Srinivasulu S, Malavalli A, Prabhakaran M, Nagel RL, Acharya AS. Inhibition of beta(S)-chain dependent polymerization by synergistic complementation of contact site perturbations of alpha-chain: application of semisynthetic chimeric alpha-chains.
PROTEIN ENGINEERING 1999;
12:1105-11. [PMID:
10611404 DOI:
10.1093/protein/12.12.1105]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mouse alpha(1-30)-horse alpha(31-141) chimeric alpha-chain, a semisynthetic super-inhibitory alpha-chain, inhibits beta(S)-chain dependent polymerization better than both parent alpha-chains. Although contact site sequence differences are absent in the alpha(1-30) region of the chimeric chain, the four sequence differences of the region alpha(17-22) could induce perturbations of the side chains at alpha(16), alpha(20) and alpha(23), the three contact sites of the region. A synergistic complementation of such contact site perturbation with that of horse alpha(31-141) probably results in the super-inhibitory activity of the chimeric alpha-chain. The inhibitory contact site sequence differences, by themselves, could also exhibit similar synergistic complementation. Accordingly, the polymerization inhibitory activity of Hb Le-Lamentin (LM) mutation [His20(alpha)-->Gln], a contact site sequence difference, engineered into human-horse chimeric alpha-chain has been investigated to map such a synergistic complementation. Gln20(alpha) has little effect on the O(2) affinity of HbS, but in human-horse chimeric alpha-chain it reduces the O(2) affinity slightly. In the chimeric alpha-chain, Gln20(alpha) increased sensitivity of the betabeta cleft for the DPG influence, reflecting a cross-talk between the alpha(1)beta(1) interface and betabeta cleft in this semisynthetic chimeric HbS. In the human alpha-chain frame, the polymerization inhibitory activity of Gln20(alpha) is higher compared with horse alpha(1-30), but lower than mouse alpha(1-30). Gln20(alpha) synergistically complements the inhibitory propensity of horse alpha(31-141). However, the inhibitory activity of LM-horse chimeric alpha-chain is still lower than that of mouse-horse chimeric alpha-chain. Therefore, perturbation of multiple contact sites in the alpha(1-30) region of the mouse-horse chimeric alpha-chain and its linkage with the inhibitory propensity of horse alpha(31-141) has been now invoked to explain the super-inhibitory activity of the chimeric alpha-chain. The 'linkage-map' of contact sites can serve as a blueprint for designing synergistic complementation of multiple contact sites into alpha-chains as a strategy for generating super-inhibitory antisickling hemoglobins for gene therapy of sickle cell disease.
Collapse