1
|
Leroy EC, Perry TN, Renault TT, Innis CA. Tetracenomycin X sequesters peptidyl-tRNA during translation of QK motifs. Nat Chem Biol 2023; 19:1091-1096. [PMID: 37322159 DOI: 10.1038/s41589-023-01343-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
As antimicrobial resistance threatens our ability to treat common bacterial infections, new antibiotics with limited cross-resistance are urgently needed. In this regard, natural products that target the bacterial ribosome have the potential to be developed into potent drugs through structure-guided design, provided their mechanisms of action are well understood. Here we use inverse toeprinting coupled to next-generation sequencing to show that the aromatic polyketide tetracenomycin X primarily inhibits peptide bond formation between an incoming aminoacyl-tRNA and a terminal Gln-Lys (QK) motif in the nascent polypeptide. Using cryogenic electron microscopy, we reveal that translation inhibition at QK motifs occurs via an unusual mechanism involving sequestration of the 3' adenosine of peptidyl-tRNALys in the drug-occupied nascent polypeptide exit tunnel of the ribosome. Our study provides mechanistic insights into the mode of action of tetracenomycin X on the bacterial ribosome and suggests a path forward for the development of novel aromatic polyketide antibiotics.
Collapse
Affiliation(s)
- Elodie C Leroy
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Pessac, France
- Human Technopole, Milan, Italy
| | - Thomas N Perry
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Pessac, France
- Human Technopole, Milan, Italy
| | - Thibaud T Renault
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Pessac, France.
| | - C Axel Innis
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Pessac, France.
| |
Collapse
|
2
|
Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 2021; 12:2803. [PMID: 33990576 PMCID: PMC8121947 DOI: 10.1038/s41467-021-23068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.
Collapse
|
3
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
4
|
Arenz S, Bock LV, Graf M, Innis CA, Beckmann R, Grubmüller H, Vaiana AC, Wilson DN. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat Commun 2016; 7:12026. [PMID: 27380950 PMCID: PMC4935803 DOI: 10.1038/ncomms12026] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Lars V. Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Michael Graf
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France
- INSERM U1212, Bordeaux 33076, France
- CNRS UMR7377, Bordeaux 33076, France
| | - Roland Beckmann
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Andrea C. Vaiana
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Daniel N. Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| |
Collapse
|
5
|
Arenz S, Meydan S, Starosta AL, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN. Drug sensing by the ribosome induces translational arrest via active site perturbation. Mol Cell 2014; 56:446-452. [PMID: 25306253 DOI: 10.1016/j.molcel.2014.09.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site, leading to inhibition of peptide bond formation and translation arrest.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Sezen Meydan
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Chicago, IL 60607, USA
| | - Agata L Starosta
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany; Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Chicago, IL 60607, USA
| | - Daniel N Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany; Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany.
| |
Collapse
|
6
|
Abstract
In this issue of Molecular Cell, Gupta et al. (2013a) describe a novel, antibiotic-dependent ribosomal frameshifting event that activates translation of an antibiotic resistance gene.
Collapse
Affiliation(s)
- Ian Brierley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
7
|
Gupta P, Sothiselvam S, Vázquez-Laslop N, Mankin AS. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun 2013; 4:1984. [PMID: 23749080 DOI: 10.1038/ncomms2984] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023] Open
Abstract
A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol Cell 2013; 52:629-42. [PMID: 24239289 DOI: 10.1016/j.molcel.2013.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
The expression of many genes is controlled by upstream ORFs (uORFs). Typically, the progression of the ribosome through a regulatory uORF, which depends on the physiological state of the cell, influences the expression of the downstream gene. In the classic mechanism of induction of macrolide resistance genes, antibiotics promote translation arrest within the uORF, and the static ribosome induces a conformational change in mRNA, resulting in the activation of translation of the resistance cistron. We show that ketolide antibiotics, which do not induce ribosome stalling at the uORF of the ermC resistance gene, trigger its expression via a unique mechanism. Ketolides promote frameshifting at the uORF, allowing the translating ribosome to invade the intergenic spacer. The dynamic unfolding of the mRNA structure leads to the activation of resistance. Conceptually similar mechanisms may control other cellular genes. The identified property of ketolides to reduce the fidelity of reading frame maintenance may have medical implications.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| | - Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
10
|
Bechhofer DH. Messenger RNA decay and maturation in Bacillus subtilis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:231-73. [PMID: 19215774 DOI: 10.1016/s0079-6603(08)00806-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Our understanding of the ribonucleases that act to process and turn over RNA in Bacillus subtilis, a model Gram-positive organism, has increased greatly in recent years. This chapter discusses characteristics of B. subtilis ribonucleases that have been shown to participate in messenger RNA maturation and decay. Distinct features of a recently discovered ribonuclease, RNase J1, are reviewed, and are put in the context of a mechanism for the mRNA decay process in B. subtilis that differs greatly from the classical model developed for E. coli. This chapter is divided according to three parts of an mRNA-5' end, body, and 3' end-that could theoretically serve as sites for initiation of decay. How 5'-proximal elements affect mRNA half-life, and especially how these elements interface with RNase J1, forms the basis for a set of "rules" that may be useful in predicting mRNA stability.
