1
|
Erlanson DA, Burley SK, Fearon D, Fraser JS, Kreitler D, Nonato MC, Sakai N, Wollenhaupt J, Weiss MS. Where and how to house big data on small fragments. Nat Commun 2025; 16:4179. [PMID: 40325009 PMCID: PMC12052810 DOI: 10.1038/s41467-025-59233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
Fragment screening by crystallography has recently skyrocketed. Multiple synchrotrons have built specialized screening platforms, established workflows, and assembled compound libraries. Crystallographic fragment screening is now widely accessible to groups that had previously not considered the approach. While hundreds of crystallographic fragment-screening campaigns have been conducted in the last few years, most of the underlying data have neither been published nor made publicly accessible. This perspective highlights the importance of establishing effective mechanisms for preserving large and often heterogeneous groups of datasets intrinsic to crystallographic fragment-screening campaigns, thereby ensuring their accessibility for advancing research and enabling applications such as training AI-based models.
Collapse
Affiliation(s)
| | - Stephen K Burley
- RCSB Protein Data Bank, La Jolla, CA, USA
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Daren Fearon
- Diamond Light Source Ltd, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dale Kreitler
- Brookhaven National Laboratory, NSLS-II, Upton, NY, USA
| | - Maria Cristina Nonato
- Center for the Research and Advancement in Fragments and Molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Naoki Sakai
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Japan
| | | | - Manfred S Weiss
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
2
|
Fesik SW. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025; 125:3586-3594. [PMID: 40043012 PMCID: PMC11951080 DOI: 10.1021/acs.chemrev.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
There are many highly validated cancer targets that are difficult or impossible to drug due to the absence of suitable pockets that can bind small molecules. Fragment-based methods have been shown to be a useful approach for identifying ligands to proteins that were previously thought to be undruggable. In this review, I will give an overview of fragment-based ligand discovery and provide examples from our own work on how fragment-based methods were used to discover high affinity ligands for challenging cancer drug targets.
Collapse
Affiliation(s)
- Stephen W. Fesik
- Department of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235 United States
| |
Collapse
|
3
|
Xu W, Kang C. Fragment-Based Drug Design: From Then until Now, and Toward the Future. J Med Chem 2025; 68:5000-5004. [PMID: 39992814 DOI: 10.1021/acs.jmedchem.5c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fragment-based drug design (FBDD) has emerged as a powerful strategy in drug discovery, offering a complementary approach to traditional high-throughput screening (HTS)-based drug discovery. Over almost half a century, FBDD has undergone significant evolution, leading to the discovery of multiple approved drugs in the market. The integration of structural and computational tools into FBDD has significantly enhanced its efficiency, facilitating rational drug design. As the field of drug discovery expands beyond traditionally druggable targets and explore novel modalities, FBDD is poised to play a pivotal role in targeting a wide range of biomolecules, including challenging and undruggable targets such as proteins and RNAs. The continued advancement of FBDD, particularly through the incorporation of cutting-edge computational and screening methods, will pave the way for future success in medicinal chemistry.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Chromos, 138670 Singapore
| | - Congbao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Chromos, 138670 Singapore
| |
Collapse
|
4
|
Tsopelas F, Stergiopoulos C, Danias P, Tsantili-Kakoulidou A. Biomimetic separations in chemistry and life sciences. Mikrochim Acta 2025; 192:133. [PMID: 39904888 PMCID: PMC11794418 DOI: 10.1007/s00604-025-06980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Since Otto Schmitt introduced the term "biomimetics" in 1957, the imitation of biological systems to develop separation methods and simulate biological processes has seen continuous growth, particularly over the past five decades. The biomimetic approach relies on the use of specific ligands-biospecific, biomimetic, or synthetic-which target biomolecules, such as proteins, antibodies, nucleic acids, enzymes, drugs, pesticides, and other bioactive analytes. This review highlights advances in biomimetic separations, focusing on biomimetic liquid chromatography (including immobilized artificial membrane chromatography, cell membrane chromatography, biomimetic affinity chromatography, weak affinity chromatography, micellar liquid chromatography, immobilized liposome chromatography, and liposome electrokinetic capillary chromatography) for the complex separation and purification of biomolecules and other important chemical compounds. It also explores their application in studying drug-receptor interactions, screening chemical permeability, absorption, distribution, toxicity, as well as predicting environmental risks. Additionally, this review discusses the application of biomimetic magnetic nanoparticles, which leverage biological membranes and proteins for drug discovery, protein purification, and diagnostics.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece.
| | - Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Panagiotis Danias
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou Athens, Greece
| |
Collapse
|
5
|
Khan O, Jones G, Kozakov D, Beglov D, Joseph-McCarthy D, Vajda S. E-FTMap: A Protein Structure Based Pharmacophore Identification Server for Guiding Fragment Expansion. J Mol Biol 2025:168956. [PMID: 40133782 DOI: 10.1016/j.jmb.2025.168956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/27/2025]
Abstract
In fragment-based drug design (FBDD), libraries of low molecular weight compounds are screened against a receptor. Due to their size, fragment hits typically bind with weak affinities by forming a handful of highly efficient interactions with the receptor. Such fragment hits must be expanded into more potent lead compounds in order to achieve higher binding affinities. Approaches for expanding fragments to leads include growing-the iterative expansion of the scaffold, and merging-the linking of two fragment hits. In both cases the design can be facilitated by information on the ligand binding preferences of the target protein. Here we describe a protocol for fragment expansion using E-FTMap, an automated web server that identifies important pharmacophore binding regions within a binding site of proteins using the receptor structure alone. E-FTMap distributes 119 small organic probes across a binding site, identifies energy minima in which similar probes bind, and clusters probes by their atom types to identify regions which preferably bind specific atom types. Unless a priori known, the binding site for this analysis can be identified by our FTMap server that uses only 16 probes to find binding hot spots that are generally preferable for ligand binding, whereas the subsequent use of E-FTMap provides atom-specific information. The utility of E-FTMap as a tool for guiding the expansion of fragments into higher affinity binders is demonstrated by its application to 17 proteins that have been targeted by FBDD. The E-FTMap webserver is publicly accessible at https://eftmap.bu.edu/.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | | | - Diane Joseph-McCarthy
- Department of Chemistry, Boston University, Boston, MA 02215, United States; Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, MA 02215, United States; Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
6
|
Ferla MP, Sánchez-García R, Skyner RE, Gahbauer S, Taylor JC, von Delft F, Marsden BD, Deane CM. Fragmenstein: predicting protein-ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding-based methodology. J Cheminform 2025; 17:4. [PMID: 39806443 PMCID: PMC11731148 DOI: 10.1186/s13321-025-00946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. The molecule is then energy minimised under strong constraints to obtain a structurally plausible conformer. The code is available at https://github.com/oxpig/Fragmenstein .Scientific contributionThis work shows the importance of using the coordinates of known binders when predicting the conformation of derivative molecules through a retrospective analysis of the COVID Moonshot data. This method has had a prior real-world application in hit-to-lead screening, yielding a sub-micromolar merger from parent hits in a single round. It is therefore likely to further benefit future drug design campaigns and be integrated in future pipelines.
