, we describe an N-terminal truncated form of DNA polymerase delta (DeltaN Poldelta) from calf thymus. The DeltaN Poldelta was stimulated as the full-length Poldelta by PCNA in a RF-C-independent Poldelta assay. However, when tested for holoenzyme function in a RF-C-dependent Poldelta assay in the presence of RF-C, ATP and replication protein A (RP-A), the DeltaN Poldelta behaved differently. First, the DeltaN Poldelta lacked holoenzyme functions to a great extent. Second, product size analysis and kinetic experiments showed that the holoenzyme containing DeltaN Poldelta was much less efficient and synthesized DNA at a much slower rate than the holoenzyme containing full-length Poldelta. The present study provides the first evidence that the N-terminal part of the large subunit of Poldelta is involved in holo-enzyme function.
Collapse
Affiliation(s)
- S B Schumacher
- Institute of Veterinary Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
17
|
Pascucci B, Stucki M, Jónsson ZO, Dogliotti E, Hübscher U. Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon. J Biol Chem 1999; 274:33696-702. [PMID: 10559260 DOI: 10.1074/jbc.274.47.33696] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the different base excision repair pathways known, the long patch base excision repair of apurinic/apyrimidinic sites is an important mechanism that requires proliferating cell nuclear antigen. We have reconstituted this pathway using purified human proteins. Our data indicated that efficient repair is dependent on six components including AP endonuclease, replication factor C, proliferating cell nuclear antigen, DNA polymerases delta or epsilon, flap endonuclease 1, and DNA ligase I. Fine mapping of the nucleotide replacement events showed that repair patches extended up to a maximum of 10 nucleotides 3' to the lesion. However, almost 70% of the repair synthesis was confined to 2-4-nucleotide patches and DNA ligase I appeared to be responsible for limiting the repair patch length. Moreover, both proliferating cell nuclear antigen and flap endonuclease 1 are required for the production and ligation of long patch repair intermediates suggesting an important role of this complex in both excision and resynthesis steps.
Collapse
Affiliation(s)
- B Pascucci
- Laboratory of Comparative Toxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
18
|
Maga G, Jónsson ZO, Stucki M, Spadari S, Hübscher U. Dual mode of interaction of DNA polymerase epsilon with proliferating cell nuclear antigen in primer binding and DNA synthesis. J Mol Biol 1999; 285:259-67. [PMID: 9878404 DOI: 10.1006/jmbi.1998.2314] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferating cell nuclear antigen can interact with DNA polymerase epsilon on linear DNA templates, even in the absence of other auxiliary factors (replication factor C, replication protein A), and thereby stimulate its primer recognition and DNA synthesis. Using four characterized mutants of proliferating cell nuclear antigen containing three or four alanine residue substitutions on the C-terminal side and the back side of the trimer, we have tested the kinetics of primer binding and nucleotide incorporation by DNA polymerase epsilon in different assays. In contrast with what has been found in interaction studies between DNA polymerase delta and proliferating cell nuclear antigen, our data suggested that stimulation of DNA polymerase epsilon primer binding involves interactions with both the C-terminal side and the back side of proliferating cell nuclear antigen. However, for stimulation of DNA polymerase epsilon DNA synthesis, exclusively the C-terminal side appears to be sufficient. The significance of this dual interaction is discussed with reference to the physiological roles of DNA polymerase epsilon and its interaction with the clamp proliferating cell nuclear antigen.
Collapse
Affiliation(s)
- G Maga
- Institute of Biochemical and Evolutionary Genetics IGBE-CNR, National Research Council, via Abbiategrasso 207, Pavia, I-27100, Italy.
| | | | | | | | | |
Collapse
|
19
|
Perderiset M, Maga G, Piard K, Francesconi S, Tratner I, Hübscher U, Baldacci G. Mutant DNA polymerase delta from thermosensitive Schizosaccharomyces pombe strains display reduced stimulation by proliferating cell nuclear antigen. Biochem J 1998; 335 ( Pt 3):581-8. [PMID: 9794798 PMCID: PMC1219819 DOI: 10.1042/bj3350581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated and characterized DNA polymerase delta (pol delta) from two thermosensitive Schizosaccharomyces pombe strains, poldeltats1 and poldeltats3, mutated in two different evolutionarily conserved domains of the catalytic subunit. At the restrictive temperature of 37 degreesC poldeltats1 and poldeltats3 mutant strains arrest growth in the S phase of the cell cycle. We show that at low levels of primer ends, in vitro stimulation by proliferating cell nuclear antigen (PCNA) of mutant enzymes is lower than stimulation of wild-type pol delta. Affinity for primer (3'-OH) ends and processivity of mutant enzymes do not appear different from wild-type pol delta. In contrast, Vmax values are lower than the wild-type value. The major in vitro defect appears to be decreased stimulation of mutant enzymes by PCNA, resulting in reduced velocity of DNA synthesis. In addition, ts1 pol delta is not stimulated by low PCNA concentration at 37 degreesC, although low concentrations stimulate activity at 25 degreesC, suggesting that this thermolability at low levels of primer ends could be its critical defect in vivo. Thus, both ts1 and ts3 pol delta mutations are located in regions of the catalytic subunit that seem necessary, directly or indirectly, for its efficient interaction with PCNA.
