1
|
Ashkani J, Rees DJG. Selecting an appropriate method for expressing S locus F-box-S2 recombinant protein. ACTA ACUST UNITED AC 2017; 15:41-47. [PMID: 28664149 PMCID: PMC5480281 DOI: 10.1016/j.btre.2017.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/27/2017] [Accepted: 06/15/2017] [Indexed: 11/23/2022]
Abstract
Understanding the molecular basis of self-incompatibility (SI) is essential for commercial production of fruit crops such as Apple. To investigate the molecular interactions in self-incompatibility locus (Slocus), the knowledge of tertiary structures of both male (i.e. S-locus F-box) and female (i.e. SRNase) proteins are necessary. The tertiary structure of male determinant (S locus F-box, SLF/SFB) remains unresolved, which could mainly be due to difficulties associated with its expression in the recombinant expression systems. This study demonstrates an approach for efficient expression of S locus F-box recombinant proteins for future functional and structural studies.
A single locus (S locus) including at least two linked genes (female and male determinants) genetically controls the gametophytic self-incompatibility (GSI) in apple, which has evolved to avoid self-fertilization. There has been extensive work done on the female determinant of self-incompatibility, which has led to the determination of the tertiary structure of S-RNase. However, the tertiary structure of male determinant (S locus F-box, SLF/SFB) remains unresolved, which could mainly be due to difficulties associated with its expression in the recombinant expression systems. In addressing this, we have evaluated several in vivo (prokaryotic and eukaryotic) and in vitro expression systems for their efficiency in the expression of apple SLF2. The most successful expression of SLF2 (1 mg/ml) was achieved in E. coli using the synthesized gene in a high salt culture and applying heat shock before induction of culture. We therefore present an approach for the efficient expression of S locus F-box recombinant proteins for future functional and structural studies.
Collapse
Affiliation(s)
- Jahanshah Ashkani
- Biotechnology Department, University of the Western Cape, Robert Sobokwe Road, Bellville, 7535, South Africa.,Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| | - D J G Rees
- Biotechnology Department, University of the Western Cape, Robert Sobokwe Road, Bellville, 7535, South Africa.,Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, South Africa
| |
Collapse
|
2
|
Zhao Y, Epstein RJ. Conserved nonsense-prone CpG sites in apoptosis-regulatory genes: conditional stop signs on the road to cell death. Evol Bioinform Online 2013; 9:275-83. [PMID: 23908585 PMCID: PMC3728200 DOI: 10.4137/ebo.s11759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Methylation-prone CpG dinucleotides are strongly conserved in the germline, yet are also predisposed to somatic mutation. Here we quantify the relationship between germline codon mutability and somatic carcinogenesis by comparing usage of the nonsense-prone CGA (→TGA) codons in gene groups that differ in apoptotic function; to this end, suppressor genes were subclassified as either apoptotic (gatekeepers) or repair (caretakers). Mutations affecting CGA codons in sporadic tumors proved to be highly asymmetric. Moreover, nonsense mutations were 3-fold more likely to affect gatekeepers than caretakers. In addition, intragenic CGA clustering nonrandomly affected functionally critical regions of gatekeepers. We conclude that human gatekeeper suppressor genes are enriched for nonsense-prone codons, and submit that this germline vulnerability to tumors could reflect in utero selection for a methylation-dependent capability to short-circuit environmental insults that otherwise trigger apoptosis and fetal loss.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Department of Genetics, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
3
|
Khrustalev VV, Barkovsky EV. A blueprint for a mutationist theory of replicative strand asymmetries formation. Curr Genomics 2012; 13:55-64. [PMID: 22942675 PMCID: PMC3269017 DOI: 10.2174/138920212799034730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022] Open
Abstract
In the present review, we summarized current knowledge on replicative strand asymmetries in prokaryotic genomes. A cornerstone for the creation of a theory of their formation has been overviewed. According to our recent works, the probability of nonsense mutation caused by replication-associated mutational pressure is higher for genes from lagging strands than for genes from leading strands of both bacterial and archaeal genomes. Lower density of open reading frames in lagging strands can be explained by faster rates of nonsense mutations in genes situated on them. According to the asymmetries in nucleotide usage in fourfold and twofold degenerate sites, the direction of replication-associated mutational pressure for genes from lagging strands is usually the same as the direction of transcription-associated mutational pressure. It means that lagging strands should accumulate more 8-oxo-G, uracil and 5-formyl-uracil, respectively. In our opinion, consequences of cytosine deamination (C to T transitions) do not lead to the decrease of cytosine usage in genes from lagging strands because of the consequences of thymine oxidation (T to C transitions), while guanine oxidation (causing G to T transversions) makes the main contribution into the decrease of guanine usage in fourfold degenerate sites of genes from lagging strands. Nucleotide usage asymmetries and bias in density of coding regions can be found in archaeal genomes, although, the percent of "inversed" asymmetries is much higher for them than for bacterial genomes. "Homogenized" and "inversed" replicative strand asymmetries in archaeal genomes can be used as retrospective indexes for detection of OriC translocations and large inversions.
