1
|
Gaietta G, Swift MF, Volkmann N, Hanein D. Rapid tool for cell nanoarchitecture integrity assessment. J Struct Biol 2021; 213:107801. [PMID: 34582983 PMCID: PMC8665072 DOI: 10.1016/j.jsb.2021.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
With the rapid increase and accessibility of high-resolution imaging technologies of cells, the interpretation of results relies more and more on the assumption that the three-dimensional integrity of the surrounding cellular landscape is not compromised by the experimental setup. However, the only available technology for directly probing the structural integrity of whole-cell preparations at the nanoscale is electron cryo-tomography, which is time-consuming, costly, and complex. We devised an accessible, inexpensive and reliable screening assay to quickly report on the compatibility of experimental protocols with preserving the structural integrity of whole-cell preparations at the nanoscale. Our Rapid Cell Integrity Assessment (RCIA) assay is executed at room temperature and relies solely on light microscopy imaging. Using cellular electron cryo-tomography as a benchmark, we verify that RCIA accurately unveils the adverse impact of reagents and/or protocols such as those used for virus inactivation or to arrest dynamic processes on the cellular nanoarchitecture.
Collapse
Affiliation(s)
| | | | - Niels Volkmann
- Scintillon Institute, San Diego CA 92123, USA; Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, F-75015 Paris, France
| | - Dorit Hanein
- Scintillon Institute, San Diego CA 92123, USA; Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France.
| |
Collapse
|
2
|
Gu C, Lee HW, Garborcauskas G, Reiser J, Gupta V, Sever S. Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation. J Am Soc Nephrol 2016; 28:446-451. [PMID: 27432739 DOI: 10.1681/asn.2016010008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Rho family GTPases, the prototypical members of which are Cdc42, Rac1, and RhoA, are molecular switches best known for regulating the actin cytoskeleton. In addition to the canonical small GTPases, the large GTPase dynamin has been implicated in regulating the actin cytoskeleton via direct dynamin-actin interactions. The physiologic role of dynamin in regulating the actin cytoskeleton has been linked to the maintenance of the kidney filtration barrier. Additionally, the small molecule Bis-T-23, which promotes actin-dependent dynamin oligomerization and thus, increases actin polymerization, improved renal health in diverse models of CKD, implicating dynamin as a potential therapeutic target for the treatment of CKD. Here, we show that treating cultured mouse podocytes with Bis-T-23 promoted stress fiber formation and focal adhesion maturation in a dynamin-dependent manner. Furthermore, Bis-T-23 induced the formation of focal adhesions and stress fibers in cells in which the RhoA signaling pathway was downregulated by multiple experimental approaches. Our study suggests that dynamin regulates focal adhesion maturation by a mechanism parallel to and synergistic with the RhoA signaling pathway. Identification of dynamin as one of the essential and autonomous regulators of focal adhesion maturation suggests a molecular mechanism that underlies the beneficial effect of Bis-T-23 on podocyte physiology.
Collapse
Affiliation(s)
- Changkyu Gu
- Department of Medicine, Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Ha Won Lee
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Garrett Garborcauskas
- Department of Medicine, Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts; and
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanja Sever
- Department of Medicine, Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts; and
| |
Collapse
|
3
|
Clark AJ, Coury EL, Meilhac AM, Petty HR. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo. NANOTECHNOLOGY 2016; 27:065101. [PMID: 26683660 DOI: 10.1088/0957-4484/27/6/065101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte's functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye's anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.