Collapse
Affiliation(s)
- M Perderiset
- CNRS-IFC1, Institut de Recherche sur le Cancer, UPR 9044, 7 Rue Guy Moquet BP8, 94801 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
21
|
Braguglia D, Heun P, Pasero P, Duncker BP, Gasser SM. Semi-conservative replication in yeast nuclear extracts requires Dna2 helicase and supercoiled template. J Mol Biol 1998; 281:631-49. [PMID: 9710536 DOI: 10.1006/jmbi.1998.1973] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the preparation of nuclear extracts from yeast cells synchronised in S-phase that support the aphidicolin-sensitive, semi-conservative replication of primer-free, supercoiled plasmid in vitro. This is monitored by one and two-dimensional gel electrophoresis of replication intermediates that have incorporated [alpha-32P]dATP, by the conversion of methylated template DNA into a hemi-methylated or DpnI-resistant form, and by substitution of dTTP with the heavy derivative BrdUTP, which results in a shift in density corresponding to complete second strand synthesis. We demonstrate dependence on DNA pol delta and the pol alpha/primase complex, and are able to detect putative Okazaki fragments under ATP-limiting conditions. In contrast to the semi-conservative replication of supercoiled plasmid, linear or open-circular templates incorporate labelled nucleotides through repair synthesis that produces no significant density shift on CsCl gradients. Consistent with a true replication reaction we find that semi-conservative replication of plasmid DNA is stimulated in S-phase relative to G1-phase nuclear extracts, and is independent of the recombination-promoting factor Rad52p. Using this novel system we demonstrate that semi-conservative replication, but not polymerase activity per se, requires the activity of the DNA helicase encoded by DNA2.
Collapse
Affiliation(s)
- D Braguglia
- Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, Epalinges/Lausanne, CH-1066, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Mossi R, Ferrari E, Hübscher U. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair. J Biol Chem 1998; 273:14322-30. [PMID: 9603940 DOI: 10.1074/jbc.273.23.14322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by these two essential DNA polymerases. DNA ligase I inhibited replication factor C-independent DNA synthesis by polymerase delta. Our results suggest that the inhibition may be due to DNA ligase I interaction with proliferating cell nuclear antigen (PCNA) and not to a direct interaction with the DNA polymerase delta itself. Strand displacement activity by DNA polymerase delta was also affected by DNA ligase I. The DNA polymerase delta holoenzyme (composed of DNA polymerase delta, PCNA, and replication factor C) was inhibited in the same way as the DNA polymerase delta core, strengthening the hypothesis of a PCNA interaction. Contrary to DNA polymerase delta, DNA synthesis by DNA polymerase epsilon was stimulated by DNA ligase I in a PCNA-dependent manner. We conclude that DNA ligase I displays different influences on the two multipotent DNA polymerases delta and epsilon through PCNA. This might be of importance in the selective involvement in DNA transactions such as DNA replication and various mechanisms of DNA repair.
Collapse
Affiliation(s)
- R Mossi
- Institute of Veterinary Biochemistry, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
23
|
Jónsson ZO, Hindges R, Hübscher U. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J 1998; 17:2412-25. [PMID: 9545252 PMCID: PMC1170584 DOI: 10.1093/emboj/17.8.2412] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The DNA polymerase accessory factor proliferating cell nuclear antigen (PCNA) has been caught in interaction with an ever increasing number of proteins. To characterize the sites and functions of some of these interactions, we constructed four mutants of human PCNA and analysed them in a variety of assays. By targeting loops on the surface of the PCNA trimer and changing three or four residues at a time to alanine, we found that a region including part of the domain-connecting loop of PCNA and loops on one face of the trimer, close to the C-termini, is involved in binding to all of the following proteins: DNA polymerase delta, replication factor C, the flap endonuclease Fen1, the cyclin dependent kinase inhibitor p21 and DNA ligase I. An inhibition of DNA ligation caused by the interaction of PCNA with DNA ligase I was found, and we show that DNA ligase I and Fen1 can inhibit DNA synthesis by DNA polymerase delta/PCNA. We demonstrate that PCNA must be located below a 5' flap on a forked template to stimulate Fen1 activity, and considering the interacting region on PCNA for Fen1, this suggests an orientation for PCNA during DNA replication with the C-termini facing forwards, in the direction of DNA synthesis.