Collapse
Affiliation(s)
- Matteo P Ferla
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, NIHR Oxford BRC Genomic Medicine, University of Oxford, Oxford, UK.
| | - Rubén Sánchez-García
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Rachael E Skyner
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
- OMass Therapeutics, ARC Oxford, Oxford, UK
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, USA
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, NIHR Oxford BRC Genomic Medicine, University of Oxford, Oxford, UK
| | - Frank von Delft
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Brian D Marsden
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Kavanagh ME, McLean KJ, Gilbert SH, Amadi C, Snee M, Tunnicliffe RB, Arora K, Boshoff HI, Fanourakis A, Rebello-Lopez MJ, Ortega-Muro F, Levy CW, Munro AW, Leys D, Abell C, Coyne AG. Fragment-based development of small molecule inhibitors targeting Mycobacterium tuberculosis cholesterol metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620643. [PMID: 39803573 PMCID: PMC11722527 DOI: 10.1101/2024.10.28.620643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for Mtb's long-term survival in vivo. Here, we report the development of antitubercular small molecules that inhibit the Mtb cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule 1a that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of 1a, yielding a potent dual CYP125/142 inhibitor 5m (KD CYP125/CYP142 = 0.04/0.16 μM). Compound 5m potently inhibits the catalytic activity of CYP125 and CYP142 in vitro (KI values < 0.1 μM), and rapidly depletes Mtb intracellular ATP (IC50 = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR Mtb (MIC99 values 0.4 - 1.5 μM) in extracellular assays, and inhibits the growth of Mtb in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD50 ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in Mtb and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
Collapse
Affiliation(s)
- Madeline E. Kavanagh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J. McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sophie H. Gilbert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cecilia Amadi
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew Snee
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard B. Tunnicliffe
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | - Colin W. Levy
- Manchester Protein Structure Facility (MPSF), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Andrew W. Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
8
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
9
|
Hegazy R, Cristobal JR, Richard JP. Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces. Biochemistry 2024; 63:2878-2891. [PMID: 39319842 PMCID: PMC11542618 DOI: 10.1021/acs.biochem.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Glycerol 3-phosphate dehydrogenase catalyzes reversible hydride transfer from glycerol 3-phosphate (G3P) to NAD+ to form dihydroxyacetone phosphate; from the truncated substrate ethylene glycol to NAD+ in a reaction activated by the phosphite dianion substrate fragment; and from G3P to the truncated nicotinamide riboside cofactor in a reaction activated by adenosine 5'-diphosphate, adenosine 5'-monophosphate, and ribose 5-phosphate cofactor fragments. The sum of the stabilization of the transition state for GPDH-catalyzed hydride transfer reactions of the whole substrates by the phosphodianion fragment of G3P and the ADP fragment of NAD+ is 25 kcal/mol. Fourteen kcal/mol of this transition state stabilization is recovered as phosphite dianion and AMP activation of the reactions of the substrate and cofactor fragments. X-ray crystal structures for unliganded GPDH, for a binary GPDH·NAD+ complex, and for a nonproductive ternary GPDH·NAD+·DHAP complex show that the ligand binding energy is utilized to drive an extensive protein conformational change that creates a caged complex for these ligands. The phosphite dianion and AMP fragments are proposed to activate GPDH for the catalysis of hydride transfer by stabilization of this active caged complex. The closure of a conserved loop [292-LNGQKL-297] during substrate binding stabilizes the G3P and NAD+ complexes by interactions, respectively, with the Q295 and K296 loop side chains. The appearance and apparent conservation of two side chains that interact with the hydride donor and acceptor to stabilize the active closed enzyme are proposed to represent a significant improvement in the catalytic performance of GPDH.
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
10
|
Ribeiro EDA, Leyrat C, Gérard FCA, Jamin M. Dimerization of Rabies Virus Phosphoprotein and Phosphorylation of Its Nucleoprotein Enhance Their Binding Affinity. Viruses 2024; 16:1735. [PMID: 39599850 PMCID: PMC11599015 DOI: 10.3390/v16111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models. We found that RABV P binds with nanomolar affinity to both circular and linear N-RNA complexes and that the dimerization of P protein enhances the binding affinity by 15-30-fold as compared to the monomeric fragments, but less than expected for a bivalent ligand, in which the binding domains are connected by a flexible linker. We also showed that the phosphorylation of N at Ser389 creates high-affinity sites on the polymeric N-RNA complex that enhance the binding affinity of P by a factor of about 360.
Collapse
Affiliation(s)
| | | | | | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France; (E.d.A.R.J.); (C.L.); (F.C.A.G.)
| |
Collapse
|
11
|
Hammel F, Payne NC, Marando VM, Mazitschek R, Walker S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J Am Chem Soc 2024; 146:26320-26330. [PMID: 39276112 PMCID: PMC11440498 DOI: 10.1021/jacs.4c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.
Collapse
Affiliation(s)
- Forrest
A. Hammel
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - N. Connor Payne
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Victoria M. Marando
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- T.H.
Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Suzanne Walker
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
13
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
14
|
Tang GQ, Hu H, Douglas J, Carter C. Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA. Nucleic Acids Res 2024; 52:7096-7111. [PMID: 38783009 PMCID: PMC11229368 DOI: 10.1093/nar/gkae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Hao Hu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
- Department of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
15
|
Wang Z, Li B, Wang J, Wang L. Unexpected Intermolecular C-H···O Hydrogen Bonds and 1H NMR Chemical Shifts in a Key Linker for Fluorine-18 Labeling of Dimeric Drugs. J Phys Chem B 2024; 128:5454-5462. [PMID: 38807468 PMCID: PMC11298158 DOI: 10.1021/acs.jpcb.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The compound 2-{[(trifluoromethyl)sulfonyl]oxy}propane-1,3-diyl bis(4-methylbenzenesulfonate) (TPB) is a crucial intermediate in the synthesis of 18F-radiolabeled cromolyn derivatives. In this work, we combine 1H NMR spectroscopy, X-ray crystallography, ab initio molecular dynamics, and NMR calculations to examine the structure, interactions, and solvation dynamics of the TPB molecule. In CDCl3, the CH2 groups within its glyceryl-derived linker exhibit a single set of proton signals in the 1H NMR measurements. However, when TPB is dissolved in DMSO-d6, distinct splitting patterns emerge despite its seemingly symmetric chemical structure. Crystallographic analysis further unveils the absence of overall symmetry in its three-dimensional arrangement. To elucidate these unique NMR features, we carry out ab initio molecular dynamics simulations and characterize the solvation structures and dynamics of TPB in CHCl3 and DMSO solutions. In contrast to the predominantly nonpolar nature of the CHCl3 solvents, DMSO directly participates in C-H···O hydrogen-bonding interactions with the solute molecule, leading to the splitting of its -CH2 chemical shifts into two distinct distributions. The comprehensive understanding of the structure and solvation interactions of TPB provides essential insights into its application in the radiofluorination reactions of cromolyn derivatives and holds promise for the future development of radiolabeled dimeric drugs.