Collapse
Affiliation(s)
- David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
11
|
Vazquez-Laslop N, Thum C, Mankin AS. Molecular Mechanism of Drug-Dependent Ribosome Stalling. Mol Cell 2008; 30:190-202. [DOI: 10.1016/j.molcel.2008.02.026] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/31/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
|
12
|
Abstract
Ketolides, which represent the newest macrolide antibiotics, are generally perceived to be noninducers of inducible erm genes. In the study described in this paper we investigated the effects of several macrolide and ketolide compounds on the expression of the inducible erm(C) gene by Escherichia coli cells. Exposure to 14-member-ring macrolide drugs and to azithromycin led to a rapid and pronounced increase in the extent of dimethylation of Erm(C) target residue A2058 in 23S rRNA. When cells were incubated with subinhibitory concentrations of ketolides, the extent of A2058 dimethylation was also increased, albeit to a lower level and with kinetics slower than those observed with macrolides. The induction of erm(C) expression by ketolides was further confirmed by using a reporter construct which allows the colorimetric detection of induction in a disc diffusion assay. Most of the ketolides tested, including the clinically relevant compounds telithromycin and cethromycin, were able to induce the reporter expression, even though the induction occurred within a more narrow range of concentrations compared to the concentration range at which induction was achieved with the inducing macrolide antibiotics. No induction of the reporter expression was observed with 16-member-ring macrolide antibiotics or with a control drug, chloramphenicol. The deletion of three codons of the erm(C) leader peptide eliminated macrolide-dependent induction but left ketolide-dependent induction unchanged. We conclude that ketolides are generally capable of inducing erm genes. The narrow range of ketolide inducing concentrations, coupled with the slow rate of induction and the lower steady-state level of ribosome methylation, may mask this effect in MIC assays.
Collapse
|
13
|
Mathy N, Bénard L, Pellegrini O, Daou R, Wen T, Condon C. 5'-to-3' exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA. Cell 2007; 129:681-92. [PMID: 17512403 DOI: 10.1016/j.cell.2007.02.051] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/14/2006] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.
Collapse
Affiliation(s)
- Nathalie Mathy
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
15
|
Abstract
BACKGROUND Regulating mRNA stability is one of the essential mechanisms in gene expression. In order to identify genes from Escherichia coli whole genome whose expression is effectively modulated during the process of mRNA decay, we previously performed differential display-PCR as the first step. In the screening, it was suggested that two mRNAs from the histidine kinase genes, narX and yojN, in a two-component signal transduction system, were extremely unstable. In this study we analysed the stability of sensory kinase mRNAs, e.g. arcB, barA, rcsC, narQ, narX and evgS mRNA. RESULTS The cellular level of the histidine kinase mRNAs was very low and the mRNAs were rapidly degraded in wild-type cells cultured at 37 degrees C in LB medium. Additional experiments using RNase E deficient cells indicated that the mRNAs existed abundantly and expressed a prolonged half-life in the cells. Monocistronic transcripts of the cognate response regulator genes, arcA, rcsB, narP and narL have a half-life of 1.5-3.4 min. CONCLUSIONS mRNAs of the six histidine kinase genes in E. coli are synthesized efficiently, but rapidly degraded in wild-type cells.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachioji, Tokyo 192-8508, Japan
| | | |
Collapse
|
16
|
Abstract
To investigate whether the arylsulfate sulfotransferase (ASST) is suitable as a reporter system for monitoring gene expression, a reporter vector carrying the fragments of the astA coding region without the promoter region was constructed and designated as pSY815. As a test of the ASST reporter system's suitability, the regulatory regions of ermC and lacZ were inserted upstream of the coding region of the reporter gene to generate pSY815-EC and pSY815-LZ, respectively. In the absence of the inserted regulatory regions, the plasmids displayed very low background activities in Bacillus subtilis and Escherichia coli. The ASST activity under the control of the ermC regulatory region was increased 4.4-fold in B. subtilis when induced by 0.1 microgml(-1) of erythromycin. These results were consistent with a lacZ reporter gene assay of the ermC regulatory region. Furthermore, we confirmed that the lacZ promoter in E. coli was strongly induced to a 17.9-fold increase by 0.05 mM of isopropyl-beta-D-thiogalactopyranoside (IPTG) in this reporter system. These results indicate that the ASST is a suitable reporter system. The lack of endogenous activity, the simple detection of enzyme activity in the living cell, the commercially available non-toxic substrates, and the high sensitivity make ASST a useful genetic reporter system for monitoring gene expression and understanding gene regulation.