Collapse
Affiliation(s)
- Z O Jónsson
- Department of Veterinary Biochemistry, University Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
24
|
Schurtenberger P, Egelhaaf SU, Hindges R, Maga G, Jónsson ZO, May RP, Glatter O, Hübscher U. The solution structure of functionally active human proliferating cell nuclear antigen determined by small-angle neutron scattering. J Mol Biol 1998; 275:123-32. [PMID: 9451444 DOI: 10.1006/jmbi.1997.1435] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of proliferating cell nuclear antigen (PCNA) in DNA replication and repair is to form a sliding clamp with replication factor C (RF-C) tethering DNA polymerase delta or epsilon to DNA. In addition, PCNA has been found to interact directly with various proteins involved in cell cycle regulation. The crystal structure of yeast PCNA shows that the protein forms a homotrimeric ring lining a hole through which double-stranded DNA can thread, thus forming a moving platform for DNA synthesis. Human and yeast PCNA are highly conserved at a structural and functional level. We determined the solution structure of functionally active human PCNA by small-angle neutron scattering. Our measurements strongly support a trimeric ring-like structure of functionally active PCNA in solution, and the data are in good agreement with model calculations based on the crystal structure from yeast PCNA. The human PCNA used in the small-angle neutron scattering experiments was active before and after the measurements in a RF-C independent and a RF-C dependent assay suggesting that the trimeric structure is the in vivo functional form.
Collapse
|
25
|
Sutton MD, Kaguni JM. Threonine 435 of Escherichia coli DnaA protein confers sequence-specific DNA binding activity. J Biol Chem 1997; 272:23017-24. [PMID: 9287298 DOI: 10.1074/jbc.272.37.23017] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Escherichia coli DnaA protein, as a sequence-specific DNA binding protein, promotes the initiation of chromosomal replication by binding to four asymmetric 9-mer sequences termed DnaA boxes in oriC. Characterization of N-terminal, C-terminal, and internal in-frame deletion mutants identified residues near the C terminus of DnaA protein required for DNA binding. Furthermore, genetic and biochemical characterization of 11 missense mutations mapping within the C-terminal 89 residues indicated that they were defective in DNA binding. Detailed biochemical characterization of one mutant protein bearing a threonine to methionine substitution at position 435 (T435M) revealed that it retained only nonspecific DNA binding activity, suggesting that threonine 435 imparts specificity in binding. Finally, T435M was inactive on its own for in vitro replication of an oriC plasmid but was able to augment limiting levels of wild type DnaA protein, consistent with the proposal that not all of the DnaA monomers in the initial complex are bound specifically to oriC and that direct interaction occurs among monomers.
Collapse
Affiliation(s)
- M D Sutton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
26
|
Hafkemeyer P, Neftel K, Hobi R, Pfaltz A, Lutz H, Lüthi K, Focher F, Spadari S, Hübscher U. HP 0.35, a cephalosporin degradation product is a specific inhibitor of lentiviral RNAses H. Nucleic Acids Res 1991; 19:4059-65. [PMID: 1714562 PMCID: PMC328541 DOI: 10.1093/nar/19.15.4059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Penicillins, cephalosporins and other betalactam antibiotics are widely used antibacterial drugs. Recently it was found that some of them also have effects on proliferating eukaryotic cells (Neftel, K.A. and Hübscher, U. (1987) Antimicrob. Agents Chemother. 31, 1657-1661), and one such effect was shown to be the inhibition of DNA polymerase alpha (Huynh Do,U., Neftel, K.A., Spadari, S. and Hübscher, U. (1987) Nucl. Acids Res. 15, 10495-10506). The data suggested that degradation products of betalactam antibiotics were responsible for the inhibitory effect on DNA polymerase alpha. There is some confirmation at the structural level, since we found that penicillin binding proteins, the natural target of the cephalosporins, share amino-acid homologies to DNA polymerases and also to reverse transcriptase from HIV1 (Hafkemeyer, P., Neftel, K.A. and Hübscher, U. Meth. Find. Exp. Clin. Pharmacol. 12, 43-46, 1990). We have purified and determined the structure of one product from the cephalosporin Ceftazidim and found one molecule (HP 0.35) that did not interfere with eukaryotic cell proliferation but rather had a specific inhibitory effect on the RNase H activity of human immunodeficiency virus 1 (HIV1) and feline immunodeficiency virus (FIV) reverse transcriptases, while the DNA polymerising activity of these enzymes was not affected. RNases H from HeLa cells, calf thymus and Escherichia coli on the other hand were much less affected by HP 0.35. The inhibitory concentration of 50% (IC50) was more than 10 times lower compared to those of all cellular RNases H. We therefore tested the effect of HP 0.35 on in vitro lentivirus infection as exemplified by FIV-infection of CD(4+)-cat lymphocytes in cell culture. Under conditions where cell proliferation was absolutely unaffected, HP 0.35 was able to inhibit FIV-infection in CD(4+)-cat lymphocytes. Moreover, preincubation of these lymphocytes with HP 0.35 rendered the cells completely unsusceptible to FIV-infection. These data suggest that a degradation product of a clinically used betalactam antibiotic might represent an effective inhibitor class for lentiviral RNase H.