Collapse
Affiliation(s)
- Zelin Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
16
|
Lin S, Wang X, Tang RWL, Duan R, Leung KW, Dong TTX, Webb SE, Miller AL, Tsim KWK. Computational Docking as a Tool in Guiding the Drug Design of Rutaecarpine Derivatives as Potential SARS-CoV-2 Inhibitors. Molecules 2024; 29:2636. [PMID: 38893512 PMCID: PMC11173897 DOI: 10.3390/molecules29112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.
Collapse
Affiliation(s)
- Shengying Lin
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyang Wang
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roy Wai-Lun Tang
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Duan
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Wing Leung
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tina Ting-Xia Dong
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sarah E. Webb
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew L. Miller
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
18
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
19
|
Schmitz B, Frieg B, Homeyer N, Jessen G, Gohlke H. Extracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin. Arch Pharm (Weinheim) 2024; 357:e2300612. [PMID: 38319801 DOI: 10.1002/ardp.202300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Fragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.
Collapse
Affiliation(s)
- Birte Schmitz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gisela Jessen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
20
|
Verma AK, Jaiswal G, Sultana KN, Srivastava SK. 'Computational studies on coumestrol-ArlR interaction to target ArlRS signaling cascade involved in MRSA virulence'. J Biomol Struct Dyn 2024; 42:3712-3730. [PMID: 37293938 DOI: 10.1080/07391102.2023.2220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Two component signaling system ArlRS (Autolysis-related locus) regulates adhesion, biofilm formation and virulence in methicillin resistant Staphylococcus aureus. It consists of a histidine kinase ArlS and response regulator ArlR. ArlR is composed of a N-terminal receiver domain and DNA-binding effector domain at C-terminal. ArlR receiver domain dimerizes upon signal recognition and activates DNA binding by effector domain and subsequent virulence expression. In silico simulation and structural data suggest that coumestrol, a phytochemical found in Pueraria montana, forges a strong intermolecular interaction with residues involved in dimer formation and destabilizes ArlR dimerization, an essential conformational switch required for downstream effector domain to bind to virulent loci. Structural and energy profiles of simulated ArlR-coumestrol complexes suggest lower affinity between ArlR monomers due to structural rigidity at the dimer interface hindering the conformational rearrangements relevant for dimer formation. These analyses could be an attractive strategy to develop therapeutics and potent leads molecules response regulators of two component systems in which are involved in MRSA virulence as well as other drug-resistant pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Grijesh Jaiswal
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Kazi Nasrin Sultana
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
21
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 PMCID: PMC11694573 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, MA 02215
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | | | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Acpharis Inc, Holliston, MA 01746
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
22
|
Wilson J, Sokhansanj BA, Chong WC, Chandraghatgi R, Rosen GL, Ji HF. Fragment databases from screened ligands for drug discovery (FDSL-DD). J Mol Graph Model 2024; 127:108669. [PMID: 38011826 DOI: 10.1016/j.jmgm.2023.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Fragment-based drug design (FBDD) is one major drug discovery method employed in computer-aided drug discovery. Due to its inherent limitations, this process experiences long processing times and limited success rates. Here we present a new Fragment Databases from Screened Ligands Drug Design method (FDSL-DD) that intelligently incorporates information about fragment characteristics into a fragment-based design approach to the drug development process. The initial step of the FDSL-DD is the creation of a fragment database from a library of docked, drug-like ligands for a specific target, which deviates from the traditional in silico FBDD strategy, incorporating structure-based design screening techniques to combine the advantages of both approaches. Three different protein targets have been tested in this study to demonstrate the potential of the created fragment library and FDSL-DD. Utilizing the FDSL-DD led to an increase in binding affinity for each protein target. The most substantial increase was exhibited by the ligand designed for TIPE2, with a 3.6 kcalmol-1 difference between the top ligand from the FDSL-DD and top ligand from the high throughput virtual screening (HTVS). Using drug-like ligands in the initial HTVS allows for a greater search of chemical space, with higher efficiency in fragments selection, less grid boxes, and potentially identifying more interactions.
Collapse
Affiliation(s)
- Jerica Wilson
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| | - Bahrad A Sokhansanj
- Ecological and Evolutionary Signal-processing and Informatics Lab, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Wei Chuen Chong
- Ecological and Evolutionary Signal-processing and Informatics Lab, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Rohan Chandraghatgi
- Ecological and Evolutionary Signal-processing and Informatics Lab, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-processing and Informatics Lab, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA.
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Wittlinger F, Ogboo BC, Shevchenko E, Damghani T, Pham CD, Schaeffner IK, Oligny BT, Chitnis SP, Beyett TS, Rasch A, Buckley B, Urul DA, Shaurova T, May EW, Schaefer EM, Eck MJ, Hershberger PA, Poso A, Laufer SA, Heppner DE. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun Chem 2024; 7:38. [PMID: 38378740 PMCID: PMC10879502 DOI: 10.1038/s42004-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brandon T Oligny
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | | | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany.