Collapse
Affiliation(s)
- Vladislav V Khrustalev
- Department of General Chemistry, Belarussian State Medical University, Belarus, Minsk, Dzerzinskogo, 83, Russia
| | | |
Collapse
|
4
|
Cusack BP, Arndt PF, Duret L, Roest Crollius H. Preventing dangerous nonsense: selection for robustness to transcriptional error in human genes. PLoS Genet 2011; 7:e1002276. [PMID: 22022272 PMCID: PMC3192821 DOI: 10.1371/journal.pgen.1002276] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Nonsense Mediated Decay (NMD) degrades transcripts that contain a premature STOP codon resulting from mistranscription or missplicing. However NMD's surveillance of gene expression varies in efficiency both among and within human genes. Previous work has shown that the intron content of human genes is influenced by missplicing events invisible to NMD. Given the high rate of transcriptional errors in eukaryotes, we hypothesized that natural selection has promoted a dual strategy of “prevention and cure” to alleviate the problem of nonsense transcriptional errors. A prediction of this hypothesis is that NMD's inefficiency should leave a signature of “transcriptional robustness” in human gene sequences that reduces the frequency of nonsense transcriptional errors. For human genes we determined the usage of “fragile” codons, prone to mistranscription into STOP codons, relative to the usage of “robust” codons that do not generate nonsense errors. We observe that single-exon genes have evolved to become robust to mistranscription, because they show a significant tendency to avoid fragile codons relative to robust codons when compared to multi-exon genes. A similar depletion is evident in last exons of multi-exon genes. Histone genes are particularly depleted of fragile codons and thus highly robust to transcriptional errors. Finally, the protein products of single-exon genes show a strong tendency to avoid those amino acids that can only be encoded using fragile codons. Each of these observations can be attributed to NMD deficiency. Thus, in the human genome, wherever the “cure” for nonsense (i.e. NMD) is inefficient, there is increased reliance on the strategy of nonsense “prevention” (i.e. transcriptional robustness). This study shows that human genes are exposed to the deleterious influence of transcriptional errors. Moreover, it suggests that gene expression errors are an underestimated phenomenon, in molecular evolution in general and in selection for genomic robustness in particular. In biological systems mistakes are made constantly because the cellular machinery is complex and error-prone. Mistakes are made in copying DNA for transmission to offspring (“genetic mutations”) but are much more frequent in the day-to-day task of gene expression. Genetic mutations are heritable and therefore have long been the almost exclusive focus of evolutionary genetics research. In contrast, gene expression errors are not inherited and have tended to be disregarded in evolutionary studies. Here we show how human genes have evolved a mechanism to reduce the occurrence of a specific type of gene expression error—transcriptional errors that create premature STOP codons (so-called “nonsense errors”). Nonsense errors are potentially highly toxic for the cell, so natural selection has evolved a strategy called Nonsense Mediated Decay (NMD) to “cure” such errors. However this cure is inefficient. Here we describe how a preventative strategy of “transcriptional robustness” has evolved to decrease the frequency of nonsense errors. Moreover, these “prevention and cure” strategies are used interchangeably—the most transcriptionally robust genes are those for which NMD is most inefficient. Our work implies that gene expression errors play an important role as supporting actors to genetic mutations in molecular evolution, particularly in the evolution of robustness.
Collapse
Affiliation(s)
- Brian P Cusack
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Berlin, Germany.
| | | | | | | |
Collapse
|
5
|
The probability of nonsense mutation caused by replication-associated mutational pressure is much higher for bacterial genes from lagging than from leading strands. Genomics 2010; 96:173-80. [DOI: 10.1016/j.ygeno.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/21/2010] [Accepted: 06/12/2010] [Indexed: 11/19/2022]
|
6
|
Archetti M. Genetic robustness at the codon level as a measure of selection. Gene 2009; 443:64-9. [PMID: 19477246 DOI: 10.1016/j.gene.2009.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
Abstract
Selection at the DNA level is usually detected by analysing substitution rates from multiple-species comparisons. It has been suggested that measures of genetic robustness at the codon level, which can be measured by analysing a single coding sequence, can be used to estimate selection, but the validity of these measures has been questioned. Here I test the efficiency of different measures of genetic robustness at the codon level to estimate the level of selection acting on a gene. I find that volatility and other measures of robustness are correlated with dN/dS, and that this is not simply the effect of a preference for translationally optimal codons. I discuss the possible implications and the possible problems of these methods based on single-sequence codon usage analysis.
Collapse
|
7
|
Lorimer D, Raymond A, Walchli J, Mixon M, Barrow A, Wallace E, Grice R, Burgin A, Stewart L. Gene composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 2009; 9:36. [PMID: 19383142 PMCID: PMC2681465 DOI: 10.1186/1472-6750-9-36] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/21/2009] [Indexed: 12/18/2022] Open
Abstract
Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies.