Collapse
Affiliation(s)
- P Hafkemeyer
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hafkemeyer P, Ferrari E, Brecher J, Hübscher U. The p15 carboxyl-terminal proteolysis product of the human immunodeficiency virus type 1 reverse transcriptase p66 has DNA polymerase activity. Proc Natl Acad Sci U S A 1991; 88:5262-66. [PMID: 1711222 PMCID: PMC51852 DOI: 10.1073/pnas.88.12.5262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reverse transcriptase of human immunodeficiency virus type 1 is a heterodimeric protein consisting of two polypeptides with masses of 66 and 51 kDa and has, as a second enzymatic activity, RNase H activity. The 66-kDa polypeptide can be cleaved by the virus-encoded protease to yield polypeptides of 51 and 15 kDa. The latter has been characterized as possessing RNase H activity [Hansen, J., Schultze, T., Mellert, W. & Moelling, K. (1988) EMBO J. 7, 239-243]. We have purified simultaneously the heterodimeric reverse transcriptase/RNase H containing the 66/51-kDa polypeptides and the 15-kDa RNase H from Escherichia coli containing the expression vector pJS 3.7 by a procedure including chromatography on DEAE-cellulose, phosphocellulose, and heparin-Sepharose. Two RNase H and reverse transcriptase peaks were separated on phosphocellulose, one coinciding with the heterodimeric protein and the other with the 15-kDa protein. On the basis of the following findings it appears that the 15-kDa polypeptide has both RNase H and reverse transcriptase activities: (i) it copurified with both activities; (ii) it functioned as a reverse transcriptase in an in situ assay after SDS/polyacrylamide gel electrophoresis; (iii) polyclonal antibodies raised against the 66-kDa polypeptide reacted in immunoblots exclusively with a 15-kDa polypeptide, reacted in immunoblots exclusively with a 15-kDa polypeptide, while no immunoreactive bands in the range of 51-66 kDa were seen in the 15-kDa polypeptide preparation; (iv) the p15 and the p66/51 reverse transcriptase could be quantitatively pelleted in an enzymatically active form only when antibodies specific for the p66 carboxyl terminus were used; and (v) the p15 protein had bona fide properties of a reverse transcriptase and could enzymatically synthesize a high molecular weight, alkali-resistant product. The two reverse transcriptases appear to have different behaviors on various template/primer systems tested. Conceivably different forms of human immunodeficiency virus type 1 reverse transcriptases might be used in individual steps of (+)- and (-)-strand replication.
Collapse
Affiliation(s)
- P Hafkemeyer
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
28
|
Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99242-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Yalkinoglu AO, Zentgraf H, Hübscher U. Origin of adeno-associated virus DNA replication is a target of carcinogen-inducible DNA amplification. J Virol 1991; 65:3175-84. [PMID: 2033669 PMCID: PMC240974 DOI: 10.1128/jvi.65.6.3175-3184.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA amplification of the helper-dependent parvovirus AAV (adeno-associated virus) can be induced by a variety of genotoxic agents in the absence of coinfecting helper virus. Here we investigated whether the origin of AAV type 2 DNA replication cloned into a plasmid is sufficient to promote replication activity in cells treated by the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). A pUC19-based plasmid, designated pA2Y1, which contains the left terminal repeat sequences (TRs) representing the AAV origin of replication and the p5 and p19 promoter but lacks any functional parvoviral genes is shown to confer replication activity and to allow selective DNA amplification in carcinogen-treated cells. Following transfection of plasmid pA2Y1 or plasmid pUC19 as a control, density labeling by a bromodeoxyuridine and DpnI resistance assay suggested a semi-conservative mode of replication of the AAV origin-containing plasmid. Furthermore, the amount of DpnI-resistant full-length pA2Y1 DNA molecules was increased by MNNG treatment of cells in a dose-dependent manner. In addition, DNA synthesis of plasmid pA2Y1 was studied in vitro. Extracts derived from MNNG-treated CHO-9 and L1210 cells displayed greater synthesis of DpnI-resistant full-length pA2Y1 molecules than did nontreated controls. Experiments with specific enzyme inhibitors suggested that the reaction is largely dependent on DNA polymerase alpha, DNA primase, and DNA topoisomerase I. Furthermore, restriction endonuclease mapping analysis of the in vitro reaction products revealed the occurrence of specific initiation at the AAV origin of DNA replication. Though elongation was not very extensive, extracts from carcinogen-treated cells markedly amplified the AAV origin region. Our results, including electron microscopic examination, suggest that the AAV origin/terminal repeat structure is recognized by the cellular DNA replicative machinery induced or modulated by carcinogen treatment in the absence of parvoviral gene products.