Collapse
Affiliation(s)
- Andrea J Clark
- Department of Ophthalmology and Visual Sciences, 1000 Wall Street, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
4
|
Tompa P. Hydrogel formation by multivalent IDPs: A reincarnation of the microtrabecular lattice? INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24068. [PMID: 28516006 PMCID: PMC5424804 DOI: 10.4161/idp.24068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 02/03/2023]
Abstract
Based on high-voltage electron microscopic (HVEM) data of fixed cultured cells, an elaborate three-dimensional network of filaments, including and interconnecting other elements of the cytoskeleton, was observed in cells some half a century ago. Despite many attempts and comparative studies, this “microtrabecular lattice” (MTL) of the cytoplasmic ground substance could not be established as a genuine component of the eukaryotic cell, and is mostly considered today as a sample-preparation artifact of protein adherence and cross-linking to the cytoskeleton. Here we elaborate on the provocative idea that recent observations of hydrogel-forming phase transitions of repetitive regions of intrinsically disordered proteins (IDPs) bear resemblance in creation, organization and physical appearance to the MTL. We review this phenomenon in detail, and suggest that phase transitions of actin regulatory proteins, neurofilament side-arms and other proteins could generate non-uniform spatial distribution of cytoplasmic material in the vicinity of the cytoskeleton that might even give rise to fixation phenomena resembling the MTL. Whether such hydrogel formation by IDPs is a general physical phenomenon, will remain to be seen, nevertheless, the underlying organizational principle provokes novel experimental studies to uncover the ensuing higher-level regulation of cell physiology, in which the despised and long-forgotten concept of MTL might give some interesting leads.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium.,Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| |
Collapse
|
5
|
Mills DR, Rozich RA, Flanagan DL, Brilliant KE, Yang D, Hixson DC. The cholangiocyte marker, BD. 1, forms a stable complex with CLIP170 and shares an identity with eIF3a, a multifunctional subunit of the eIF3 initiation complex. Exp Mol Pathol 2012; 93:250-60. [PMID: 22613460 DOI: 10.1016/j.yexmp.2012.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 11/26/2022]
Abstract
We have previously described the generation of a monoclonal antibody recognizing a novel cholangiocyte marker, designated BD.1, that is expressed by fetal and adult rat cholangiocytes but not hepatocytes or the hepatic progenitor cells known as oval cells. In the present report, we have undertaken a comprehensive examination of BD.1 expressed by long-term cultures of bile duct epithelial cells (BDEC) and prostate epithelial cells (PEC). We show that with continued passage, the levels of BD.1 expressed by BDEC and PEC drop significantly, a decrease that is temporally associated with transition from a diploid to an aneuploid karyotype. Cell cycle analysis revealed cell cycle dependent expression of BD.1 characterized by decreased BD.1 levels within the first 10 h after release from serum starvation followed by reacquisition as cells entered S phase. MAb BD.1 recognized a 170 kDa protein in Western blots and showed strong reactivity with a 170 kDa band in blots prepared from phosphoproteins isolated by metal affinity chromatography. Analysis by mass spectrometry of tryptic peptides generated from BD.1 purified by continuous elution electrophoresis identified the plus end microtubule-binding protein, CLIP170, in the fraction reactive with MAb BD.1. Double immunofluorescence with MAb BD.1 and a MAb specific for CLIP170 showed that both were reactive with intrahepatic bile ducts. However, overexpression or siRNA knockdown of CLIP170 in 293T cells did not significantly alter BD.1 levels, indicating that CLIP170 and BD.1 were distinct, co-migrating proteins. Immunoprecipitation analysis with MAb BD.1 and anti-CLIP170 antibodies showed that under microtubule depolymerizing conditions the two proteins could be co-precipitated with both antibodies, leading us to conclude they were capable of forming stable complexes. Two different protocols were devised to enrich for the CLIP170 binding protein recognized by MAb BD.1. Analysis of tryptic peptides by LC-ESI-MS/MS identified BD.1 as eIF3a, the largest subunit of the elongation initiation factor 3 (eIF3) complex. This identity was confirmed by the simultaneous knockdown of both BD.1 and eIF3a by eIF3a-specific siRNAs and by the strong reactivity of MAb BD.1 with the 170 kDa protein immunoprecipitated with the anti-eIF3a antibody, 5H10. Based on these findings, we concluded that the BD.1 antigen was identical to eIF3a, a multifunctional subunit of the eIf3 complex shown here to associate with microtubules through its interactions with CLIP170.