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
24
|
Verma AK, Srivastava SK. In silico and structural investigation of sulfonamides targeting VraSR two component system in methicillin-resistant Staphylococcus aureus. J Biomol Struct Dyn 2024:1-21. [PMID: 38319034 DOI: 10.1080/07391102.2024.2309679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Drug-resistant Staphylococcus aureus strains are global health concerns. Several studies have shown that these strains can develop defences against cell wall antibiotics such as β-lactams, glycopeptides and daptomycin which target cell wall biosynthesis. The coordination of these responses have been associated with two component system (TCS) regulated by histidine kinase protein (VraS) and its cognate regulator VraR which influences the target DNA upon signal recognition. Computer-based screening methods, predictions and simulations have emerged as more efficient and quick ways to identify promising new compound leads from large databases against emerging drug targets thus allowing prediction of small select set of molecules for further validations. These combined approaches conserve valuable time and resources. Due to methicillin resistance, sulfonamide-derivative medications have been found to be effective treatment strategy to treat S. aureus infections. The current study used ligand-based virtual screening (LBVS) to identify powerful sulfonamide derivative inhibitors from an antibacterial compound library against VraSR signaling components, VraS and VraR. We identified promising sulfonamide derivative [compound 5: (4-[(1-{[(3,5-Dimethoxyphenyl)Carbamoyl]Methyl}-2,4-Dioxo-1,2,3,4-Tetrahydroquinazolin-3-Yl)Methyl]-N-[(Furan-2-Yl)Methyl]Benzamide)] with reasonable binding parameters of -31.38 kJ/mol and ΔGbind score of -294.32 kJ/mol against ATP binding domain of sensor kinase VraS. We further identified four compounds N1 (PCID83276726), N3 (PCID83276757), N9 (PCID3672584), and N10 (PCID20900589) against VraR DNA binding domain (VraRC) with ΔGbind energies of -190.27, -237.54, -165.21, and -190.88 kJ/mol, respectively. Structural and simulation analyses further suggest their stable interactions with DNA interacting residues and potential to disrupt DNA binding domain dimerization; therefore, it is prudent to further investigate and characterize them as VraR dimer disruptors and inhibit other promoter binding site. Interestingly, the discovery of drugs that target VraS and VraR may open new therapeutic avenues for drug-resistant S. aureus. These predictions based on screening, simulations and binding affinities against VraSR components hold promise for opening novel therapeutic avenues against drug-resistant S. aureus and present opportunities for repositioning efforts. These efforts aim to create analogs with enhanced potency and selectivity against two-component signaling systems that significantly contribute to virulence in MRSA or VRSA. These analyses contribute valuable insights into potential avenues for combating antibiotic-resistant S. aureus through computationally driven drug discovery strategies.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
25
|
Ding Y, Xue X. Medicinal Chemistry Strategies for the Modification of Bioactive Natural Products. Molecules 2024; 29:689. [PMID: 38338433 PMCID: PMC10856770 DOI: 10.3390/molecules29030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Natural bioactive compounds are valuable resources for drug discovery due to their diverse and unique structures. However, these compounds often lack optimal drug-like properties. Therefore, structural optimization is a crucial step in the drug development process. By employing medicinal chemistry principles, targeted molecular operations can be applied to natural products while considering their size and complexity. Various strategies, including structural fragmentation, elimination of redundant atoms or groups, and exploration of structure-activity relationships, are utilized. Furthermore, improvements in physicochemical properties, chemical and metabolic stability, biophysical properties, and pharmacokinetic properties are sought after. This article provides a concise analysis of the process of modifying a few marketed drugs as illustrative examples.
Collapse
Affiliation(s)
- Yuyang Ding
- Shenzhen Borui Pharmaceutical Technology Co., Ltd., Shenzhen 518055, China;
| | - Xiaoqian Xue
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Platzer G, Ptaszek AL, Böttcher J, Fuchs JE, Geist L, Braun D, McConnell DB, Konrat R, Sánchez-Murcia PA, Mayer M. Ligand 1 H NMR Chemical Shifts as Accurate Reporters for Protein-Ligand Binding Interfaces in Solution. Chemphyschem 2024; 25:e202300636. [PMID: 37955910 DOI: 10.1002/cphc.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution-state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein-bound ligand 1 H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein-ligand interfaces. By comparing the experimental ligand 1 H chemical shift values with those computed from the X-ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X-ray co-crystal structures resulting in a better agreement with experimental 1 H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1 H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein-ligand ensembles that accurately reproduce solution structural data.
Collapse
Affiliation(s)
- Gerald Platzer
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria
- MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030-, Vienna, Austria
| | - Aleksandra L Ptaszek
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria
- Laboratory for Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University Graz, Neue Stiftingtalstrasse 6/III, 8010-, Graz, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria
| | - Leonhard Geist
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria
| | - Daniel Braun
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030-, Vienna, Austria
| | - Pedro A Sánchez-Murcia
- Laboratory for Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University Graz, Neue Stiftingtalstrasse 6/III, 8010-, Graz, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121-, Vienna, Austria
| |
Collapse
|
27
|
Verma AK, Saxena A, Srivastava SK. Unveiling the Potential of Bergenia Phenolics: Vitexin's Role in Allosteric Modulation of PBP2a as a Strategy against MRSA Resistance. Curr Top Med Chem 2024; 24:2314-2335. [PMID: 39162271 DOI: 10.2174/0115680266312143240805191718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND For cell wall biosynthesis, drug-resistant S. aureus uses a special protein called PBP2a, even when antibiotics are present and stop its natural processes from working. To combat this, novel therapies are required to specifically target PBP2a with greater efficacy. METHODS Using computational approaches, we screened nine phenolic compounds from other Bergenia species, including Bergenia ciliata, Begenia ligulata, Bergenia purpurascens, and Bergenia stracheyi, against the PBP2a allosteric site to explore the potential interaction between phenolic compounds and a specific region of PBP2a known as the allosteric site. RESULTS Based on interaction patterns and estimated affinity, vitexin has been found to be the most prominent phenolic compound. We performed MD simulations on vitexin and ceftazidime as control molecules based on the docking results. The binding free energy estimates of vitexin (-94.48 +/- 17.92 kJ/mol) using MM/PBSA were lower than those of the control (-67.61 +/- 12.29 kJ/mol), which suggests that vitexin may be able to inhibit PBP2a activity in MRSA. CONCLUSION It has been intriguing to observe a correlation between the affinity of the lead vitexin at the allosteric site and the modification of Tyr446, the active site gatekeeper residue in PBP2a. Our findings have implied that lead vitexin can either directly or indirectly decrease PBP2a activity by inducing allosteric site change in conventional medicine.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Anshulika Saxena
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| |
Collapse
|
28
|
Zang J, Peters F, Cambet Y, Cifuentes-Pagano E, Hissabu MMS, Dustin CM, Svensson LH, Olesen MM, Poulsen MFL, Jacobsen S, Tuelung PS, Narayanan D, Langkilde AE, Gajhede M, Pagano PJ, Jaquet V, Vilhardt F, Bach A. Targeting NOX2 with Bivalent Small-Molecule p47phox-p22phox Inhibitors. J Med Chem 2023; 66:14963-15005. [PMID: 37857466 DOI: 10.1021/acs.jmedchem.3c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) is an enzymatic complex whose function is the regulated generation of reactive oxygen species (ROS). NOX2 activity is central to redox signaling events and antibacterial response, but excessive ROS production by NOX2 leads to oxidative stress and inflammation in a range of diseases. The protein-protein interaction between the NOX2 subunits p47phox and p22phox is essential for NOX2 activation, thus p47phox is a potential drug target. Previously, we identified 2-aminoquinoline as a fragment hit toward p47phoxSH3A-B and converted it to a bivalent small-molecule p47phox-p22phox inhibitor (Ki = 20 μM). Here, we systematically optimized the bivalent compounds by exploring linker types and positioning as well as substituents on the 2-aminoquinoline part and characterized the bivalent binding mode with biophysical methods. We identified several compounds with submicromolar binding affinities and cellular activity and thereby demonstrated that p47phox can be targeted by potent small molecules.