Collapse
Affiliation(s)
- H J Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Korea
| | | | | |
Collapse
|
17
|
Nakajima Y. Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 1999; 5:61-74. [PMID: 11810493 DOI: 10.1007/s101560050011] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1999] [Accepted: 02/25/1999] [Indexed: 11/24/2022]
Abstract
Macrolides have been used in the treatment of infectious diseases since the late 1950s. Since that time, a finding of antagonistic action between erythromycin and spiramycin in clinical isolates1 led to evidence of the biochemical mechanism and to the current understanding of inducible or constitutive resistance to macrolides mediated by erm genes containing, respectively, the functional regulation mechanism or constitutively mutated regulatory region. These resistant mechanisms to macrolides are recognized in clinically isolated bacteria. (1) A methylase encoded by the erm gene can transform an adenine residue at 2058 (Escherichia coli equivalent) position of 23S rRNA into an 6N, 6N-dimethyladenine. Position 2058 is known to reside either in peptidyltransferase or in the vicinity of the enzyme region of domain V. Dimethylation renders the ribosome resistant to macrolides (MLS). Moreover, another finding adduced as evidence is that a mutation in the domain plays an important role in MLS resistance: one of several mutations (transition and transversion) such as A2058G, A2058C or U, and A2059G, is usually associated with MLS resistance in a few genera of bacteria. (2) M (macrolide antibiotics)- and MS (macrolide and streptogramin type B antibiotics)- or PMS (partial macrolide and streptogramin type B antibiotics)-phenotype resistant bacteria cause decreased accumulation of macrolides, occasionally including streptogramin type B antibiotics. The decreased accumulation, probably via enhanced efflux, is usually inferred from two findings: (i) the extent of the accumulated drug in a resistant cell increases as much as that in a susceptible cell in the presence of an uncoupling agent such as carbonylcyanide-m-chlorophenylhydrazone (CCCP), 2,4-dinitrophenol (DNP), and arsenate; (ii) transporter proteins, in M-type resistants, have mutual similarity to the 12-transmembrane domain present in efflux protein driven by proton-motive force, and in MS- or PMS-type resistants, transporter proteins have mutual homology to one or two ATP-binding segments in efflux protein driven by ATP. (3) Two major macrolide mechanisms based on antibiotic inactivation are dealt with here: degradation due to hydrolysis of the macrolide lactone ring by an esterase encoded by the ere gene; and modification due to macrolide phosphorylation and lincosamide nucleotidylation mediated by the mph and lin genes, respectively. But enzymatic mechanisms that hydrolyze or modify macrolide and lincosamide antibiotics appear to be relatively rare in clinically isolated bacteria at present. (4) Important developments in macrolide antibiotics are briefly featured. On the basis of information obtained from extensive references and studies of resistance mechanisms to macrolide antibiotics, the mode of action of the drugs, as effectors, and a hypothetical explanation of the regulation of the mechanism with regard to induction of macrolide resistance are discussed.
Collapse
Affiliation(s)
- Yoshinori Nakajima
- Division of Microbiology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| |
Collapse
|
18
|
Matsuoka M, Endou K, Kobayashi H, Inoue M, Nakajima Y. A dyadic plasmid that shows MLS and PMS resistance in Staphylococcus aureus. FEMS Microbiol Lett 1997; 148:91-6. [PMID: 9066116 DOI: 10.1111/j.1574-6968.1997.tb10272.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Out of a collection of 56 Staphylococcus aureus clinical strains from 1971 to 1990 in Japan, we found one 1971 isolate, strain MS8968, harboring plasmid pMS97. A transductant strain, MS15009(pMS97), showed inducible resistance to a group of drugs, the so-called MLS antibiotics in the presence of a low concentration of erythromycin (EM). However, in the case of oleandomycin (OL), the strain showed resistance to another group of antibiotics: 14-membered macrolides (EM and OL), a 16-membered macrolide (mycinamicin I), and type B streptogramin, the so-called PMS antibiotics. Moreover, plasmid pMS97 contained an erm gene with universal primers specific for erm A, AM, B, BC, C, C', and G and an msrA gene with primers specific for msrA. The first finding suggests that two genes encoding functionally different mechanisms for MLS and PMS resistance, erm and msrA, are present together within plasmid pMS97 originating from S. aureus.
Collapse
Affiliation(s)
- M Matsuoka
- Division of Microbiology, Hokkaido College of Pharmacy, Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
To study the role of mRNA termination in the regulation of ermK, we introduced mismatches into terminators by in vitro mutagenesis. In wild-type ermK, only truncated transcription products were detected in the absence of induction. In contrast, only the full-length transcript was synthesized in the terminator 1 and terminator 2 double mutants, even in the absence of erythromycin. These results indicate that the expression of ermK is primarily regulated by transcriptional attenuation rather than translational attenuation. We also tested the possible contribution of translational attenuation control to the regulation of ermK by constructing a triple mutant (terminator 1 plus terminator 2 plus the methylase Shine-Dalgarno region). A higher level of beta-galactosidase synthesis was seen in the triple mutant. Therefore, unlike with previously described attenuators, it can be concluded that both transcriptional and translational attenuation contribute to the regulation of ermK, although transcriptional attenuation plays a larger role.
Collapse
Affiliation(s)
- S S Choi
- College of Pharmacy, Seoul National University, Korea
| | | | | | | |
Collapse
|
20
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
21
|
Hue KK, Cohen SD, Bechhofer DH. A polypurine sequence that acts as a 5' mRNA stabilizer in Bacillus subtilis. J Bacteriol 1995; 177:3465-71. [PMID: 7539420 PMCID: PMC177050 DOI: 10.1128/jb.177.12.3465-3471.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A segment of early RNA from Bacillus subtilis bacteriophage SP82 was shown to function as a 5' stabilizer in B. subtilis. Several heterologous RNA sequences were stabilized by the presence of the SP82 sequence at the 5' end, and expression of downstream coding sequences was increased severalfold. The SP82 RNA segment encodes a B. subtilis RNase III cleavage site, but cleavage by B. subtilis RNase III was not required for stabilization. The sequence that specifies 5' stabilizer function was localized to a polypurine sequence that resembles a ribosome binding site. The ability of the SP82 sequence to stabilize downstream RNA was dependent on its position relative to the 5' end of the RNA. These results demonstrate the existence of a new type of 5' stabilizer in B. subtilis and indicate that attack at the 5' end is a principal mechanism for initiation of mRNA decay in B. subtilis.