Collapse
Affiliation(s)
- David R Mills
- Department of Medicine, Division of Hematology and Oncology, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Hawes CR, Horne JC. Polyethylene glycol embedding of plant tissues for transmission electron microscopy. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1985.tb02559.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Wilkes RP, Athanasiou KA. The Intrinsic Incompressibility of Osteoblast-like Cells. ACTA ACUST UNITED AC 2011; 2:167-81. [PMID: 19877940 DOI: 10.1089/ten.1996.2.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper presents a new methodology, apparatus design, and the experimental results of ongoing research into the measurement of the mechanical properties of musculoskeletal tissue at the cellular level. A microchamber was constructed that provides a controlled hydrostatic pressure environment for these cells where optical sectioning, via epifluorescence microscopy, was used to acquire volume information about the individual cell. The microchamber was integrated into a hydraulic system that, via computer control, provided a regulated adjustable hydrostatic pressure environment for living cells suspended in culture media. The techniques applied in this study include fluorescent labeling of the cell volume, hydrostatic pressure application, optical sectioning, and digital volume reconstruction. To determine the mechanical response (compressibility) of cultured MG-63 osteoblast-like cells under physiologically high hydrostatic pressures two experiments were devised: In the first experiment changes in volume of 10 cells were measured as the applied hydrostatic pressure was increased from 0 to 7 MPa. Volume changes in response to pressure magnitudes were not significant (p > 0.49). In the second experiment, the mechanical role of the plasma membrane to act as a supportive component in cell compressibility was studied by permeabilizing the membrane of six cells and again applying hydrostatic pressure. Again, no significant volume differences between pressurized and unpressurized cells were found (p > 0.46). A retrospective power analysis of the results of the first and second experiments indicates that the sample size was sufficient. The results of this study show that MG-63 osteoblast-like cells are intrinsically incompressible in the 0-7 MPa hydrostatic pressure range. They also support the hypothesis that the plasma membrane plays an insignificant mechanical role in terms of cell compressibility.
Collapse
Affiliation(s)
- R P Wilkes
- Orthopedic Biomechanics Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7774
| | | |
Collapse
|
8
|
Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J 2010; 29:3593-606. [PMID: 20935625 DOI: 10.1038/emboj.2010.249] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/10/2010] [Indexed: 01/13/2023] Open
Abstract
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.
Collapse
|
9
|
Affiliation(s)
- Matthew G. Stanton
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Steven L. Colletti
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486
| |
Collapse
|
10
|
HEKKING L, LEBBINK M, DE WINTER D, SCHNEIJDENBERG C, BRAND C, HUMBEL B, VERKLEIJ A, POST J. Focused ion beam-scanning electron microscope: exploring large volumes of atherosclerotic tissue. J Microsc 2009; 235:336-47. [DOI: 10.1111/j.1365-2818.2009.03274.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Fels J, Orlov SN, Grygorczyk R. The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 2009; 96:4276-85. [PMID: 19450498 DOI: 10.1016/j.bpj.2009.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 02/09/2009] [Accepted: 02/17/2009] [Indexed: 11/27/2022] Open
Abstract
Cytoplasm is thought to have many hydrogel-like characteristics, including the ability to absorb large amounts of water and change volume in response to alterations in external environment, as well as having limited leakage of ions and proteins. Some gel-like behaviors have not been rigorously confirmed in mammalian cells, and others should be examined under conditions where gel volume can be accurately monitored. Thus, possible contributions of cytoplasm hydrogel properties to cellular processes such as volume sensing and regulation remain unclear. We used three-dimensional imaging to measure volume of single substrate-attached cells after permeabilization of their plasma membrane. Permeabilized cells swelled or shrinked reversibly in response to variations of external osmolality. Volume changes were 3.7-fold greater than observed with intact cells, consistent with cytoplasm's high water-absorbing capacity. Volume was maximal at neutral pH and shrunk at acidic or alkaline pH, consistent with pH-dependent changes of protein charge density and repulsive forces within cellular matrix. Volume shrunk with increased Mg(2+) concentration, as expected for increased charge screening and ionic crosslinking effects. Findings demonstrate that mammalian cytoplasm resembles hydrogel and functions as a highly sensitive osmosensor and extracellular pH sensor. Its high water-absorbing capacity may allow rapid modulation of local fluidity, macromolecular crowding, and activity of intracellular environment.