Collapse
Affiliation(s)
- Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Felix Peters
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yves Cambet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Munira Mohamed Shishay Hissabu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Lars Henrik Svensson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martin Mariboe Olesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mathias Feldt Lomholt Poulsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stig Jacobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacology and ChemicalBiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Vincent Jaquet
- READS unit, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva CH-1211, Switzerland
| | - Frederik Vilhardt
- Institute of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
30
|
Heppner D, Wittlinger F, Ogboo B, Shevchenko E, Damghani T, Pham C, Schaeffner I, Oligny B, Chitnis S, Beyett T, Rasch A, Buckley B, Urul D, Shaurova T, May E, Schaefer E, Eck M, Hershberger P, Poso A, Laufer S. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3286949. [PMID: 37790373 PMCID: PMC10543509 DOI: 10.21203/rs.3.rs-3286949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The reengineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Eck
- Dana-Farber Cancer Institute & Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School
| | | | | | | |
Collapse
|
31
|
Mirzakhani M, Naseri S, Egger C, Rosspeintner A, Nozary H, Piguet C. Rational Loading of Linear Multi-Site Receptors with Functional Lanthanide Containers: The Missing Link between Oligomers and Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303721. [PMID: 37208800 DOI: 10.1002/smll.202303721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Although metal-containing organic polymers are becoming essential for modern applications in lighting, catalysis, and electronic devices, very little is known about their controlled metallic loading, which mainly limits their design to empirical mixing followed by characterization and often hampers rational developments. Focusing on the appealing optical and magnetic properties of 4f-block cations, the host-guest reactions leading to linear lanthanidopolymers already display some unexpected dependence of the binding-site affinities on the length of the organic polymer backbone: a drift usually, and erroneously, assigned to intersite cooperativity. Taking advantage of the parameters obtained for the stepwise thermodynamic loading of a series of rigid linear multi-tridentate organic receptors with increasing length, N = 1 (monomer L1), N = 2 (dimer L2), and N = 3 (trimer L3), with [Ln(hfa)3] containers in solution (Ln = trivalent lanthanide cations, hfa- = 1,1,1,5,5,5-hexafluoro-pentane-2,4-dione anion), it is demonstrated here that the site-binding model, based on the Potts-Ising approach, successfully predicts the binding properties of the novel soluble polymer P2N made up of nine successive binding units . An in-depth examination of the photophysical properties of these lanthanidopolymers shows impressive UV→vis downshifting quantum yields for the europium-based red luminescence, which can be modulated by the length of the polymeric chain.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, Geneva 4, CH-1211, Switzerland
| |
Collapse
|
32
|
Johnson SN, Brucks SD, Apley KD, Farrell MP, Berkland CJ. Multivalent Scaffolds to Promote B cell Tolerance. Mol Pharm 2023; 20:3741-3756. [PMID: 37410969 DOI: 10.1021/acs.molpharmaceut.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.
Collapse
Affiliation(s)
- Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Spencer D Brucks
- Department of Chemistry, Harvey Mudd College, Claremont, California 91711, United States
| | - Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
33
|
Miao Y, Guo X, Zhu K, Zhao W. Biomolecular condensates tunes immune signaling at the Host-Pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102374. [PMID: 37148673 DOI: 10.1016/j.pbi.2023.102374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
Membraneless organelles participate in diverse spatiotemporal regulation of cellular signal transduction by recruiting necessary signaling factors. During host-pathogen interactions, the plasma membrane (PM) at the interface between the plant and microbes serves as a central platform for forming multicomponent immune signaling hubs. The macromolecular condensation of the immune complex and regulators is important in regulating immune signaling outputs regarding strength, timing, and crosstalk between signaling pathways. This review discusses mechanisms that regulate specific and crosstalk of plant immune signal transduction pathways through macromolecular assembly and condensation.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore.
| | - Xiangfu Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kexin Zhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
34
|
Cristobal J, Nagorski RW, Richard JP. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces. Biochemistry 2023; 62:2314-2324. [PMID: 37463347 PMCID: PMC10399567 DOI: 10.1021/acs.biochem.3c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Richard W. Nagorski
- Department
of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
35
|
Grenier D, Audebert S, Preto J, Guichou JF, Krimm I. Linkers in fragment-based drug design: an overview of the literature. Expert Opin Drug Discov 2023; 18:987-1009. [PMID: 37466331 DOI: 10.1080/17460441.2023.2234285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION In fragment-based drug design, fragment linking is a popular strategy where two fragments binding to different sub-pockets of a target are linked together. This attractive method remains challenging especially due to the design of ideal linkers. AREAS COVERED The authors review the types of linkers and chemical reactions commonly used to the synthesis of linkers, including those utilized in protein-templated fragment self-assembly, where fragments are directly linked in the presence of the protein. Finally, they detail computational workflows and software including generative models that have been developed for fragment linking. EXPERT OPINION The authors believe that fragment linking offers key advantages for compound design, particularly for the design of bivalent inhibitors linking two distinct pockets of the same or different subunits. On the other hand, more studies are needed to increase the potential of protein-templated approaches in FBDD. Important computational tools such as structure-based de novo software are emerging to select suitable linkers. Fragment linking will undoubtedly benefit from developments in computational approaches and machine learning models.
Collapse
Affiliation(s)
- Dylan Grenier
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Solène Audebert
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jordane Preto
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Isabelle Krimm
- Team Small Molecules for Biological Targets, Centre de Recherche En Cancérologie (CRCL) - INSERM 1052 - CNRS 5286 - Centre Léon Bérard - Université Claude Bernard Lyon 1, Institut Convergence Plascan, Lyon, France
| |
Collapse
|
36
|
Abstract
Although fragment-based drug discovery (FBDD) has been successfully implemented and well-explored for protein targets, its feasibility for RNA targets is emerging. Despite the challenges associated with the selective targeting of RNA, efforts to integrate known methods of RNA binder discovery with fragment-based approaches have been fruitful, as a few bioactive ligands have been identified. Here, we review various fragment-based approaches implemented for RNA targets and provide insights into experimental design and outcomes to guide future work in the area. Indeed, investigations surrounding the molecular recognition of RNA by fragments address rather important questions such as the limits of molecular weight that confer selective binding and the physicochemical properties favorable for RNA binding and bioactivity.