Collapse
Affiliation(s)
- K K Hue
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
22
|
Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 1995; 39:797-805. [PMID: 7785974 PMCID: PMC162632 DOI: 10.1128/aac.39.4.797] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
23
|
Chen N, Jiang S, Klein D, Paulus H. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98372-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Abstract
Ribosome stalling in the leader region of ermC mRNA results in a 10-15-fold increase in ermC mRNA half-life in Bacillus subtilis. Fusion of the ermC 5' regulatory region to several B. subtilis coding sequences resulted in induced stability of the fusion RNAs, showing that the ermC 5' region acts as a general '5' stabilizer'. RNA products of an ermC-lacZ transcriptional fusion were inducibly stable in the complete absence of translation and included a small RNA that is likely to be a decay product arising by blockage of a 3'-to-5' exoribonuclease activity. Insertion of sequences that encode endonucleolytic cleavage sites into the ermC coding sequence resulted in cleavage products whose stability depended on the nature of their 5' and 3' ends. It can be concluded from this study that initiation of mRNA decay in B. subtilis generally occurs at or near the 5' terminus.
Collapse
Affiliation(s)
- J F DiMari
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
25
|
Abstract
The erythromycin resistance gene ermD, which encodes an rRNA methylase protein, has an unusually long leader region (354 nucleotides). Previously, a single promoter-proximal leader peptide coding sequence was recognized from the nucleotide sequence, and erythromycin-induced ribosome stalling in this sequence was proposed to be required for the induction of methylase translation. We characterized spontaneously occurring and in vitro-constructed leader region mutations in an effort to understand the function of various segments of the long ermD leader region. A second leader peptide coding sequence was identified, and the location of insertion and point mutations that expressed ermD methylase constitutively suggested that translation of the second leader peptide is controlled by ribosome stalling in the first leader peptide. From Northern RNA blot analysis of ermD transcription, it appears that regulation of ermD expression is not by transcriptional attenuation.
Collapse
Affiliation(s)
- K K Hue
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
26
|
Abstract
Induction of translation of the ermC gene product in Bacillus subtilis occurs upon exposure to erythromycin and is a result of ribosome stalling in the ermC leader peptide coding sequence. Another result of ribosome stalling is stabilization of ermC mRNA. The effect of leader RNA secondary structure, methylase translation, and leader peptide translation on induced ermC mRNA stability was examined by constructing various mutations in the ermC leader region. Analysis of deletion mutations showed that ribosome stalling causes induction of ermC mRNA stability in the absence of methylase translation and ermC leader RNA secondary structure. Furthermore, deletions that removed much of the leader peptide coding sequence had no effect on induced ermC mRNA stability. A leader region mutation was constructed such that ribosome stalling occurred in a position upstream of the natural stall site, resulting in induced mRNA stability without induction of translation. This mutation was used to measure the effect of mRNA stabilization on ermC gene expression.
Collapse
Affiliation(s)
- K K Hue
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | |
Collapse
|
27
|
Rouch DA, Cram DS, DiBerardino D, Littlejohn TG, Skurray RA. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 1990; 4:2051-62. [PMID: 2089219 DOI: 10.1111/j.1365-2958.1990.tb00565.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Resistance to intercalating dyes (ethidium, acriflavine) and other organic cations, such as quaternary ammonium-type antiseptic compounds, mediated by the Staphylococcus aureus plasmid pSK1 is specified by an energy-dependent export mechanism encoded by the qacA gene. From nucleotide sequence analysis, qacA is predicted to encode a protein of Mr 55017 containing 514 amino acids. The gene is likely to initiate with a CUG codon, and a 36 bp palindrome immediately preceding qacA, along with an upstream reading frame with homology to the TetR repressors, may be components of a regulatory circuit. The putative polypeptide specified by qacA has properties typical of a cytoplasmic membrane protein, and is indicated to be a member of a transport protein family that includes proteins responsible for export-mediated resistance to tetracycline and methylenomycin, and uptake of sugars and quinate. The analysis suggests that N- and C-terminal regions of these proteins are involved in energy coupling (proton translocation) and substrate transport, respectively. The last common ancestor of the qacA and related tet (tetracycline resistance) lineages is inferred to have been repressor controlled, as occurs for modern tet determinants from Gram-negative, but not those from Gram-positive, bacteria.
Collapse
Affiliation(s)
- D A Rouch
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
28
|
Abstract
The ermC gene confers resistance to MLS antibiotics in a Bacillus subtilis host. Synthesis of the ermC gene product, a ribosomal RNA methylase, is inducible by the addition of subinhibitory concentrations of erythromycin. Regulation of ermC gene expression occurs at the post-transcriptional level in three ways: translational attenuation, translational autoregulation, and messenger RNA stabilization.
Collapse
Affiliation(s)
- D H Bechhofer
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| |
Collapse
|
29
|
Breidt F, Dubnau D. Identification of cis-acting sequences required for translational autoregulation of the ermC methylase. J Bacteriol 1990; 172:3661-8. [PMID: 2113909 PMCID: PMC213340 DOI: 10.1128/jb.172.7.3661-3668.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ermC methylase gene expression has been shown to be limited by translational autorepression, presumably due to methylase binding to ermC mRNA. It was found that this repression occurs in trans, yielding a 50% reduction in translation of an ermC-lacZ fusion mRNA. We investigated the ermC mRNA sequences required for translational repression in vivo. A series of deletions identified sequences in the 5' regulatory region that were required for translational repression. These included sequences of the 5' stem-loop structure that were not required for induction, as well as some that were required. The implications of these results for regulation are discussed.
