1
|
Kovachka S, Tong Y, Childs-Disney JL, Disney MD. Heterobifunctional small molecules to modulate RNA function. Trends Pharmacol Sci 2024; 45:449-463. [PMID: 38641489 DOI: 10.1016/j.tips.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
RNA has diverse cellular functionality, including regulating gene expression, protein translation, and cellular response to stimuli, due to its intricate structures. Over the past decade, small molecules have been discovered that target functional structures within cellular RNAs and modulate their function. Simple binding, however, is often insufficient, resulting in low or even no biological activity. To overcome this challenge, heterobifunctional compounds have been developed that can covalently bind to the RNA target, alter RNA sequence, or induce its cleavage. Herein, we review the recent progress in the field of RNA-targeted heterobifunctional compounds using representative case studies. We identify critical gaps and limitations and propose a strategic pathway for future developments of RNA-targeted molecules with augmented functionalities.
Collapse
Affiliation(s)
- Sandra Kovachka
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
2
|
Czar MF, Breitgoff FD, Sahoo D, Sajid M, Ramezanian N, Polyhach Y, Jeschke G, Godt A, Zenobi R. Linear and Kinked Oligo(phenyleneethynylene)s as Ideal Molecular Calibrants for Förster Resonance Energy Transfer. J Phys Chem Lett 2019; 10:6942-6947. [PMID: 31633356 DOI: 10.1021/acs.jpclett.9b02621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We show that oligo(phenyleneethynylene)s (oligoPEs) are ideal spacers for calibrating dye pairs used for Förster resonance energy transfer (FRET). Ensemble FRET measurements on linear and kinked diads with such spacers show the expected distance and orientation dependence of FRET. Measured FRET efficiencies match excellently with those predicted using a harmonic segmented chain model, which was validated by end-to-end distance distributions obtained from pulsed electron paramagnetic resonance measurements on spin-labeled oligoPEs with comparable label distances.
Collapse
Affiliation(s)
- Martin F Czar
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Frauke D Breitgoff
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Dhananjaya Sahoo
- Faculty of Chemistry and Center for Molecular Materials (CM2) , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Muhammad Sajid
- Faculty of Chemistry and Center for Molecular Materials (CM2) , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Navid Ramezanian
- Faculty of Chemistry and Center for Molecular Materials (CM2) , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Yevhen Polyhach
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2) , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| |
Collapse
|
3
|
Dobitz S, Aronoff MR, Wennemers H. Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc Chem Res 2017; 50:2420-2428. [PMID: 28885830 DOI: 10.1021/acs.accounts.7b00340] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nature utilizes large biomolecules to fulfill tasks that require spatially well-defined arrangements at the molecular level such as electron transfer, ligand-receptor interactions, or catalysis. The creation of synthetic molecules that enable precise control over spacing and functionalization provides opportunities across diverse disciplines. Key requirements of functionalizable oligomeric scaffolds include the specific control of their molecular properties where the correct balance of flexibility and rigidity must be maintained in addition to the prerequisite of defined length. These molecules must ideally be equally applicable in aqueous and organic environments, they must be easy to synthesize in a controlled stepwise fashion, and they must be easily modified with a palette of chemical appendages having diverse functionalities. Oligoproline, a peptidic polymer comprised of repeating units of the amino acid proline, is an ideal platform to meet such challenges. Oligoproline derives its characteristic rigidity and well-defined secondary structure from the innate features of proline. It is the only naturally occurring amino acid that has its side-chain cyclized to its α-amino group, generating often-populated trans and cis conformers around the tertiary amide bonds formed in proline oligomers. Oligoprolines are widely applied to define distance on the molecular level as they are capable of serving as both a "molecular ruler" with a defined length and as a "molecular scaffold" with precisely located and predictably oriented substitutions along the polymeric backbone. Our investigations focus on the use of oligoproline as a molecular scaffold. Toward this end, we have investigated the role of solvent upon helical structure of oligoproline, and the effect that substituents on the pyrrolidine ring and the oligomer termini have on the stability of the helix. We have also further explored the molecular characteristics of oligoproline through spectroscopic and crystallographic methods. All of these structural insights laid the basis for implementation of oligoproline in materials science and chemical biology. Within this Account, we highlight the value of oligoprolines for applications in distinctly different research areas. Toward materials chemistry, we have utilized oligoprolines for the size-controlled generation of noble metal nanoparticles, and to probe the role of spatial preorganization of π-systems for molecular self-assembly. Within the biological realm, we have applied oligoprolines to probe the role of distance on G-protein coupled receptor-mediated ligand uptake by cancerous cells and to investigate the effects of charge preorganization on the efficacy of cationic cell-penetrating peptides.