Collapse
Affiliation(s)
- Blessy M. Suresh
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
37
|
Brandão TAS, Vieira LA, de Araújo SS, Nagem RAP. Probing the mechanism of flavin action in the oxidative decarboxylation catalyzed by salicylate hydroxylase. Methods Enzymol 2023; 685:241-277. [PMID: 37245904 DOI: 10.1016/bs.mie.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Salicylate hydroxylase (NahG) is a FAD-dependent monooxygenase in which the reduced flavin activates O2 coupled to the oxidative decarboxylation of salicylate to catechol or uncoupled from substrate oxidation to afford H2O2. This chapter presents different methodologies in equilibrium studies, steady-state kinetics, and identification of reaction products, which were important to understand the SEAr mechanism of catalysis in NahG, the role of the different FAD parts for ligand binding, the extent of uncoupled reaction, and the catalysis of salicylate's oxidative decarboxylation. These features are likely familiar to many other FAD-dependent monooxygenases and offer a potential asset for developing new tools and strategies in catalysis.
Collapse
Affiliation(s)
- Tiago A S Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simara S de Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
38
|
Yang S, Gong W, Zhou T, Sun X, Chen L, Zhou W, Li C. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model. Brief Bioinform 2023:7165253. [PMID: 37193676 DOI: 10.1093/bib/bbad192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Protein-deoxyribonucleic acid (DNA) interactions are important in a variety of biological processes. Accurately predicting protein-DNA binding affinity has been one of the most attractive and challenging issues in computational biology. However, the existing approaches still have much room for improvement. In this work, we propose an ensemble model for Protein-DNA Binding Affinity prediction (emPDBA), which combines six base models with one meta-model. The complexes are classified into four types based on the DNA structure (double-stranded or other forms) and the percentage of interface residues. For each type, emPDBA is trained with the sequence-based, structure-based and energy features from binding partners and complex structures. Through feature selection by the sequential forward selection method, it is found that there do exist considerable differences in the key factors contributing to intermolecular binding affinity. The complex classification is beneficial for the important feature extraction for binding affinity prediction. The performance comparison of our method with other peer ones on the independent testing dataset shows that emPDBA outperforms the state-of-the-art methods with the Pearson correlation coefficient of 0.53 and the mean absolute error of 1.11 kcal/mol. The comprehensive results demonstrate that our method has a good performance for protein-DNA binding affinity prediction. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/emPDBA/.
Collapse
Affiliation(s)
- Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Tong Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
39
|
Cristobal JR, Richard JP. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces. Methods Enzymol 2023; 685:95-126. [PMID: 37245916 PMCID: PMC10251411 DOI: 10.1016/bs.mie.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
40
|
Williford EE, DeAngelo CM, Blake KS, Kumar H, Lam KK, Jones KV, Tolia NH, Dantas G, Wencewicz TA. Structure-Based Design of Bisubstrate Tetracycline Destructase Inhibitors That Block Flavin Redox Cycling. J Med Chem 2023; 66:3917-3933. [PMID: 36877173 PMCID: PMC10099279 DOI: 10.1021/acs.jmedchem.2c01629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Tetracyclines (TCs) are an important class of antibiotics threatened by an emerging new resistance mechanism─enzymatic inactivation. These TC-inactivating enzymes, also known as tetracycline destructases (TDases), inactivate all known TC antibiotics, including drugs of last resort. Combination therapies consisting of a TDase inhibitor and a TC antibiotic represent an attractive strategy for overcoming this type of antibiotic resistance. Here, we report the structure-based design, synthesis, and evaluation of bifunctional TDase inhibitors derived from anhydrotetracycline (aTC). By appending a nicotinamide isostere to the C9 position of the aTC D-ring, we generated bisubstrate TDase inhibitors. The bisubstrate inhibitors have extended interactions with TDases by spanning both the TC and presumed NADPH binding pockets. This simultaneously blocks TC binding and the reduction of FAD by NADPH while "locking" TDases in an unproductive FAD "out" conformation.
Collapse
Affiliation(s)
- Emily E. Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Caitlin M. DeAngelo
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S. Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4513 Clayton Ave., St. Louis, MO, 63108, USA
| | - Hirdesh Kumar
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, BG 29B Rm 4NN08, Bethesda, MD, 20814, USA
| | - Kendrick K. Lam
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Katherine V. Jones
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Niraj H. Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, BG 29B Rm 4NN08, Bethesda, MD, 20814, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4513 Clayton Ave., St. Louis, MO, 63108, USA
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
41
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
42
|
Shaw GX, Fan L, Cherry S, Shi G, Tropea JE, Ji X. Structure of Helicobacter pylori dihydroneopterin aldolase suggests a fragment-based strategy for isozyme-specific inhibitor design. Curr Res Struct Biol 2023; 5:100095. [PMID: 36820301 PMCID: PMC9937910 DOI: 10.1016/j.crstbi.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Dihydroneopterin aldolase (DHNA) is essential for folate biosynthesis in microorganisms. Without a counterpart in mammals, DHNA is an attractive target for antimicrobial agents. Helicobacter pylori infection occurs in human stomach of over 50% of the world population, but first-line therapies for the infection are facing rapidly increasing resistance. Novel antibiotics are urgently needed, toward which structural information on potential targets is critical. We have determined the crystal structure of H. pylori DHNA (HpDHNA) in complex with a pterin molecule (HpDHNA:Pterin) at 1.49-Å resolution. The HpDHNA:Pterin complex forms a tetramer in crystal. The tetramer is also observed in solution by dynamic light scattering and confirmed by small-angle X-ray scattering. To date, all but one reported DHNA structures are octameric complexes. As the only exception, ligand-free Mycobacterium tuberculosis DHNA (apo-MtDHNA) forms a tetramer in crystal, but its active sites are only partially formed. In contrast, the tetrameric HpDHNA:Pterin complex has well-formed active sites. Each active site accommodates one pterin molecule, but the exit of active site is blocked by two amino acid residues exhibiting a contact distance of 5.2 Å. In contrast, the corresponding contact distance in Staphylococcus aureus DHNA (SaDHNA) is twice the size, ranging from 9.8 to 10.5 Å, for ligand-free enzyme, the substrate complex, the product complex, and an inhibitor complex. This large contact distance indicates that the active site of SaDHNA is wide open. We propose that this isozyme-specific contact distance (ISCD) is a characteristic feature of DHNA active site. Comparative analysis of HpDHNA and SaDHNA structures suggests a fragment-based strategy for the development of isozyme-specific inhibitors.