Collapse
Affiliation(s)
- Don Lorimer
- deCODE biostructures, Inc 7869 NE Day Road West, Bainbridge Island, WA 98110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In 1994, Muse and Gaut (MG) and Goldman and Yang (GY) proposed evolutionary models that recognize the coding structure of the nucleotide sequences under study, by defining a Markovian substitution process with a state space consisting of the 61 sense codons (assuming the universal genetic code). Several variations and extensions to their models have since been proposed, but no general and flexible framework for contrasting the relative performance of alternative approaches has yet been applied. Here, we compute Bayes factors to evaluate the relative merit of several MG and GY styles of codon substitution models, including recent extensions acknowledging heterogeneous nonsynonymous rates across sites, as well as selective effects inducing uneven amino acid or codon preferences. Our results on three real data sets support a logical model construction following the MG formulation, allowing for a flexible account of global amino acid or codon preferences, while maintaining distinct parameters governing overall nucleotide propensities. Through posterior predictive checks, we highlight the importance of such a parameterization. Altogether, the framework presented here suggests a broad modeling project in the MG style, stressing the importance of combining and contrasting available model formulations and grounding developments in a sound probabilistic paradigm.
Collapse
|
9
|
Abstract
Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonymous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa, and L. lactis as their primary host. We use the concept of a “genome landscape,” which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such as GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages. Any protein can be encoded by multiple, synonymous spellings. But organisms typically prefer one spelling over another—a phenomenon known as codon bias. Codon bias is generally understood to result from selection for synonymous spellings that increase the rate and accuracy of protein translation. In this work, we have examined the complete genomes of all sequenced viruses that infect the bacteria E. coli, P. aeruginosa, and L. lactis, and have found that many of these viral genomes also exhibit codon bias. Moreover, the degree of codon bias varies across the viral genome, as visualized using a technique called a “genome landscape.” By comparing the observed genomes to randomly drawn genomes, we demonstrate that the regions of high codon bias in these viral genomes often coincide with regions encoding structural proteins. Thus, the proteins that a virus needs to produce in high copy number utilize the same encoding as its host organism does for highly expressed proteins. Our results extend the translational theory of codon bias to the viral kingdom: parts of the viral genome are selected to obey the preferences of its host.
Collapse
|
10
|
Goodarzi H, Torabi N, Najafabadi HS, Archetti M. Amino acid and codon usage profiles: Adaptive changes in the frequency of amino acids and codons. Gene 2008; 407:30-41. [DOI: 10.1016/j.gene.2007.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 05/29/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
11
|
Pompei F, Ciminelli BM, Bombieri C, Ciccacci C, Koudova M, Giorgi S, Belpinati F, Begnini A, Cerny M, Des Georges M, Claustres M, Ferec C, Macek M, Modiano G, Pignatti PF. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations. Eur J Hum Genet 2006; 14:85-93. [PMID: 16251901 DOI: 10.1038/sj.ejhg.5201498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.
Collapse
Affiliation(s)
- Fiorenza Pompei
- Department of Biology, University of Roma-Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qin H, Wu WB, Comeron JM, Kreitman M, Li WH. Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes. Genetics 2005; 168:2245-60. [PMID: 15611189 PMCID: PMC1448744 DOI: 10.1534/genetics.104.030866] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We generated supersequences at each codon position across genes in a genome and computed the overall bias at each codon position. By quantitatively evaluating the trend of spatial patterns using isotonic regression, we show that in yeast and prokaryotic genomes, codon usage bias increases along translational direction, which is consistent with purifying selection against nonsense errors. Fruit fly genes show a nearly symmetric M-shaped spatial pattern of codon usage bias, with less bias in the middle and both ends. The low codon usage bias in the middle region is best explained by interference (the Hill-Robertson effect) between selections at different codon positions. In both yeast and fruit fly, spatial patterns of codon usage bias are characteristically different from patterns of GC-content variations. Effect of expression level on the strength of codon usage bias is more conspicuous than its effect on the shape of the spatial distribution.
Collapse
Affiliation(s)
- Hong Qin
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.
Collapse
Affiliation(s)
- Marco Archetti
- Département de Biologie, Section Ecologie et Evolution, Université de Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
14
|
Abstract
We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) give rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.
Collapse
Affiliation(s)
- Charles Ofria
- Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
15
|
Plotkin JB, Dushoff J. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc Natl Acad Sci U S A 2003; 100:7152-7. [PMID: 12748378 PMCID: PMC165845 DOI: 10.1073/pnas.1132114100] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the surface proteins of human influenza A virus evolve rapidly and continually produce antigenic variants, the internal viral genes acquire mutations very gradually. In this paper, we analyze the sequence evolution of three influenza A genes over the past two decades. We study codon usage as a discriminating signature of gene- and even residue-specific diversifying and purifying selection. Nonrandom codon choice can increase or decrease the effective local substitution rate. We demonstrate that the codons of hemagglutinin, particularly those in the antibody-combining regions, are significantly biased toward substitutional point mutations relative to the codons of other influenza virus genes. We discuss the evolutionary interpretation and implications of these biases for hemagglutinin's antigenic evolution. We also introduce information-theoretic methods that use sequence data to detect regions of recent positive selection and potential protein conformational changes.