Collapse
Affiliation(s)
- Stefanie Dobitz
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Matthew R. Aronoff
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Helma Wennemers
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Garbuio L, Lewandowski B, Wilhelm P, Ziegler L, Yulikov M, Wennemers H, Jeschke G. Shape Persistence of Polyproline II Helical Oligoprolines. Chemistry 2015; 21:10747-53. [PMID: 26089127 DOI: 10.1002/chem.201501190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/06/2022]
Abstract
Oligoprolines are commonly used as molecular scaffolds. Past studies on the persistence length of their secondary structure, the polyproline II (PPII) helix, and on the fraction of backbone cis amide bonds have provided conflicting results. We resolved this debate by studying a series of spin-labeled proline octadecamers with EPR spectroscopy. Distance distributions between an N-terminal Gd(III) -DOTA (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) label and a nitroxide label at one of five evenly spaced backbone sites allowed us to discriminate between the flexibility of the PPII helix and the cis amide contributions. An upper limit of 2 % cis amide bonds per residue was found in a 7:3 (v/v) water/glycerol mixture, whereas cis amides were not observed in trifluoroethanol. Extrapolation of Monte Carlo models from the glass transition to ambient temperature predicts a persistence length of ≈3-3.5 nm in both solvents. The method is generally applicable to any type of oligomer for which the persistence length is of interest.
Collapse
Affiliation(s)
- Luca Garbuio
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland)
| | - Bartosz Lewandowski
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Patrick Wilhelm
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Ludmila Ziegler
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| | - Helma Wennemers
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland).
| | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| |
Collapse
|
6
|
Fremaux J, Kauffmann B, Guichard G. Synthesis and Folding Propensity of Aliphatic Oligoureas Containing Repeats of Proline-Type Units. J Org Chem 2014; 79:5494-502. [DOI: 10.1021/jo5006075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Juliette Fremaux
- Université de Bordeaux, CNRS, IPB, UMR 5248, CBMN, Institut Européen de Chimie et de Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, UMS 3033, INSERM US001, Institut Européen de Chimie et de Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, IPB, UMR 5248, CBMN, Institut Européen de Chimie et de Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
7
|
Kolchanov NA, Titov II, Vlassova IE, Vlassov VV. Chemical and computer probing of RNA structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:131-96. [PMID: 8650302 PMCID: PMC7133174 DOI: 10.1016/s0079-6603(08)60144-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ribonucleic acids (RNAs) are one of the most important types of biopolymers. RNAs play key roles in the storage and multiplication of genetic information. They are important in catalysis and RNA splicing and are the most important steps of translation. This chapter describes experimental methods for probing RNA structure and theoretical methods allowing the prediction of thermodynamically favorable RNA folding. These methods are complementary and together they provide a powerful approach to determine the structure of RNAs. The three-dimensional (tertiary) structure of RNA is formed by hydrogen-bonding among functional groups of nucleosides in different regions of the molecule, by coordination of polyvalent cations, and by stacking between the double-stranded regions present in the RNA. The tertiary structures of only some small RNAs have been determined by high-resolution X-ray crystallographic analysis and nuclear magnetic resonance analysis. The most widely used approach for the investigation of RNA structure is chemical and enzymatic probing, in combination with theoretical methods and phylogenetic studies allowing the prediction of variants of RNA folding. Investigations of RNA structures with different enzymatic and chemical probes can provide detailed data allowing the identification of double-stranded regions of the molecules and nucleotides involved in tertiary interactions.
Collapse
Affiliation(s)
- N A Kolchanov
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
8
|
Abstract
Normal mode calculation is applied to tRNAPhe and tRNAAsp, and their structural and vibrational aspects are analyzed. Dihedral angles along the phosphate-ribose backbone (alpha, beta, gamma, epsilon, zeta) and dihedral angles of glycosyl bonds (chi) are selected as movable parameters. The calculated displacement of each atom agrees with experimental data. In modes with frequencies higher than 130 cm-1, the motions are localized around each stem and the elbow region of the L-shape. On the other hand, collective motions such as bending or twisting of arms are seen in modes with lower frequencies. Hinge axes and bend angles are calculated without prior knowledge. Movements in modes with very low frequencies are combinations of hinge bending motions with various hinge axes and bend angles. The thermal fluctuations of dihedral angles well reflect the structural characters of transfer RNAs. There are some dihedral angles of nucleotides located around the elbow region of L-shape, which fluctuate about five to six times more than the average value. Nucleotides in the position seem to be influential in the dynamics of the entire structure. The normal mode calculation seems to provide much information for the study of conformational changes of transfer RNAs induced by aminoacyl-tRNA synthetase or codon during molecular recognition.