Collapse
Affiliation(s)
- F Breidt
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
30
|
de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:1-35. [PMID: 2183291 DOI: 10.1016/s0079-6603(08)60707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
31
|
Abstract
In Bacillus subtilis, the ermC gene encodes an mRNA that is unusually stable (40-min half-life) in the presence of erythromycin, an inducer of ermC gene expression. A requirement for this induced mRNA stability is a ribosome stalled in the ermC leader region. This property of ermC mRNA was used to study the decay of mRNA in B. subtilis. Using constructs in which the ribosome stall site was internal rather than at the 5' end of the message, we show that ribosome stalling provides stability to sequences downstream but not upstream of the ribosome stall site. Our results indicate that ermC mRNA is degraded by a ribonucleolytic activity that begins at the 5' end and degrades the message in a 5'-to-3' direction.
Collapse
Affiliation(s)
- D H Bechhofer
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
32
|
Kadam SK. Induction of ermC methylase in the absence of macrolide antibiotics and by pseudomonic acid A. J Bacteriol 1989; 171:4518-20. [PMID: 2502538 PMCID: PMC210237 DOI: 10.1128/jb.171.8.4518-4520.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The methylase encoded by erm genes and induced by erythromycin modifies the 23S rRNA and confers resistance to macrolide-lincosamide-streptogramin B antibiotics. Induction is due to a posttranscriptional mechanism in which the inducer activates translation of methylase mRNA by binding to unmethylated (erythromycin-sensitive) ribosomes and stalling them in the leader region. It is shown in this study that pseudomonic acid A, an inhibitor of isoleucyl-tRNA synthetase, can also induce methylase synthesis. Isoleucine starvation has a similar effect on ribosomes translating the ermC leader region to cause induction of methylase synthesis. These observations support the requirements for ribosome stalling and destabilization of a stem-loop structure and demonstrate that stalling can occur without macrolide-bound ribosomes.
Collapse
Affiliation(s)
- S K Kadam
- Anti Infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064
| |
Collapse
|
33
|
Mojumdar M, Khan SA. Characterization of the tetracycline resistance gene of plasmid pT181 of Staphylococcus aureus. J Bacteriol 1988; 170:5522-8. [PMID: 3142848 PMCID: PMC211646 DOI: 10.1128/jb.170.12.5522-5528.1988] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Some genetic and biochemical properties of the tetracycline resistance element of the Staphylococcus aureus plasmid pT181 have been studied. Resequencing of a portion of the tetracycline resistance gene (tet) showed the presence of a single open reading frame of 1,299 nucleotides capable of encoding a polypeptide of 433 amino acids. Analysis of BAL 31 nuclease-generated deletion mutants of the tet gene showed the presence of two complementation groups within this region. Northern blot hybridizations demonstrated that the tet gene encodes a single mRNA, and its initiation site has been mapped by S1 nuclease protection experiments. We also identified an approximately 52,000-dalton tetracycline-inducible polypeptide in Bacillus subtilis minicells carrying pT181. Induction of the tet gene by tetracycline resulted in a 4-fold increase in the levels of TET mRNA and at least a 15-fold increase in the amount of TET protein in B. subtilis minicells.
Collapse
Affiliation(s)
- M Mojumdar
- Department of Microbiology, School of Medicine, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
34
|
Alexieva Z, Duvall EJ, Ambulos NP, Kim UJ, Lovett PS. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader. Proc Natl Acad Sci U S A 1988; 85:3057-61. [PMID: 3129723 PMCID: PMC280142 DOI: 10.1073/pnas.85.9.3057] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The plasmid gene cat-86 specifies chloramphenicol-inducible chloramphenicol acetyltransferase in Bacillus subtilis. Induction by the antibiotic is primarily due to activation of the translation of cat-86-encoded mRNA. It has been suggested that the inducer stalls ribosomes at a discrete location in the leader region of cat-86 mRNA, which causes the destabilization of a downstream RNA secondary structure that normally sequesters the cat-86 ribosome binding site. It is the destabilization of this RNA secondary structure that permits translation of the cat-86 coding sequence. In the present report, we show that ribosomes that were stalled in the cat-86 leader by starvation of host cells for the amino acid specified by leader codon 6 induced gene expression to a level above that detected when cells were starved for the amino acids specified by leader codons 7 and 8. Starvation for amino acids specified by leader codons 3, 4, or 5 failed to activate cat-86 expression. These results indicate that the stalled ribosome that is most active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To determine if chloramphenicol also stalled ribosomes in the cat-86 regulatory leader such that the aminoacyl site was occupied by codon 6, we separately changed leader codons 3, 4, 5, and 6 to the translation termination (ochre) codon TAA. Each of the mutated genes was tested for its ability to be induced by chloramphenicol. The results show that replacement of leader codons 3, 4, or 5 by the ochre codon blocked induction, whereas replacement of leader codon 6 by the ochre codon permitted induction. Collectively, these observations lead to the conclusion that cat-86 induction requires ribosome stalling in leader mRNA, and they identify leader codon 6 as the codon most likely to be occupied by the aminoacyl site of a stalled ribosome that is active in the induction.