Collapse
Affiliation(s)
- Joshua B Plotkin
- Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA
| | | |
Collapse
|
16
|
Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Olivieri A, Calissano C, Paganotti GM, D'Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 2001; 414:305-8. [PMID: 11713529 DOI: 10.1038/35104556] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Haemoglobin C (HbC; beta6Glu --> Lys) is common in malarious areas of West Africa, especially in Burkina Faso. Conclusive evidence exists on the protective role against severe malaria of haemoglobin S (HbS; beta6Glu --> Val) heterozygosity, whereas conflicting results for the HbC trait have been reported and no epidemiological data exist on the possible role of the HbCC genotype. In vitro studies suggested that HbCC erythrocytes fail to support the growth of P. falciparum but HbC homozygotes with high P. falciparum parasitaemias have been observed. Here we show, in a large case-control study performed in Burkina Faso on 4,348 Mossi subjects, that HbC is associated with a 29% reduction in risk of clinical malaria in HbAC heterozygotes (P = 0.0008) and of 93% in HbCC homozygotes (P = 0.0011). These findings, together with the limited pathology of HbAC and HbCC compared to the severely disadvantaged HbSS and HbSC genotypes and the low betaS gene frequency in the geographic epicentre of betaC, support the hypothesis that, in the long term and in the absence of malaria control, HbC would replace HbS in central West Africa.
Collapse
Affiliation(s)
- D Modiano
- Dipartimento di Scienze di Sanità Pubblica, Sezione di Parassitologia, WHO Collaborating Centre for Malaria Epidemiology and Control, University of Rome "La Sapienza", 00185, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
We have amplified and sequenced the gene encoding Esterase-P (Est-P) in 10 strains of Drosophila melanogaster. Three premature termination codons occur in the coding region of the gene in two strains. This observation, together with other indirect evidence, leads us to propose that Est-P may be a pseudogene in D. melanogaster. Est-P would be a "cryptic" pseudogene, in the sense that it retains intact the coding sequence (without stop codons and other alterations usually observed in pseudogenes) in most D. melanogaster strains. We conjecture that the beta-esterase cluster may consist in other Drosophila species of functional and nonfunctional genes. We also conjecture that the rarity of detected pseudogenes in Drosophila may be due to the difficulty of discovering them, because most of them are cryptic.
Collapse
Affiliation(s)
- E S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697-2525, USA
| | | |
Collapse
|
18
|
Huynen MA, Konings DA, Hogeweg P. Equal G and C contents in histone genes indicate selection pressures on mRNA secondary structure. J Mol Evol 1992; 34:280-91. [PMID: 1569583 DOI: 10.1007/bf00160235] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein-specific versus taxon-specific patterns of nucleotide frequencies were studied in histone genes. The third positions of codons have a (well-known) taxon-specific G+C level and a histone type-specific G/C ratio. This ratio counterbalances the G/C ratio in the first and second positions so that the overall G and C levels in the coding region become approximately equal. The compensation of the G/C ratio indicates a selection pressure at the mRNA level rather than a selection pressure or mutation bias at the DNA level or a selection pressure on codon usage. The structure of histone mRNAs is compatible with the hypothesis that the G/C compensation is due to selection pressures on mRNA secondary structure. Nevertheless, no specific motifs seem to have been selected, and the free energy of the secondary structures is only slightly lower than that expected on the basis of nucleotide frequencies.
Collapse
Affiliation(s)
- M A Huynen
- Bioinformatics Group, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
19
|
Barbieri R, Nastruzzi C, Volinia S, Villa M, Piva R, Giacomini P, Natali PG, Gambari R. Methylation pattern of the HLA-DR alpha gene in human tissues. JOURNAL OF IMMUNOGENETICS 1990; 17:51-66. [PMID: 2120352 DOI: 10.1111/j.1744-313x.1990.tb00859.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The CCGG and GCGC sites of the human HLA-DR alpha gene are hypermethylated in human tissues (including B-lymphocytes, T-lymphocytes, muscle, brain, sperm, skin, kidney, suprarenal and mammary glands) and three B-lymphoid cell lines. Therefore, the HLA-DR alpha gene can be transcribed even though extensively methylated. The only exception to the hypermethylated state of the HLA-DR alpha gene is represented by one or both of the two HhaI sites (H1 and H2) localized in the 5' portion of the gene. Analysis of the computer-generated secondary structure of the HLA-DR alpha mRNA suggests that the H1 and H2 sites belong to a region (5'-GAGCGCCCA-3'/5'-UGAGCGCUC-3') exhibiting extensive base pairing. Therefore, unmethylation of these CG sites can contribute in preventing mCG----TG/CA changes in this region, which would lead to extensive alterations of the secondary structure of the 5' portion of the HLA-DR alpha MRNA. On the other hand, the selective pressure to maintain unaltered the methylated CG dinucleotides in the coding regions of the HLA-DR alpha gene could be due to codon restrictions, since the majority of the methylation-related CG----TG or CG----CA variations would generate aminoacid changes. Accordingly, the analysis of different HLA-DR alpha genomic sequences indicates that variations of the CpG dinucleotides occur only in the non-coding portions of the HLA-DR alpha gene.