Collapse
Affiliation(s)
- Johannes Fels
- Research Centre, Centre hospitalier de l'Université de Montréal (CHUM), Hôtel-Dieu, Québec, Canada
| | | | | |
Collapse
|
12
|
Discovery of a new RNA-containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol Cell 2009; 101:287-99. [PMID: 18823283 DOI: 10.1042/bc20080076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Treatment of cells with UVC radiation leads to the formation of DNA cross-links which, if not repaired, can lead to apoptosis. gamma-H2AX and cleaved caspase 3 are proteins formed during UVC-induced DNA damage and apoptosis respectively. The present study sets out to identify early morphological markers of apoptosis using a new method of correlative microscopy, ILEM (integrated laser electron microscopy). Cleaved caspase 3 and gamma-H2AX were immunofluorescently labelled to mark the cells of interest. These cells were subsequently searched in the fluorescence mode of the ILEM and further analysed at high resolution with TEM (transmission electron microscopy). RESULTS Following the treatment of HUVECs (human umbilical vein endothelial cells) with UVC radiation, in the majority of the cells gamma-H2AX was formed, whereas only in a subset of cells caspase 3 was activated. In severely damaged cells with high levels of gamma-H2AX a round, electron-dense nuclear structure was found, which was hitherto not identified in UV-stressed cells. This structure exists only in nuclei of cells containing cleaved caspase 3 and is present during all stages of the apoptotic process. Energy-loss imaging showed that the nuclear structure accumulates phosphorus, indicating that it is rich in nucleic acids. Because the nuclear structure did not label for DNA and was not affected by regressive EDTA treatment, it is suggested that the UV-induced nuclear structure contains a high amount of RNA. CONCLUSIONS Because the UV-induced nuclear structure was only found in cells labelled for cleaved caspase 3 it is proposed as an electron microscopic marker for all stages of apoptosis. Such a marker will especially facilitate the screening for early apoptotic cells, which lack the well-known hallmarks of apoptosis within a cell population. It also raises new questions on the mechanisms involved in the UV-induced apoptotic pathway.
Collapse
|
13
|
Kondo H. What we have learned and will learn from cell ultrastructure in embedment-free section electron microscopy. Microsc Res Tech 2008; 71:418-42. [PMID: 18286471 DOI: 10.1002/jemt.20572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The limitations inherent in conventional electron microscopy (EM) using epoxy ultrathin sections for a clear recognition of biological entities having electron densities similar to or lower than that of epoxy resin have led to the development of embedment-free sectioning for EM. Embedment-free section EM is reliably performed using water-soluble polyethylene glycol (PEG) as a transient embedding medium, with subsequent de-embedment of PEG by immersion into water, followed by critical point-drying (CPD) of the embedment-free section. The present author has stressed that this approach clearly discloses structures whose contours and/or appearance are accordingly vague and/or fuzzy in conventional EM, but does not reveal any new structures. Based on embedment-free electron microscopy (PEG-EM), this article presents five major findings regarding strand- or microtrabecular lattices which have been clearly revealed to occur in the cytoplasmic matrix-an impossibility with conventional EM. These are (1) the appearance of lattices of different compactness in various cells and in intracellular domains of a given cell; (2) the faithful reproduction from an albumin solution in vitro of strand-lattices with correspondingly increasing compactness following increasing concentrations; (3) the appearance of more compact lattices from gelated gelatin than from solated gelatin at a given concentration in vitro; (4) the appearance of either greater or less lattice-compactness by hyper- or hypotonic pretreatments of cells; and (5) the appearance of certain intracellular proteins confined to the centripetal demilune-domain of centrifuged ganglion cells which is occupied with strand-lattices of a substantial compactness. From these findings, questions now arise as to the biological significance of the individual strand itself in the microtrabecular lattices in PEG-EM. In addition, it may be that the appearance of strand-lattices in a given biological domain represents the presence of soluble proteins; the lattice-compactness indicates the concentration of soluble proteins in the domain, and the aqueous cytoplasm is equivalent to the aqueous solution. Further, the appearance of two contiguous lattice domains exhibiting differing degrees of compactness in a given cell indicates that cytoplasmic proteins are solated in a domain with less compact lattices, whereas they are gelated in the other domain. These proposed interpretations need to be confirmed by further studies. If confirmed, the control mechanisms of the localization and movement of intracellular organelles could then be understood on the basis not only of information about the cytoskeletons but also of cell ultrastructure-related information on the concentration and sol-gel states of intracellular proteins. In addition, possible interpretations of the significance of strand-lattices in PEG-EM are also applicable to the nucleoplasm, especially extra-heterochromatin (euchromatin) areas. Finally, several potential uses/advantages of PEG-EM in the cell-ultrastructure have also been demonstrated, especially in three-dimensional reconstructions of nonmembranous structures including stereo-viewing using a pair of EM images with appropriate tilting as well as electron microscopic tomography.