Collapse
Key Words
- ANL, Argonne National Laboratory
- APS, Advanced Photon Source
- Antibiotic
- DHFS, dihydrofolate synthase
- DHNA, dihydroneopterin aldolase
- DHNP, 7,8-dihydroneopterin
- DHPS, dihydropteroate synthase
- DLS, dynamic light scattering
- Dihydroneopterin aldolase
- Dmax, maximum dimension
- EcDHNA, Escherichia coli DHNA
- FBDD, fragment-based drug discovery
- Folate biosynthesis
- Fragment-based drug discovery
- GA, glycoaldehyde
- HP, 6-hydroxymethyl-7,8-dihydropterin
- HPPK, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase
- Helicobacter pylori
- HpDHNA, Helicobacter pylori DHNA
- ISCD, isozyme-specific contact distance
- MW, molecular weight
- MtDHNA, Mycobacterium tuberculosis DHNA
- NP, neopterin
- P(r), pair-distance distribution function
- PCR, polymerase chain reaction
- Rg, radius of gyration
- SAXS, small-angle X-ray scattering
- SER-CAT, Southeast Regional Collaborative Access Team
- SaDHNA, Staphylococcus aureus DHNA
- SpDHNA, Streptococcus pneumoniae DHNA
- TCEP, tris(2-carboxyethyl)phosphine
- TEV, tobacco etch virus
- wwPDB, Worldwide Protein Data Bank
Collapse
Affiliation(s)
- Gary X. Shaw
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Lixin Fan
- Basic Research Program, Frederick National Laboratory for Cancer Research, Small-angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Scott Cherry
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Genbin Shi
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Joseph E. Tropea
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Xinhua Ji
- Center for Structural Biology, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD, 21702, USA
- Corresponding author. 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
43
|
Cetin E, Atilgan AR, Atilgan C. DHFR Mutants Modulate Their Synchronized Dynamics with the Substrate by Shifting Hydrogen Bond Occupancies. J Chem Inf Model 2022; 62:6715-6726. [PMID: 35984987 PMCID: PMC9795552 DOI: 10.1021/acs.jcim.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibiotic resistance is a global health problem in which mutations occurring in functional proteins render drugs ineffective. The working mechanisms of the arising mutants are seldom apparent; a methodology to decipher these mechanisms systematically would render devising therapies to control the arising mutational pathways possible. Here we utilize Cα-Cβ bond vector relaxations obtained from moderate length MD trajectories to determine conduits for functionality of the resistance conferring mutants of Escherichia coli dihydrofolate reductase. We find that the whole enzyme is synchronized to the motions of the substrate, irrespective of the mutation introducing gain-of-function or loss-of function. The total coordination of the motions suggests changes in the hydrogen bond dynamics with respect to the wild type as a possible route to determine and classify the mode-of-action of individual mutants. As a result, nine trimethoprim-resistant point mutations arising frequently in evolution experiments are categorized. One group of mutants that display the largest occurrence (L28R, W30G) work directly by modifying the dihydrofolate binding region. Conversely, W30R works indirectly by the formation of the E139-R30 salt bridge which releases energy resulting from tight binding by distorting the binding cavity. A third group (D27E, F153S, I94L) arising as single, resistance invoking mutants in evolution experiment trajectories allosterically and dynamically affects a hydrogen bonding motif formed at residues 59-69-71 which in turn modifies the binding site dynamics. The final group (I5F, A26T, R98P) consists of those mutants that have properties most similar to the wild type; these only appear after one of the other mutants is fixed on the protein structure and therefore display clear epistasis. Thus, we show that the binding event is governed by the entire enzyme dynamics while the binding site residues play gating roles. The adjustments made in the total enzyme in response to point mutations are what make quantifying and pinpointing their effect a hard problem. Here, we show that hydrogen bond dynamics recorded on sub-μs time scales provide the necessary fingerprints to decipher the various mechanisms at play.
Collapse
|
44
|
Fernandez P, Richard JP. Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites. Biochemistry 2022; 61:2766-2775. [PMID: 36413937 PMCID: PMC9731266 DOI: 10.1021/acs.biochem.2c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol-1 to the total ≥14.7 kcal mol-1 adenosine stabilization of the transition state for AK-catalyzed phosphoryl transfer to AMP. The relative third-order rate constants for activation of adenylate kinase, by the C-5 truncated adenosine 1-(β-d-erythrofuranosyl)adenine (EA), for catalysis of phosphoryl transfer from ATP to phosphite dianion (HP, kcat/KHPKAct = 260 M-2 s-1), fluorophosphate (47 M-2 s-1), and phosphate (9.6 M-2 s-1), show that substitution of -F for -H and of -OH for -H at HP results, respectively, in decreases in the reactivity of AK for catalysis of phosphoryl transfer due to polar and steric effects of the -F and -OH substituents. The addition of a 5'-CH2OH to the EA activator results in a 3.0 kcal mol-1 destabilization of the transition state for AK-activated phosphoryl transfer to HP due to a steric effect. This is smaller than the 8.3 kcal mol-1 steric effect of the 5'-CH2OH substituent at OMP on HP-activated OMPDC-catalyzed decarboxylation of 1-(β-d-erythrofuranosyl)orotate. The 2'-OH ribosyl substituent shows significant interactions with the transition states for AK-catalyzed phosphoryl transfer from ATP to AMP and for adenosine-activated AK-catalyzed phosphoryl transfer from ATP to HP.
Collapse
Affiliation(s)
- Patrick
L. Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| |
Collapse
|
45
|
Morris DP, Snipes LC, Hill SA, Woods MM, Mbugua MM, Wade LR, McMurry JL. A reversible cell penetrating peptide-cargo linkage allows dissection of cell penetrating peptide- and cargo-dependent effects on internalization and identifies new functionalities of putative endolytic peptides. Front Pharmacol 2022; 13:1070464. [PMID: 36479201 PMCID: PMC9720253 DOI: 10.3389/fphar.2022.1070464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Cell penetrating peptides (CPPs) are a promising technology for therapeutic delivery of macromolecular cargos. CPPs have generally used covalent linkages to cargo, ensuring a common fate as one molecule. Conversely, our CPP-adaptor, TAT-CaM, noncovalently binds calmodulin binding sequence (CBS)-containing cargos in calcium rich media then dissociates in the calcium-poor endosomal environment following internalization, enhancing endosomal escape relative to standard CPPs. In this study, we report cell entry of positively charged protein cargos that were not increased by TAT-CaM while cargos based on the negatively charged maltose binding protein (MBP) displayed little intrinsic internalization but were internalized by TAT-CaM. In addition, association of positively charged proteins with negatively charged nucleic acids reduced internalization. This evidence points to the dominant role cargo charge plays in apparent CPP effectiveness. There has been little systematic investigation as to how interaction between CPPs and cargos impacts internalization efficiency. Our adaptors provide a tool that allows combinatorial assays to detect emergent properties. Toward this end we added 4 endolytic peptide (EP) sequences between cargo CBS and MBP moieties to create 4 new cargos and between TAT and CaM to create 4 new adaptors. The new cargos were assayed for internalization alone and with a panel of CPP-adaptors to identify combinations that displayed increased internalization efficiency or other properties. Among the most important results, addition of the EP LAH4 improved adaptor performance and provided some CPP capability to cargos. MBP-LAH4-CBS was internalized more effectively by most adaptors, suggesting this sequence has general stimulatory ability. Two other EPs, Aurein 1.2 and HA2, also provided some CPP capability to their MBP cargos but were unexpectedly antagonistic to internalization by most adaptors due to retention of adaptor/cargo complexes on the cell surface. We thus identified LAH4 as stimulator of internalization in both adaptors and cargos and uncovered new functionality for Aurein 1.2 and HA2, which may be related to their identification as EPs. Future experiments will test new endolytic capabilities made possible with combinatorial approaches.