Collapse
Affiliation(s)
- R Barbieri
- Istituto di Chimica Biologica, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Matsuo Y, Yokoyama S. Cloning and sequencing of a processed pseudogene derived from a human class III alcohol dehydrogenase gene. Am J Hum Genet 1990; 46:85-91. [PMID: 2294756 PMCID: PMC1683552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Current information on the molecular structure of human alcohol dehydrogenase (ADH) genes is fragmentary. To characterize all ADH genes, we have isolated 63 ADH clones from human genomic libraries made from one individual. Fifty-nine clones have been classified into five previously known loci: ADH1 (18 clones), ADH2 (20 clones), and ADH3 class I (16 clones), ADH4 class II (4 clones), and ADH5 class III (1 clone). Sequencing of one of the remaining four unclassified clones, SY lambda ADHE38, about 1.1 kb in length, shows no introns and three frameshift mutations in the coding region, with a total of 10 internal termination codons. When its deduced amino acid sequence was compared with those of the class I, class II, and class III ADHs, the proportions of identical amino acids were 56.7%, 55.5%, and 88.7%, respectively, suggesting that the processed pseudogene was derived from an ADH5 gene. The duplication event seems to have occurred about 3.5 million years ago, and the pseudogene has undergone a rapid change since then.
Collapse
Affiliation(s)
- Y Matsuo
- Department of Ecology, Ethology, and Evolution, University of Illinois, Urbana-Champaign 61820
| | | |
Collapse
|
21
|
|
22
|
Vulliamy TJ, D'Urso M, Battistuzzi G, Estrada M, Foulkes NS, Martini G, Calabro V, Poggi V, Giordano R, Town M. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A 1988; 85:5171-5. [PMID: 3393536 PMCID: PMC281710 DOI: 10.1073/pnas.85.14.5171] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. We have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A we have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. In one of the commonest, G6PD Mediterranean, which is associated with favism among other clinical manifestations, a single amino acid replacement was found (serine----phenylalanine): it must be responsible for the decreased stability and the reduced catalytic efficiency of this enzyme. Single point mutations were also found in G6PD Metaponto (Southern Italy) and in G6PD Ilesha (Nigeria), which are asymptomatic, and in G6PD Chatham, which was observed in an Indian boy with neonatal jaundice. In G6PD "Matera," which is now known to be the same as G6PD A-, two separate point mutations were found, one of which is the same as in G6PD A. In G6PD Santiago, a de novo mutation (glycine----arginine) is associated with severe chronic hemolytic anemia. The mutations observed show a striking predominance of C----T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency.
Collapse
Affiliation(s)
- T J Vulliamy
- Department of Haematology, Royal Postgraduate Medical School, London, Great Britain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Following the observation of lysine for arginine misincorporation at the poor choice codon arg-AGA, a comparison of codon usage patterns for highly expressed mRNA's in E. coli provides a basis for the proposal that the major codon preference is subject to mistranslational constraints. In addition, the codons are utilized, as well as arranged, to provide a hydropathically conservative amino acid as the most probable replacement resulting from a mistranslational event.
Collapse
|
24
|
Benner S, Ellington AD. Interpreting the behavior of enzymes: purpose or pedigree? CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1988; 23:369-426. [PMID: 3067974 DOI: 10.3109/10409238809082549] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To interpret the growing body of data describing the structural, physical, and chemical behaviors of biological macromolecules, some understanding must be developed to relate these behaviors to the evolutionary processes that created them. Behaviors that are the products of natural selection reflect biological function and offer clues to the underlying chemical principles. Nonselected behaviors reflect historical accident and random drift. This review considers experimental data relevant to distinguishing between nonfunctional and functional behaviors in biological macromolecules. In the first segment, tools are developed for building functional and historical models to explain macromolecular behavior. These tools are then used with recent experimental data to develop a general outline of the relationship between structure, behavior, and natural selection in proteins and nucleic acids. In segments published elsewhere, specific functional and historical models for three properties of enzymes--kinetics, stereospecificity, and specificity for cofactor structures--are examined. Functional models appear most suitable for explaining the kinetic behavior of proteins. A mixture of functional and historical models appears necessary to understand the stereospecificity of enzyme reactions. Specificity for cofactor structures appears best understood in light of purely historical models based on a hypothesis of an early form of life exclusively using RNA catalysis.
Collapse
Affiliation(s)
- S Benner
- Organische Chemie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | |
Collapse
|
25
|
Apparent gene conversion between beta-tubulin genes yields multiple regulatory pathways for a single beta-tubulin polypeptide isotype. Mol Cell Biol 1986. [PMID: 3837190 DOI: 10.1128/mcb.5.9.2454] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have determined the complete nucleotide sequences of two chicken beta-tubulin genes, beta 1 and beta 2. These genes display an unusual pattern of segmental homology which indicates that they originally arose by gene duplication and have subsequently coevolved by a process that included localized gene conversion or intergenic recombination. Since the beta-tubulin polypeptides encoded by the two genes are virtually identical (99.5%), particularly in the major beta-tubulin isotype defining regions, they almost certainly constitute a single isotypic class of beta tubulin. However, the regulatory properties of the two genes are highly divergent as indicated by analysis of their patterns of expression in different chicken cell types. beta 1 is the major transcript detected in skeletal muscle myoblasts, whereas beta 2 is the major beta-tubulin transcript in cultured sympathetic neurons. The existence of these two genes appears to derive from a regulatory requirement whereby the expression of a single tubulin isotype is mediated through different regulatory programs in development and differentiation. These results thus provide direct experimental support for the hypothesis that gene conversion and intergenic recombination play an important role in evolution by uncoupling the evolution of structural genes from the regulatory sequences which control them.