Collapse
Affiliation(s)
- A O Yalkinoglu
- Institut für Virusforschung/Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
30
|
Thömmes P, Hübscher U. DNA helicase from calf thymus. Purification to apparent homogeneity and biochemical characterization of the enzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77307-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Focher F, Gassmann M, Hafkemeyer P, Ferrari E, Spadari S, Hübscher U. Calf thymus DNA polymerase delta independent of proliferating cell nuclear antigen (PCNA). Nucleic Acids Res 1989; 17:1805-21. [PMID: 2564661 PMCID: PMC317524 DOI: 10.1093/nar/17.5.1805] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).
Collapse
Affiliation(s)
- F Focher
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Focher F, Spadari S, Ginelli B, Hottiger M, Gassmann M, Hübscher U. Calf thymus DNA polymerase delta: purification, biochemical and functional properties of the enzyme after its separation from DNA polymerase alpha, a DNA dependent ATPase and proliferating cell nuclear antigen. Nucleic Acids Res 1988; 16:6279-95. [PMID: 2899882 PMCID: PMC338295 DOI: 10.1093/nar/16.14.6279] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have established a novel procedure to purify calf thymus DNA polymerase delta from cytoplasmic extracts. The enzyme has typical properties of DNA polymerase delta including a 3' - greater than 5' exonuclease activity and efficiently replicates natural occurring genomes such as primed single-stranded M13 DNA and single-stranded porcine circovirus DNA, this last one thanks to an associated or contaminating primase activity. A processivity of at least a thousand bases was evident and this in the apparent absence of proliferating cell nuclear antigen. The enzyme was purified through a procedure that allows the simultaneous isolation of DNA polymerase delta, DNA polymerase alpha-primase and a DNA dependent ATPase. All these enzymes coeluted from a phosphocellulose column. After chromatography on hydroxylapatite DNA polymerase delta separated from the coeluting DNA polymerase alpha and DNA dependent ATPase. Separation of the latter two was achieved on heparin-Sepharose. DNA polymerase delta was further purified by heparin-Sepharose and fast protein liquid chromatography. Purified DNA polymerase delta was resistant to the DNA polymerase alpha inhibitors BuPdGTP and BuAdATP and did not react with DNA polymerase alpha monoclonal and polyclonal antibodies. Based on this isolation protocol we can start to test biochemically the hypothesis whether DNA polymerase delta and DNA polymerase alpha might act coordinately at the replication fork as leading and lagging strand replicases, respectively.
Collapse
Affiliation(s)
- F Focher
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Maki S, Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68677-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
34
|
Maki S, Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits tau and gamma, the dnaZX gene products. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68676-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Focher F, Ferrari E, Spadari S, Hübscher U. Do DNA polymerases delta and alpha act coordinately as leading and lagging strand replicases? FEBS Lett 1988; 229:6-10. [PMID: 3345838 DOI: 10.1016/0014-5793(88)80786-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activity ratio of DNA polymerases delta and alpha in calf thymus was found to be invariably 1:1, irrespective of extraction procedure (8 types) and subcellular localization (cytoplasm, nucleus and microsomes). This was established by separation of the two forms by hydroxyapatite chromatography and by their response to specific inhibitors and monoclonal antibodies. This finding supports the dimeric DNA polymerase model [(1980) J. Biol. Chem. 255, 4290-4303], which proposes that DNA polymerases delta and alpha act coordinately as leading and lagging strand enzymes, respectively, at the replication fork.
Collapse
Affiliation(s)
- F Focher
- Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
36
|
Do UH, Neftel KA, Spadari S, Hübscher U. Betalactam antibiotics interfere with eukaryotic DNA-replication by inhibiting DNA polymerase alpha. Nucleic Acids Res 1987; 15:10495-506. [PMID: 2827125 PMCID: PMC339958 DOI: 10.1093/nar/15.24.10495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Betalactam antibiotics (BLA) are the most widely used antibacterial drugs in practical medicine. Recent experiments suggested that BLA, especially after "aging" in aqueous solutions, have an inhibitory effect on the growth of a variety of cultured human cells by interfering with DNA synthesis (Neftel et al. Cell Biol. Toxicol. 2, 513-521, 1986). Our initial observation that the replicative DNA polymerase alpha might be the target of the action of betalactam compounds (Hübscher et al. Cell Biol Toxicol. 2, 541-548, 1986) is now substantiated due to the following experimental data: (i) extractable DNA polymerase alpha is greatly reduced in cells that had been treated with BLA; (ii) the relative cellular distribution of thymidine and of its phosphorylated derivatives is not affected by BLA; (iii) BLA inhibit crude and highly purified mammalian DNA polymerase alpha; (iv) the inhibitory effect appears to be of the mixed type with a slight deviation from purely non-competitive behaviour towards the four deoxyribonucleoside triphosphates and; (v) the inhibition is evident in aphidicolin sensitive DNA polymerases from mammalian tissues and in DNA polymerases from DNA viruses such as Herpes simplex and Vaccinia. In sum, the results suggest that one of the most commonly used class of drugs has a target within eukaryotic cells being most likely the replicative DNA polymerase alpha.