Collapse
Affiliation(s)
- Z Alexieva
- Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228
| | | | | | | | | |
Collapse
|
35
|
Narayanan CS, Dubnau D. An in vitro study of the translational attenuation model of ermC regulation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75703-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Monod M, Mohan S, Dubnau D. Cloning and analysis of ermG, a new macrolide-lincosamide-streptogramin B resistance element from Bacillus sphaericus. J Bacteriol 1987; 169:340-50. [PMID: 3025178 PMCID: PMC211773 DOI: 10.1128/jb.169.1.340-350.1987] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To analyze the regulation of a newly discovered macrolide-lincosamide-streptogramin B resistance element (ermG) found in a soil isolate of Bacillus sphaericus, we cloned this determinant and obtained its DNA sequence. Minicell analysis revealed that ermG specifies a 29,000-dalton protein, the synthesis of which is induced by erythromycin. S1 nuclease mapping was used to identify the transcriptional start site. These experiments demonstrated the presence on the ermG mRNA of a 197 to 198-base leader. Within the leader are two small open reading frames (ORFs) capable of encoding 11- and 19-amino-acid peptides. Each ORF is preceded by a suitably spaced Shine-Dalgarno sequence. The ermG protein is encoded by a large ORF that encodes a 244-amino-acid protein, in agreement with the minicell results. This protein and the 19-amino-acid peptide are highly homologous to the equivalent products of ermC and ermA. We conclude, on the basis of this homology, that ermG encodes an rRNA transmethylase. The leader of ermG can be folded into a structure that sequesters the Shine-Dalgarno sequence and start codon for the large ORF (SD3). On the basis of these data and on the observed greater responsiveness of the ermG system than of the ermC system to low concentrations of erythromycin, we propose a model for the regulation of this gene in which the stalling of a ribosome under the influence of an inducer, while reading either peptide, suffices to uncover SD3 and allow translation of the rRNA transmethylase. The evolution of ermG is discussed.
Collapse
|
37
|
Abstract
We have investigated the induced stability of mRNA encoded by the ermC gene in Bacillus subtilis. Induction of ermC gene expression by erythromycin is known to occur at the translational level. We show that this induction is accompanied by an increase in ermC mRNA half-life from about 2 min to about 40 min. Induced stabilization of ermC mRNA occurs independently of induced translation. The regulatory sequences required for stability are promoter-proximal and can confer induced stability on large mRNAs having diverse 3' ends. Translation of the ermC leader peptide and ribosome-stalling in the leader peptide sequence are necessary for induced stabilization.
Collapse
|
38
|
Denoya CD, Bechhofer DH, Dubnau D. Translational autoregulation of ermC 23S rRNA methyltransferase expression in Bacillus subtilis. J Bacteriol 1986; 168:1133-41. [PMID: 3096970 PMCID: PMC213613 DOI: 10.1128/jb.168.3.1133-1141.1986] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ermC specifies an rRNA methyltransferase that confers resistance to erythromycin. The expression of this determinant is induced by the addition of erythromycin. The induction mechanism has been shown to operate posttranscriptionally, and its mechanism has been elucidated. We now show that synthesis of the ermC gene product in Bacillus subtilis is also autoregulated by a mechanism operating on the level of translation. The synthesis of methyltransferase was shown to be gene dosage compensated by Western blot analysis. Several mutants were analyzed that specify altered ermC gene products and are deregulated. Analysis of mutants and of the wild-type strain by Northern blotting demonstrated that autoregulation is posttranscriptional. We suggest a translational repression model in which the ermC methyltransferase binds to its own mRNA, at a region that resembles the methylation target site on 23S rRNA. The overall control of ermC expression is discussed in light of these multiple regulatory mechanisms.
Collapse
|
39
|
Monod M, Denoya C, Dubnau D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 1986; 167:138-47. [PMID: 3087948 PMCID: PMC212852 DOI: 10.1128/jb.167.1.138-147.1986] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We initiated a study of pIM13, a multicopy, macrolide-lincosamide-streptogramin B (MLS) plasmid first isolated from a strain of Bacillus subtilis and described by Mahler and Halvorson (J. Gen. Microbiol. 120:259-263, 1980). The copy number of this plasmid was about 200 in B. subtilis and 30 in Staphylococcus aureus. The MLS resistance determinant of pIM13 was shown to be highly homologous to ermC, an inducible element on the S. aureus plasmid pE194. The product of the pIM13 determinant was similar in size to that of ermC and immunologically cross-reactive with it. The MLS resistance of pIM13 was expressed constitutively. The complete base sequence of pIM13 is presented. The plasmid consisted of 2,246 base pairs and contained two open reading frames that specified products identified in minicell extracts. One was a protein of 16,000 molecular weight, possibly required for replication. The second was the 29,000-molecular-weight MLS resistance methylase. The regulatory region responsible for ermC inducibility was missing from pIM13, explaining its constitutivity. The remainder of the pIM13 MLS determinant was nearly identical to ermC. The ends of the region of homology between pIM13 and pE194 were associated with hyphenated dyad symmetries. A segment partially homologous to one of these termini on pIM13 and also associated with a dyad was found in pUB110 near the end of a region of homology between that plasmid and pBC16. The entire sequence of pIM13 was highly homologous to that of pE5, an inducible MLS resistance plasmid from S. aureus that differs from pIM13 in copy control.