Collapse
|
26
|
Whitney JB. Immobilized-gradient isoelectric focusing: detection of "silent" biochemical genetic variants. Curr Top Microbiol Immunol 1986; 127:131-7. [PMID: 3460739 DOI: 10.1007/978-3-642-71304-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Whitney JB, Cobb RR, Popp RA, O'Rourke TW. Detection of neutral amino acid substitutions in proteins. Proc Natl Acad Sci U S A 1985; 82:7646-50. [PMID: 3865185 PMCID: PMC391390 DOI: 10.1073/pnas.82.22.7646] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The field of biochemical genetics relies heavily upon the detection by electrophoresis of genetically determined variants of proteins. Most of these variants differ by substitutions that involve charged amino acids. Genetic variants of another large class, ones that involve substitutions among neutral amino acids, are not easily detected and are often ignored. Ampholyte isoelectric focusing in some cases can separate proteins indistinguishable by standard electrophoresis, including genetic variants of mouse hemoglobins that differ only by neutral amino acid substitutions. A revolutionary variation of isoelectric focusing, in which gradients covering a small pH range are fixed into place in a polyacrylamide gel, provides greater resolution of these nearly identical proteins. Mouse hemoglobin tetramers that differ only by the substitution of alanine for glycine in the alpha-globin chains are resolved by several millimeters with the new technique; by comparison, these tetramers are imperfectly resolved on a standard pH 7-9 isoelectric focusing gel. This improved technique of isoelectric focusing was used to identify a variety of previously unreported genetic variants of mouse hemoglobin alpha chains. Immobilized gradients tailored to the requirements of the proteins being analyzed will extend greatly the ranges of protein variations that can be easily recognized for diverse applications, including genetic quality-control analyses and in studies of genetics, mutagenesis, and evolution.
Collapse
|
28
|
Sullivan KF, Lau JT, Cleveland DW. Apparent gene conversion between beta-tubulin genes yields multiple regulatory pathways for a single beta-tubulin polypeptide isotype. Mol Cell Biol 1985; 5:2454-65. [PMID: 3837190 PMCID: PMC366973 DOI: 10.1128/mcb.5.9.2454-2465.1985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the complete nucleotide sequences of two chicken beta-tubulin genes, beta 1 and beta 2. These genes display an unusual pattern of segmental homology which indicates that they originally arose by gene duplication and have subsequently coevolved by a process that included localized gene conversion or intergenic recombination. Since the beta-tubulin polypeptides encoded by the two genes are virtually identical (99.5%), particularly in the major beta-tubulin isotype defining regions, they almost certainly constitute a single isotypic class of beta tubulin. However, the regulatory properties of the two genes are highly divergent as indicated by analysis of their patterns of expression in different chicken cell types. beta 1 is the major transcript detected in skeletal muscle myoblasts, whereas beta 2 is the major beta-tubulin transcript in cultured sympathetic neurons. The existence of these two genes appears to derive from a regulatory requirement whereby the expression of a single tubulin isotype is mediated through different regulatory programs in development and differentiation. These results thus provide direct experimental support for the hypothesis that gene conversion and intergenic recombination play an important role in evolution by uncoupling the evolution of structural genes from the regulatory sequences which control them.
Collapse
|
29
|
Frömmel C, Holzhütter HG. An estimate on the effect of point mutation and natural selection on the rate of amino acid replacement in proteins. J Mol Evol 1985; 21:233-57. [PMID: 6443130 DOI: 10.1007/bf02102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We outline a method for estimating quantitatively the influence of point mutations and selection on the frequencies of codons and amino acids. We show how the mutation rate, i.e., the rate of amino acid replacement due to point mutation, can be affected by the codon usage as well as by the rates of the involved base exchanges. A comparison of the mutation rates calculated from reliable values of codon usage and base exchange probabilities with those that would be expected on the basis of chance reveals a notable suppression of replacements leading to tryptophan, glutamate, lysine, and methionine, and particularly of those leading to the termination codons. If selection constraints are neglected and only mutations are taken into account, the best agreement between expected and observed frequencies of both codons and amino acids is obtained for alpha = 1.13-1.15, where (Formula: see text). The "selection values" of codons and amino acids derived by our method show a pattern that partially deviates from others in the literature. For example, the selection pressure on methionine and cysteine turns out to be much more pronounced than expected if only the discrepancies between their observed and expected occurrences in proteins are considered. To estimate to what extent randomly occurring amino acid replacements are accepted by selection, we constructed an "acceptability matrix" from the well-established matrix of accepted point mutations. On the basis of this matrix "acceptability values" of the amino acids can be defined that correlate with their selection values. We also examine the significance of mutations and selection of amino acids with respect to their physicochemical properties and functions in proteins. The conservatism of amino acid replacements with respect to certain properties such as polarity can be brought about by the mutational process alone, whereas the conservatism with respect to other relevant properties--among them all measures of bulkiness--obviously is the result of additional selectional constraints on the evolution of protein structures.