Collapse
Affiliation(s)
- U H Do
- Institut für Pharmakologie und Biochemie, Universität Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
37
|
Abstract
We have determined the sequence of a 4,350-nucleotide region of the Escherichia coli chromosome that contains dnaE, the structural gene for the alpha subunit of DNA polymerase III holoenzyme. The dnaE gene appeared to be part of an operon containing at least three other genes: 5'-lpxB-ORF23-dnaE-ORF37-3' (ORF, open reading frame). The lpxB gene encodes lipid A disaccharide synthase, an enzyme essential for cell growth and division (M. Nishijima, C.E. Bulawa, and C.R.H. Raetz, J. Bacteriol. 145:113-121, 1981). The termination codons of lpxB and ORF23 overlapped the initiation codons of ORF23 and dnaE, respectively, suggesting translational coupling. No rho-independent transcription termination sequences were observed. A potential internal transcriptional promoter was found preceding dnaE. Deletion of the -35 region of this promoter abolished dnaE expression in plasmids lacking additional upstream sequences. From the deduced amino acid sequence, alpha had a molecular weight of 129,920 and an isoelectric point of 4.93 for the denatured protein. ORF23 encoded a more basic protein (pI 7.11) with a molecular weight of 23,228. In the accompanying paper (D.N. Crowell, W.S. Reznikoff, and C.R.H. Raetz, J. Bacteriol. 169:5727-5734, 1987), the sequence of the upstream region that contains lpxA and lpxB is reported.
Collapse
Affiliation(s)
- H G Tomasiewicz
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
38
|
Bardwell JC, Craig EA. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci U S A 1987; 84:5177-81. [PMID: 3299380 PMCID: PMC298817 DOI: 10.1073/pnas.84.15.5177] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have isolated a gene from Escherichia coli homologous to the gene encoding the Mr 83,000 Drosophila heat shock protein (hsp83). In E. coli the protein homologous to hsp83 is a heat shock protein called C62.5. The predicted amino acid sequence of C62.5 is 41% and 42% identical to the Drosophila and human hsp83 proteins, respectively. Selected regions of the protein have conservation as high as 90%. The gene encoding C62.5 (named htpG) is located between the dnaZ and adk genes at 11.1 minutes on the E. coli chromosome. The htpG gene appears to be a newly identified locus. The isolation of an E. coli homologue of hsp83 illustrates the remarkable conservation of heat shock proteins in evolution and will facilitate genetic and biochemical experiments aimed at determining the function of hsp83.
Collapse
|
39
|
Ottiger H, Frei P, Hässig M, Hübscher U. Mammalian DNA polymerase alpha: a replication competent holoenzyme form from calf thymus. Nucleic Acids Res 1987; 15:4789-807. [PMID: 3601656 PMCID: PMC305918 DOI: 10.1093/nar/15.12.4789] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complex "replication competent" holoenzyme form of DNA polymerase alpha (RC-alpha) was purified 10,000 fold from calf thymus through the use of an assay employing primed single stranded circular DNA template. The RC-alpha form could partially replicate a double-stranded oligo(dT)-tailed linear DNA and could completely convert primed single-stranded circular DNA to its double stranded form. The RC-alpha was resolved by denaturing gel electrophoresis into at least 10 discrete polypeptide species ranging in apparent molecular mass from 200 to 47 kilodaltons; three of the bands (apparent Mr of 200, 118 and 63 kilodaltons) displayed DNA polymerase activity in denaturing gel activity assay. The isolation of RC-alpha required the use of absolutely fresh calf thymus, the inclusion of ATP and protease inhibitors throughout the purification procedure. Treatment of the RC-alpha with the neutralizing anti-DNA polymerase alpha monoclonal antibody SJK 132-20 (Tanaka et al. (1982), J. Biol. Chem. 257, 8386-8390) in nondenaturing conditions selected the complete set of 10 polypeptides, whereas treatment in denaturing conditions selected the 200 kilodalton catalytic DNA polymerase active polypeptide. The properties and the behaviour of the RC-alpha preparation following removal of specific polypeptides strongly suggested that the capacity of RC-alpha to extend and replicate long template requires the function of nonproteolysed form of the 200 kilodaltons catalytic DNA polymerase core and at least 6 other auxiliary polypeptides of, respectively, 98, 87, 63, 54, 49 and 47 kilodaltons.