Collapse
|
40
|
Wong HC, Chang S. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci U S A 1986; 83:3233-7. [PMID: 3085085 PMCID: PMC323487 DOI: 10.1073/pnas.83.10.3233] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A positive retroregulator that enhances the expression of an upstream gene(s) has been identified. It resides within a 381-base pair (bp) restriction fragment containing the transcriptional terminator of the crystal protein (cry) gene from Bacillus thuringiensis vs. Kurstaki HD-1. This fragment was fused to the distal ends of either the penicillinase (penP) gene of Bacillus licheniformis or the interleukin 2 cDNA from the human Jurkat cell line. In both cases, the half-lives of the mRNAs derived from the fusion genes were increased from approximately equal to 2 to 6 min in both Escherichia coli and Bacillus subtilis. Synthesis of the corresponding polypeptides in the bacteria carrying the fusion genes was also increased correspondingly. The enhancement of expression of the upstream genes was independent of the insertional orientation of the distal cry terminator fragment. Deletion analysis showed that the locus conferring the enhancing activity coincided with the terminator sequence and was located within a 89-bp fragment that includes an inverted repeat, the 19-bp upstream-, and the 27-bp downstream-flanking sequences. We propose that transcription of the retroregulator sequence leads to the incorporation of the corresponding stem-and-loop structure at the 3' end of the mRNA; the presence of this structure protects the mRNAs from exonucleolytic degradation from the 3' end and, thereby, increases the mRNA half-life and enhances protein synthesis of the target genes.
Collapse
|
41
|
Shaw JH, Clewell DB. Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J Bacteriol 1985; 164:782-96. [PMID: 2997130 PMCID: PMC214320 DOI: 10.1128/jb.164.2.782-796.1985] [Citation(s) in RCA: 274] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus faecalis transposon Tn917 was cloned in Escherichia coli on plasmid vector pBR325. The erythromycin resistance determinant of Tn917 was not expressed in the E. coli background. The nucleotide sequence of Tn917 was determined and found to be 5,257 base pairs in length. Six open reading frames (ORFs) were identified and designated 1 through 6 (5' to 3'); all were on the same DNA strand. A region exhibiting strong homology with known promoters was identified upstream from ORF1. ORFs 1 to 3 were virtually identical to the previously sequenced erythromycin resistance determinant on Streptococcus sanguis plasmid pAM77. At the 3' point, where the homology between Tn917 and pAM77 ends, was a 20-base-pair region about 80% homologous with a component of the res site of Tn3. The amino acid sequence of ORF4 showed homology with other site-specific recombination enzymes, including approximately 30% homology with the resolvase of Tn3. Contained within Tn917 was a directly oriented 73-base-pair duplication of the left terminus. The Tn917 sequence revealed that antibiotic-enhanced transposition might be due to extension of transcription from the resistance-related genes (in ORFs 1 to 3) into transposition genes (in ORFs 4 to 6). Transcription analyses resulted in data consistent with this interpretation.
Collapse
|
42
|
Narayanan CS, Dubnau D. Evidence for the translational attenuation model: ribosome-binding studies and structural analysis with an in vitro run-off transcript of ermC. Nucleic Acids Res 1985; 13:7307-26. [PMID: 3903662 PMCID: PMC322046 DOI: 10.1093/nar/13.20.7307] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several features of the translational attenuation model of ermC regulation were tested. This model predicts two possible secondary structures for the leader of the ermC transcript and requires that the leader contains two Shine-Dalgarno (SD) sequences. The ribosome binding site for a leader peptide (SD1) is predicted to be accessible, whereas that for the rRNA methylase protein that confers erythromycin (Em) resistance (SD2) is sequestered by base pairing. The model suggests that in the presence of inducer (Em), a ribosome stalls while translating the peptide, altering the mRNA conformation, thereby exposing SD2. The results of our ribosome binding studies demonstrate that SD1 is exposed and binds to ribosomes, whereas SD2 is unavailable. Also, the secondary structure of the 5' region of the ermC transcript was analyzed using methidium propyl-EDTA.Fe (II), T1 nuclease, and nucleases from cobra venom and mung bean sprouts as structure probes. Our results support the previously proposed model for folding of ermC mRNA, and demonstrate that SD1 is single-stranded, while SD2 and its neighboring sequences are largely base paired, consistent with the ribosome-binding results.
Collapse
|
43
|
Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus. J Bacteriol 1985; 162:633-40. [PMID: 2985541 PMCID: PMC218896 DOI: 10.1128/jb.162.2.633-640.1985] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The complete nucleotide sequence of ermA, the prototype macrolide-lincosamide-streptogramin B resistance gene from Staphylococcus aureus, has been determined. The sequence predicts a 243-amino-acid protein that is homologous to those specified by ermC, ermAM, and ermD, resistance determinants from Staphylococcus aureus, Streptococcus sanguis, and Bacillus licheniformis, respectively. The ermA transcript, identified by Northern analysis and S1 mapping, contains a 5' leader sequence of 211 bases which has the potential to encode two short peptides of 15 and 19 amino acids; the second, longer peptide has 13 amino acids in common with the putative regulatory leader peptide of ermC. The coding sequence for this peptide is deleted in several mutants in which macrolide-lincosamide-streptogramin B resistance is constitutively expressed. Potential secondary structures available to the leader sequence of the wild-type (inducible) transcript and to constitutive deletion, insertion, and point mutations provide additional support for the translational attenuation model for induction of macrolide-lincosamide-streptogramin B resistance.