Collapse
|
30
|
Graur D. Pattern of nucleotide substitution and the extent of purifying selection in retroviruses. J Mol Evol 1985; 21:221-31. [PMID: 6443129 DOI: 10.1007/bf02102356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The patterns of point mutation and nucleotide substitution are inferred from nucleotide differences in three coding and two noncoding regions of retroviral genomes. Evidence is presented in favor of the view that the majority of mutations accumulate at the reverse transcription stage. Purifying selection is apparently very weak at the amino acid level, and almost nonexistent between synonymous codons. The pattern of purifying selection obeys the rules previously established in vertebrates [Gojobori T, Li W-H, Graur D (1982) J Mol Evol 18:360-369]; i.e., the magnitude of purifying selection at the amino acid level is negatively correlated with Grantham's [Grantham R (1974) Science 185: 862-864] chemical distances between the amino acids interchanged. We refute Modiano et al.'s [Modiano G, Battistuzzi G, Motulsky AG (1981) Proc Natl Acad Sci USA 78:1110-1114] hypothesis, according to which the pattern of mutation is preadapted to buffer against deleterious mutations. On the contrary, the pattern of mutation reduces the level of conservativeness from that imposed on the amino acid substitution pattern by the structure of the genetic code. The extraordinarily high rate of nucleotide substitution in retroviruses in comparison with that in other organisms is apparently caused by an extremely high rate of mutation coupled with a lack of stringent purifying selection at both the codon and the amino acid levels.
Collapse
|
31
|
Kolaskar AS, Reddy BVB. Complimentary DNA sequence data analysis of prokaryotic systems. J Biosci 1985. [DOI: 10.1007/bf02716766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Abstract
The hypothesis that DNA strands complementary to the coding strand contain in phase coding sequences has been investigated. Statistical analysis of the 50 genes of bacteriophage T7 shows no significant correlation between patterns of codon usage on the coding and non-coding strands. In Bacillus and yeast genes the correlation observed is not different from that expected with random synonymous codon usage, while a high correlation seen in 52 E. coli genes can be explained in terms of an excess of RNY codons. A deficiency of UUA, CUA and UCA codons (complementary to termination) seems to be restricted to the E. coli genes, and may be due to low abundance of the relevant cognate tRNA species. Thus the analysis shows that the non-coding strand has the properties expected of a sequence complementary to a coding strand, with no indications that it encodes, or may have encoded, proteins.
Collapse
|
33
|
Sharp PM, Rogers MS, McConnell DJ. Selection pressures on codon usage in the complete genome of bacteriophage T7. J Mol Evol 1985; 21:150-60. [PMID: 6100189 DOI: 10.1007/bf02100089] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We searched the complete 39,936 base DNA sequence of bacteriophage T7 for nonrandomness that might be attributed to natural selection. Codon usage in the 50 genes of T7 is nonrandom, both over the whole code and among groups of synonymous codons. There is a great excess of purine- any base-pyrimidine (RNY) codons. Codon usage varies between genes, but from the pooled data for the whole genome (12,145 codons) certain putative selective constraints can be identified. Codon usage appears to be influenced by host tRNA abundance (particularly in highly expressed genes), tRNA-mRNA (one such interaction being perhaps responsible for maintaining the excess of RNY codons) and a lack of short palindromes. This last constraint is probably due to selection against host restriction enzyme recognition sites; this is the first report of an effect of this kind on codon usage. Selection against susceptibility to mutational damage does not appear to have been involved.
Collapse
|
34
|
Li WH, Wu CI, Luo CC. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 1984; 21:58-71. [PMID: 6442359 DOI: 10.1007/bf02100628] [Citation(s) in RCA: 238] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have obtained a revised estimate of the pattern of point mutation by considering more pseudogene sequences. Compared with our previous estimate, it agrees better with expectations based on the double-strand structure of DNA. The revised pattern, like the previous one, indicates that mutation occurs nonrandomly among the four nucleotides. In particular, the proportion of transitional mutations (59%) is almost twice as high as the value (33%) expected under random mutation. The same high proportion of transitions is observed in synonymous substitutions in genes. The proportion of transitional changes observed among electrophoretic variants of human hemoglobin is about the same as that predicted by the revised pattern of mutation. We also show that nonrandom mutation increases, by about 15%, the proportion of synonymous mutations due to single-nucleotide changes in the codon table, and increases, from 10% to 50%, the rate of synonymous mutation in the seven genes studied. However, nonrandom mutation reduces (by about 10%) the proportion of polar changes among nonsynonymous mutations in a gene. As far as single-nucleotide changes (in the codon table) are concerned, nonrandom mutation only slightly favors relatively conservative amino acid interchanges, and has virtually no effect on the proportions of radical changes and nonsense mutations.