Collapse
|
46
|
Weidenbacher PAB, Waltari E, de Los Rios Kobara I, Bell BN, Morris MK, Cheng YC, Hanson C, Pak JE, Kim PS. Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nat Chem Biol 2022; 18:1270-1276. [PMID: 36076082 PMCID: PMC9596371 DOI: 10.1038/s41589-022-01140-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023]
Abstract
Omicron and its subvariants have rendered most authorized monoclonal antibody-based treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ineffective, highlighting the need for biologics capable of overcoming SARS-CoV-2 evolution. These mostly ineffective antibodies target variable epitopes. Here we describe broad-spectrum SARS-CoV-2 inhibitors developed by tethering the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), to known non-neutralizing antibodies that target highly conserved epitopes in the viral spike protein. These inhibitors, called receptor-blocking conserved non-neutralizing antibodies (ReconnAbs), potently neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron. Neutralization potency is lost when the linker joining the binding and inhibitory ReconnAb components is severed. In addition, a bi-functional ReconnAb, made by linking ACE2 to a bi-specific antibody targeting two non-overlapping conserved epitopes, defined here, shows sub-nanomolar neutralizing activity against all VOCs, including Omicron and BA.2. Given their conserved targets and modular nature, ReconnAbs have the potential to act as broad-spectrum therapeutics against SARS-CoV-2 and other emerging pandemic diseases.
Collapse
Affiliation(s)
- Payton A-B Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | | | - Benjamin N Bell
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ya-Chen Cheng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Carl Hanson
- California Department of Public Health, Richmond, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
47
|
Bon M, Bilsland A, Bower J, McAulay K. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol Oncol 2022; 16:3761-3777. [PMID: 35749608 PMCID: PMC9627785 DOI: 10.1002/1878-0261.13277] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is now established as a complementary approach to high-throughput screening (HTS). Contrary to HTS, where large libraries of drug-like molecules are screened, FBDD screens involve smaller and less complex molecules which, despite a low affinity to protein targets, display more 'atom-efficient' binding interactions than larger molecules. Fragment hits can, therefore, serve as a more efficient start point for subsequent optimisation, particularly for hard-to-drug targets. Since the number of possible molecules increases exponentially with molecular size, small fragment libraries allow for a proportionately greater coverage of their respective 'chemical space' compared with larger HTS libraries comprising larger molecules. However, good library design is essential to ensure optimal chemical and pharmacophore diversity, molecular complexity, and physicochemical characteristics. In this review, we describe our views on fragment library design, and on what constitutes a good fragment from a medicinal and computational chemistry perspective. We highlight emerging chemical and computational technologies in FBDD and discuss strategies for optimising fragment hits. The impact of novel FBDD approaches is already being felt, with the recent approval of the covalent KRASG12C inhibitor sotorasib highlighting the utility of FBDD against targets that were long considered undruggable.
Collapse
Affiliation(s)
- Marta Bon
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Alan Bilsland
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Justin Bower
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Kirsten McAulay
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| |
Collapse
|
48
|
Kenny PW. Hydrogen-Bond Donors in Drug Design. J Med Chem 2022; 65:14261-14275. [DOI: 10.1021/acs.jmedchem.2c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter W. Kenny
- Berwick-on-Sea, North Coast Road, Blanchisseuse, Saint George, Trinidad and Tobago
| |
Collapse
|
49
|
Deactivatable Bisubstrate Inhibitors of Protein Kinases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196689. [PMID: 36235226 PMCID: PMC9573699 DOI: 10.3390/molecules27196689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Bivalent ligands, including bisubstrate inhibitors, are conjugates of pharmacophores, which simultaneously target two binding sites of the biomolecule. Such structures offer attainable means for the development of compounds whose ability to bind to the biological target could be modulated by an external trigger. In the present work, two deactivatable bisubstrate inhibitors of basophilic protein kinases (PKs) were constructed by conjugating the pharmacophores via linkers that could be cleaved in response to external stimuli. The inhibitor ARC-2121 incorporated a photocleavable nitrodibenzofuran-comprising β-amino acid residue in the structure of the linker. The pharmacophores of the other deactivatable inhibitor ARC-2194 were conjugated via reduction-cleavable disulfide bond. The disassembly of the inhibitors was monitored by HPLC-MS. The affinity and inhibitory potency of the inhibitors toward cAMP-dependent PK (PKAcα) were established by an equilibrium competitive displacement assay and enzyme activity assay, respectively. The deactivatable inhibitors possessed remarkably high 1-2-picomolar affinity toward PKAcα. Irradiation of ARC-2121 with 365 nm UV radiation led to reaction products possessing a 30-fold reduced affinity. The chemical reduction of ARC-2194 resulted in the decrease of affinity of over four orders of magnitude. The deactivatable inhibitors of PKs are valuable tools for the temporal inhibition or capture of these pharmacologically important enzymes.
Collapse
|
50
|
Furka Á. Forty years of combinatorial technology. Drug Discov Today 2022; 27:103308. [PMID: 35760283 DOI: 10.1016/j.drudis.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Combinatorial technology has been facilitating the synthesis and screening of large molecular libraries containing millions of organic compounds ever since its introduction 40 years ago. It has changed the paradigms of pharmaceutical research from focusing on single compounds to focusing on immense collections of compounds. It inspired the development of dynamic combinatorial libraries, fragment-based drug discovery and virtual library screening. Combinatorial technology was revitalized by the development of DNA encoding. Amplification of DNA oligomers plus next-generation sequencing has made it possible to successfully screen billions of compounds in a single process.
Collapse
Affiliation(s)
- Árpád Furka
- Eötvös Loránd University Budapest Hungary, 1077 Rozsa u. 23-25, Budapest, Hungary.
| |
Collapse
|