Collapse
MESH Headings
- Motion
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/ultrastructure
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/ultrastructure
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/ultrastructure
- Saccharomyces cerevisiae
Collapse
Affiliation(s)
- S Nakamura
- Department of Biotechnology, University of Tokyo, Japan
| | | |
Collapse
|
9
|
Prabahakaran M, Harvey SC. Models for two tRNAs bound to successive codons on mRNA on the ribosome. J Biomol Struct Dyn 1989; 7:167-79. [PMID: 2818867 DOI: 10.1080/07391102.1989.10507758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have investigated the structural changes necessary to build a model complex of two molecules of phenylalanine transfer RNA (tRNA(Phe) bound to successive codons in a short segment of a model messenger RNA (mRNA), consisting of U6. We keep the mRNA in an ideal helical conformation, deforming the tRNAs as necessary to eliminate steric overlaps while bringing the two 3' termini together. The resulting model has the two tRNAs oriented relative to one another in a manner that is very similar to a model developed by McDonald and Rein (1) in which the tRNAs maintain their ideal crystallographic conformations and all of the deformations are introduced into the mRNA. Consequently, regardless of how one divides the deformations between the tRNAs and the mRNA it is clear that, on the ribosome, the tRNA in the P site has its "front" side (that side with the variable loop) close to the "back" side of the tRNA in the A site (that side with the D loop). The space between the two molecules must be left free on the ribosome, in order to facilitate the transition from the A site to the P site. A detailed pathway is also proposed for changing the anticodon loop structure from that of the A site to that of the P site. The anticodon loop is always kept in a 3'-stacked conformation, since we find that the shift between the 3'-stacked and 5'-stacked structures proposed by Woese (2) is not feasible.
Collapse
Affiliation(s)
- M Prabahakaran
- Department of Biochemistry, University of Alabama, Birmingham 35294
| | | |
Collapse
|
10
|
Tung CS, Harvey SC, McCammon JA. Large-amplitude bending motions in phenylalanine transfer RNA. Biopolymers 1984; 23:2173-93. [PMID: 6568122 DOI: 10.1002/bip.360231106] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Parker KK, Wickstrom E. Crosslinking of Escherichia coli 50S ribosomal subunits with chlorambucilyl oligoprolyl phenylalanyl-tRNA molecular rulers. Nucleic Acids Res 1983; 11:515-24. [PMID: 6338479 PMCID: PMC325730 DOI: 10.1093/nar/11.2.515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A series of P-site probes, chlorambucilyl-(Pro)n-Phe-tRNAPhe, were prepared and reacted with poly(U)-directed Escherichia coli MRE 600 ribosomes. Upon binding of the probes to ribosomes, 90% of the cpm bound were not released following subsequent interaction with puromycin. In the absence of poly(U) or in the presence of poly(C), binding was limited to the amount of cpm bound if ribosomes were incubated in the presence of puromycin before adding modified tRNA and poly(U). AcPhe-tRNAPhe was a competitive inhibitor of chlorambucilyl Phe-tRNAPhe. Binding to 50S subunits was strongly stimulated by poly(U), while binding to 30S subunits was not. Crosslinked 50S proteins were analyzed by two-dimensional gel electrophoresis. Crosslinking with molecular rulers containing zero prolines led to poly(U)-dependent labeling of L1 and L27. With rulers containing five prolines, L6, L25, L28, and the group L18,23,24 were labeled. Analysis of crosslinked ribosomal RNA on sucrose density gradients revealed almost no cpm in the 16S or 23S peaks, but only in the 5S peaks. This was observed with molecular rulers containing either zero or five proline residues.
Collapse
|
12
|
Benedetti E, Bavoso A, di Blasio B, Pavone V, Pedone C, Toniolo C, Bonora GM. Solid-state geometry and conformation of linear, diastereoisomeric oligoprolines. Biopolymers 1983. [DOI: 10.1002/bip.360220139] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Yager TD, Reuben MA, Ainpour PR, Wickstrom E. Molecular rulers with 5 or 11 prolines intramolecularly crosslink to G45 of yeast phenylalanine tRNA. FEBS Lett 1981; 133:59-62. [PMID: 7030787 DOI: 10.1016/0014-5793(81)80470-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Wickstrom E, Parker KK, Hursh DA, Newton RL. Chlorambucil [3H]phenylalanyl-tRNA crosslinking to 50 S ribosomal subunit proteins L4, L26--27 and L18--20. FEBS Lett 1981; 123:273-6. [PMID: 6164571 DOI: 10.1016/0014-5793(81)80306-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|