Collapse
|
40
|
Hübscher U, Huynh UD, Hässig M, Neftel KA. Effects of beta-lactams on DNA replication. Cell Biol Toxicol 1986; 2:541-8. [PMID: 3077086 DOI: 10.1007/bf00117856] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- U Hübscher
- Department of Pharmacology, University of Zurich-Irchel, Switzerland
| | | | | | | |
Collapse
|
41
|
Flower AM, McHenry CS. The adjacent dnaZ and dnaX genes of Escherichia coli are contained within one continuous open reading frame. Nucleic Acids Res 1986; 14:8091-101. [PMID: 3534795 PMCID: PMC311836 DOI: 10.1093/nar/14.20.8091] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The dnaZ and dnaX loci of Escherichia coli have been genetically defined as separate genes, both of which are essential for DNA replication (1). The 2.1 kb region of DNA that complements mutations in both genes has a maximum coding capacity of approximately 80,000 daltons. Two protein products are produced from this region with molecular weights of 77,000 and 52,000 (2,3). We have sequenced a 2.7 kb fragment containing the dnaZ and dnaX genes and determined that it contains only one open reading frame of sufficient length to encode either of these proteins. This open reading frame may encode a protein of 71,147 daltons or of 68,451 daltons depending on which potential translational initiation codon is utilized. There are two transcriptional promoters preceding the gene as well as a ribosome binding site preceding the two potential initiation codons. Both the promoters and ribosome binding sites are predicted to be weak, perhaps contributing to the low expression of these genes.
Collapse
|
42
|
Yin KC, Blinkowa A, Walker JR. Nucleotide sequence of the Escherichia coli replication gene dnaZX. Nucleic Acids Res 1986; 14:6541-9. [PMID: 3018672 PMCID: PMC311662 DOI: 10.1093/nar/14.16.6541] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli 2.2 kilobase dnaZX region contains one 1929 nucleotide reading frame which directs the synthesis of two protein products involved in DNA polymerization. The larger consists of 643 amino acids in a deduced 71,114 dalton chain which could be the tau subunit of DNA polymerase III. The smaller, the DNA polymerase III gamma subunit, is encoded by the same reading frame as the larger. The dnaZX sequence contains a region homologous to ATP binding sites, suggesting that these replication factors are adenine nucleotide binding proteins.
Collapse
|
43
|
Lutz H, Von Meyenburg K, Hübscher U. Quantitation with monoclonal antibodies of Escherichia coli H protein suggests histone function. J Bacteriol 1985; 162:1005-7. [PMID: 3888952 PMCID: PMC215875 DOI: 10.1128/jb.162.3.1005-1007.1985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The abundance of the histonelike H protein of Escherichia coli (U. Hübscher, H. Lutz, and A. Kornberg, Proc. Natl. Acad. Sci. U.S.A. 77:5097-5101, 1980) was determined by using monoclonal antibodies against H protein, immunoblotting, and homogeneous H protein as a standard. H protein was found to be present at approximately 120,000 monomeric molecules per fast-growing E. coli cell. This amount of H protein corresponds to a ratio of one H protein molecule to approximately 200 base pairs of the bacterial chromosome. Together with previous results, these findings suggest that H protein has histonelike function similar to that of histone protein H2A, its counterpart in the eucaryotic cell.
Collapse
|
44
|
McHenry CS. DNA polymerase III holoenzyme of Escherichia coli: components and function of a true replicative complex. Mol Cell Biochem 1985; 66:71-85. [PMID: 3885002 DOI: 10.1007/bf00231826] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, alpha, epsilon and theta, compose the catalytic core. Apparently alpha is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 3'----5' activity of the polymerase. The function of the theta subunit remains to be established. The auxiliary subunits, beta, gamma and delta, encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.