Collapse
|
44
|
Kirsch DR, Lai MH. Regulation of a macrolide resistance-beta-galactosidase (ermC-lacZ) gene fusion in Escherichia coli. J Bacteriol 1984; 159:381-4. [PMID: 6330040 PMCID: PMC215641 DOI: 10.1128/jb.159.1.381-384.1984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A fusion constructed between the putative attenuator plus the first 219 nucleotides of the ermC (erythromycin resistance) structural gene and a 5' terminally deleted lacZ gene produced a moderate, basal level of beta-galactosidase which was increased by erythromycin addition. Another construction containing an intact ermC gene in addition to the fusion produced lower levels of beta-galactosidase, suggesting that the ermC gene product exerts negative feedback control on expression.
Collapse
|
45
|
Gryczan TJ, Israeli-Reches M, Dubnau D. Induction of macrolide-lincosamide-streptogramin B resistance requires ribosomes able to bind inducer. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:357-61. [PMID: 6204185 DOI: 10.1007/bf00425544] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plasmids were constructed containing the regulatory regions and N-terminal portions of ermC and of ermD , fused in phase with the coding sequence of the Escherichia coli lacZ gene. ermC and ermD are erythromycin (Em) inducible macrolide-lincosamide-streptogramin B resistance elements derived from Staphylococcus aureus and Bacillus licheniformis, respectively. The fusion plasmids were introduced into B. subtilis and used to study ermC and ermD regulation. In both cases, beta-galactosidase synthesis could be induced by low levels of Em. Induction was prevented by introduction of ole-2, a chromosomal mutation which decreases ribosomal affinity for Em. Induction also did not occur in the presence of intact copies of ermC , suggesting that prior or concomitant methylation of 23S rRNA, a treatment known to decrease ribosomal affinity for Em, was capable of interfering with ermC and ermD induction. These experiments are consistent with the translational attenuation model of ermC regulation, and together with other evidence, suggest that ermD is regulated by a similar mechanism.
Collapse
|
46
|
Gryczan T, Israeli-Reches M, Del Bue M, Dubnau D. DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:349-56. [PMID: 6429477 DOI: 10.1007/bf00425543] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA sequence of ermD , a macrolide-lincosamide-streptogramin B (MLS) resistance determinant cloned from the chromosome of Bacillus licheniformis, has been determined. ermD encodes an erythromycin inducible protein of molecular weight 32,796. S1 nuclease mapping of the ermD promoter has revealed the presence of an approximately 354 base leader sequence on the ermD transcript. This leader contains a short open reading frame sufficient to encode a 14 amino acid peptide, which is preceded by a potential ribosomal binding site. The leader sequence has the potential to fold into several base paired structures, in some of which the ribosomal binding site for the ermD product would be sequestered. Deletion analysis demonstrated that the leader contains regulatory sequences. Removal of the ermD promoter and fusion to an upstream promoter did not interfere with induction, strongly suggestion that ermD regulation is posttranscriptional. Based on these features it appears likely that ermD is regulated by a translational attenuation mechanism, analogous to that suggested for ermC , a resistance element from Staphylococcus aureus ( Gryczan et al. 1980; Horinouchi and Weisblum 1980). Comparison of the ermD sequence and that of its product to two other sequenced MLS determinants reveals substantial phylogenetic relatedness, although the three genes are not homologous by the criterion of Southern blot hybridization.
Collapse
|
47
|
Dubnau D. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 16:103-32. [PMID: 6203682 DOI: 10.3109/10409238409102300] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regulation of ermC is described in detail as an example of regulation on the level of translation. ermC specifies a ribosomal RNA methylase which confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics. Synthesis of the ermC gene product is induced by erythromycin, a macrolide antibiotic. Stimulation of methylase synthesis is mediated by binding of erythromycin to an unmethylated ribosome. The translational attenuation model, supported by sequencing data and by mutational analysis, proposes that binding of erythromycin causes stalling of a ribosome during translation of a "leader peptide", resulting in isomerization of the ermC transcript from an inactive to an active conformer. The ermC system is analogous to the transcriptional attenuation systems described for certain biosynthetic operons. ermC is unique in that interaction with a small molecule inducer mediates regulation on the translational level. However, it is but one example of nontranscriptional -level control of protein synthesis. Other systems are discussed in which control is also exerted through alterations of RNA conformation and an attempt is made to understand ermC in this more general context. Finally, other positive examples of translational attenuation are presented.
Collapse
|
48
|
Foster TJ. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev 1983; 47:361-409. [PMID: 6355806 PMCID: PMC281581 DOI: 10.1128/mr.47.3.361-409.1983] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Hofemeister J, Israeli-Reches M, Dubnau D. Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00326055] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Gryczan TJ, Hahn J, Contente S, Dubnau D. Replication and incompatibility properties of plasmid pE194 in Bacillus subtilis. J Bacteriol 1982; 152:722-35. [PMID: 6290448 PMCID: PMC221522 DOI: 10.1128/jb.152.2.722-735.1982] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
pE194, a 3.5-kilobase multicopy plasmid, confers resistance to the macrolide-lincosamide-streptogramin B antibiotics in Bacillus subtilis. By molecular cloning and deletion analysis we have identified a replication segment on the physical map of this plasmid, which consists of about 900 to 1,000 base pairs. This segment contains the replication origin. It also specifies a trans-acting function (rep) required for the stable replication of pE194 and a negatively acting copy control function which is the product of the cop gene. The target sites for the rep and cop gene products are also within this region. Two incompatibility determinants have been mapped on the pE194 genome and their properties are described. One (incA) resides within the replication region and may be identical to cop. incB, not located in the replication region, expresses incompatibility toward a copy control mutant (cop-6) but not toward the wild-type replicon.
Collapse
|