Collapse
|
35
|
Abstract
Because the genetic code is redundant for most amino acids, different codons can be used in a given position without altering the structure of the protein for which the gene codes. This flexibility permits information encoding structural, and therefore functional, properties of RNA and DNA to be transmitted simultaneously by a protein-coding sequence of DNA. Among the other messages that might be transmitted, it is proposed, is one modulating the evolution of the DNA itself.
Collapse
|
36
|
Collins FS, Weissman SM. The molecular genetics of human hemoglobin. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1984; 31:315-462. [PMID: 6397774 DOI: 10.1016/s0079-6603(08)60382-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Abstract
The four mouse histone genes (2 H3 genes, an H2b gene and an H2a gene) present in a cloned 12.9 kilobase fragment of DNA have been completely sequenced including both 5' and 3' flanking regions. These genes are expressed in cultured mouse cells and the 3' and 5' ends of the mRNA have been determined by S1 nuclease mapping. These genes code for a minor fraction of the histone mRNAs expressed in cultured mouse cells. They comprise at most 5-8% of the total histone mRNA of each type. The two H3 genes code for H3.2 and H3.1 histone proteins, while the H2b gene codes for an H2b.1 protein with a single amino acid change (val-leu) at position 18. Only the 3' portion of the H2a gene is contained in the clone and there is an amino acid change (alanine-proline) at position 126. Comparison of the 5' and 3' flanking sequences reveals a conserved sequence at the 3' end of the mRNA which forms a hairpin loop structure. The codon usage in the genes is non-random and there has been no discrimination against CG doublets in the coding region of the genes.
Collapse
|
38
|
Parker J, Johnston TC, Borgia PT, Holtz G, Remaut E, Fiers W. Codon usage and mistranslation. In vivo basal level misreading of the MS2 coat protein message. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44598-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
|
40
|
Golding GB, Strobeck C. Expected frequencies of codon use as a function of mutation rates and codon fitnesses. J Mol Evol 1982; 18:379-86. [PMID: 7175955 DOI: 10.1007/bf01840886] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A method is shown to determine the expected pattern of codon use for any given set of mutation rates between nucleotides and any set of fitnesses for the codons. If it is assumed that mutations to stop codons are lethal then those codons which can mutate in one step to a stop codon tend to be used less frequently. This tendency is however, a very small one and is not likely to be observable within a single gene. Nor is it necessarily a general tendency. For example, the leucine pretermination codons may be used preferentially when mutations to proline are deleterious. It is shown that different mutation rates (eg: transitions occurring more frequently than transversions) may have as large an effect on codon usage as would strong selection for particular codons. For the model presented, an increase in the rate of transitions strongly decreases the expected frequency of UGG and CRR codons. Other codes are moderately affected by such a change in the mutation rates. Many other models can be examined using this method.
Collapse
|
41
|
Gojobori T, Li WH, Graur D. Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 1982; 18:360-9. [PMID: 7120431 DOI: 10.1007/bf01733904] [Citation(s) in RCA: 245] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Petes TD. Evidence that structural variants within the human delta-globin protein may reflect genetic interactions between the delta- and beta-globin genes. Am J Hum Genet 1982; 34:820-3. [PMID: 7124735 PMCID: PMC1685443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Moorman AF, De Boer PA, De Laaf RT, Destrée OH. Primary structure of the histone H2A and H2B genes and their flanking sequences in a minor histone gene cluster of Xenopus laevis. FEBS Lett 1982; 144:235-41. [PMID: 7117538 DOI: 10.1016/0014-5793(82)80645-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Dugaiczyk A, Law SW, Dennison OE. Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci U S A 1982; 79:71-5. [PMID: 6275391 PMCID: PMC345663 DOI: 10.1073/pnas.79.1.71] [Citation(s) in RCA: 256] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The complete nucleotide sequence of human serum albumin mRNA has been determined from recombinant cDNA clones and from a primer-extended cDNA synthesis on the mRNA template. The sequence is composed of 2078 nucleotides, starting upstream from a potential ribosome binding site in the 5' untranslated region. It contains all the translated codons and extends into the poly(A) at the 3' terminus. Part of the translated sequence codes for a hydrophobic prepeptide, Met-Lys-Trp-Val-Thr-Phe-Ile-Ser-Leu-Leu-Phe-Leu-Phe-Ser-Ser-Ala-Tyr-Ser, followed by a basic propeptide, Arg-Gly-Val-Phe-Arg-Arg. These signal peptides are absent from mature normal serum albumin and, so far, have not been identified in their nascent state in humans. A remaining 1755 nucleotides of the translated mRNA sequence code for 585 amino acids, which are in agreement, with few exceptions, with the published amino acid sequence for human serum albumin. The mRNA sequence verifies and refines the repeating homology in the triple-domain structure of the serum albumin molecule.
Collapse
|
45
|
Moorman AF, de Boer PA, de Laaf RT, van Dongen WM, Destrée OH. Primary structure of the histone H3 and H4 genes and their flanking sequences in a minor histone gene cluster of Xenopus laevis. FEBS Lett 1981; 136:45-52. [PMID: 6274702 DOI: 10.1016/0014-5793(81)81211-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
|