Collapse
|
45
|
Ottiger HP, Hübscher U. Mammalian DNA polymerase alpha holoenzymes with possible functions at the leading and lagging strand of the replication fork. Proc Natl Acad Sci U S A 1984; 81:3993-7. [PMID: 6588375 PMCID: PMC345354 DOI: 10.1073/pnas.81.13.3993] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
At an early purification stage, DNA polymerase alpha holoenzyme from calf thymus can be separated into four different forms by chromatography on DEAE-cellulose. All four enzyme forms (termed A, B, C, and D) are capable of replicating long single-stranded DNA templates, such as parvoviral DNA or primed M13 DNA. Peak A possesses, in addition to the DNA polymerase alpha, a double-stranded DNA-dependent ATPase, as well as DNA topoisomerase type II, 3'-5' exonuclease, and RNase H activity. Peaks B, C, and D all contain, together with DNA polymerase alpha, activities of primase and DNA topoisomerase type II. Furthermore, peak B is enriched in an RNase H, and peaks C and D are enriched in a 3'-5' exonuclease. DNA methylase (DNA methyltransferase) was preferentially identified in peaks C and D. Velocity sedimentation analyses of the four peaks gave evidence of unexpectedly large forms of DNA polymerase alpha (greater than 11.3 s), indicating that copurification of the above putative replication enzymes is not fortuitous. With moderate and high concentrations of salt, enzyme activities cosedimented with DNA polymerase alpha. Peak C is more resistant to inhibition by salt and spermidine than the other three enzyme forms. These results suggest the existence of a leading strand replicase (peak A) and several lagging strand replicase forms (peaks B, C, and D). Finally, the salt-resistant C form might represent a functional DNA polymerase alpha holoenzyme, possibly fitting in a higher-order structure, such as the replisome or even the chromatin.
Collapse
|
46
|
Biswas SB, Kornberg A. Nucleoside triphosphate binding to DNA polymerase III holoenzyme of Escherichia coli. A direct photoaffinity labeling study. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42890-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Shepard D, Oberfelder RW, Welch MM, McHenry CS. Determination of the precise location and orientation of the Escherichia coli dnaE gene. J Bacteriol 1984; 158:455-9. [PMID: 6327605 PMCID: PMC215449 DOI: 10.1128/jb.158.2.455-459.1984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The minimal region required for expression of the dnaE gene of Escherichia coli has been determined relative to a detailed restriction endonuclease map. This has been accomplished by analysis of Bal 31 exonuclease-generated deletions from the termini of the E. coli DNA contained in plasmid pMWE303 , a plasmid that we have previously demonstrated to contain the dnaE gene (M. M. Welch and C. S. McHenry , J. Bacteriol . 152:351-356, 1982). The competence of these deletion-containing plasmids in expressing the alpha subunit of DNA polymerase III holoenzyme has been determined by their ability both to complement a dnaE mutant and to direct the synthesis of a complete alpha subunit. The carboxyl-terminal coding region of dnaE has been identified through the detection of partial alpha polypeptides encoded by plasmids containing deletions from one end of the gene. This approach has permitted the precise determination of both termini of the dnaE gene and the determination of the orientation of the gene within the E. coli chromosome.
Collapse
|
48
|
Meyer RR, Brown CL, Rein DC. A new DNA-dependent ATPase from Escherichia coli. Purification and characterization of ATPase IV. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Marians KJ. Enzymology of DNA in replication in prokaryotes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 17:153-215. [PMID: 6097404 DOI: 10.3109/10409238409113604] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review stresses recent developments in the in vitro study of DNA replication in prokaryotes. New insights into the enzymological mechanisms of initiation and elongation of leading and lagging strand DNA synthesis in ongoing studies are emphasized. Data from newly developed systems, such as those replicating oriC containing DNA or which are dependent on the lambda, O, and P proteins, are presented and the information compared to existing mechanisms. Evidence bearing on the coupling of DNA synthesis on both parental strands through protein-protein interactions and on the turnover of the elongation systems are analyzed. The structure of replication origins, and how their tertiary structure affects recognition and interaction with the various replication proteins is discussed.
Collapse
|
50
|
Kodaira M, Biswas SB, Kornberg A. The dnaX gene encodes the DNA polymerase III holoenzyme tau subunit, precursor of the gamma subunit, the dnaZ gene product. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:80-6. [PMID: 6358801 DOI: 10.1007/bf00327650] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The E. coli dnaX and dnaZ gene products, essential for E. coli DNA replication, serve in chain elongation. Both genes, located at 10.4 min and previously cloned into a lambda vector and a ColE1 plasmid, were subcloned into pBR322 (pMK212). The coding region for the dnaX and dnaZ genes was localized to a 2.2-kb segment by deletion analysis of pMK212. The products of dnaX and dnaZ genes were identified as 78 kd and 52 kd polypeptides, respectively, by using maxicells bearing deletion clones of pMK212. Peptide mapping after limited proteolysis showed that the dnaZ gene product (52 kd) is a part of the dnaX gene product (78 kd), thus accounting for the coding capacity of the 2.2 kb region for both the dnaX and dnaZ genes. The dnaX gene product appears to be the tau subunit of DNA polymerase III holoenzyme; the dnaZ gene product is confirmed as the gamma subunit of the holoenzyme.
Collapse
|