Collapse
Affiliation(s)
- Hisatake Kondo
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| |
Collapse
|
14
|
Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP. Structural basis of filamin A functions. ACTA ACUST UNITED AC 2007; 179:1011-25. [PMID: 18056414 PMCID: PMC2099194 DOI: 10.1083/jcb.200707073] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Filamin A (FLNa) can effect orthogonal branching of F-actin and bind many cellular constituents. FLNa dimeric subunits have N-terminal spectrin family F-actin binding domains (ABDs) and an elongated flexible segment of 24 immunoglobulin (Ig) repeats. We generated a library of FLNa fragments to examine their F-actin binding to define the structural properties of FLNa that enable its various functions. We find that Ig repeats 9–15 contain an F-actin–binding domain necessary for high avidity F-actin binding. Ig repeats 16–24, where most FLNa-binding partners interact, do not bind F-actin, and thus F-actin does not compete with Ig repeat 23 ligand, FilGAP. Ig repeats 16–24 have a compact structure that suggests their unfolding may accommodate pre-stress–mediated stiffening of F-actin networks, partner binding, mechanosensing, and mechanoprotection properties of FLNa. Our results also establish the orientation of FLNa dimers in F-actin branching. Dimerization, mediated by FLNa Ig repeat 24, accounts for rigid high-angle FLNa/F-actin branching resistant to bending by thermal forces, and high avidity F-actin binding and cross-linking.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Translational Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
15
|
Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ. Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology 2007; 369:309-23. [PMID: 17825340 DOI: 10.1016/j.virol.2007.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/06/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
During respiratory syncytial virus (RSV) infection there is a close physical interaction between the filamentous actin (F-actin) and the virus, involving both inclusion bodies and the virus filaments. This interaction appears to occur relatively early in the replication cycle, and can be detected from 8 h post-infection. Furthermore, during virus assembly we obtained evidence for the participation of an F-actin-associated signalling pathway involving phosphatidyl-3-kinase (PI3K). Treatment with the PI3K inhibitor LY294002 prevented the formation of virus filaments, although no effect was observed either on virus protein expression, or on trafficking of the virus glycoproteins to the cell surface. Inhibition of the activity of Rac GTPase, a down-stream effector of PI3K, by treatment with the Rac-specific inhibitor NSC23766 gave similar results. These data suggest that an intimate interaction occurs between actin and RSV, and that actin-associated signalling pathway, involving PI3K and Rac GTPase, may play an important role during virus assembly.
Collapse
Affiliation(s)
- Chris E Jeffree
- School of Biological Sciences, Daniel Rutherford Building, King's Buildings, Mayfield Road, University of Edinburgh Edinburgh, EH9 3JH, UK
| | | | | | | | | | | |
Collapse
|
16
|
Li B, Chohan MO, Grundke-Iqbal I, Iqbal K. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 2007; 113:501-11. [PMID: 17372746 PMCID: PMC3191942 DOI: 10.1007/s00401-007-0207-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 01/06/2023]
Abstract
Hyperphosphorylated tau has long been proposed as the key molecule disrupting normal neuronal microtubule dynamics and leading to neurofibrillary degeneration in Alzheimer disease. Here we provide a direct evidence of hyperphosphorylated tau-induced disruption of microtubule network. Using Nocodozole-treated and detergent-extracted cells, we created a neuronal environment in mouse embryonic fibroblasts, 3T3 cells, by replacing their cytoplasm with adult rat brain cytosol. By recreating neuronal microtubule network in these cells, we were able to follow the effects of hyperphosphorylated tau on microtubule dynamics in real time. Whereas recombinant human brain tau promoted assembly and bundling of microtubules, abnormally hyperphosphorylated tau isolated from Alzheimer disease brain cytosol (AD P-tau) inhibited the assembly and disrupted preformed microtubule network by sequestering normal brain tau and MAP2. This breakdown of the microtubule network was reversed by treatment of the extracted cells with protein phosphatase-2A. This study, for the first time, provides direct mechanistic insights into the molecular basis of both axonal and dendritic neurodegeneration seen in Alzheimer disease.
Collapse
|
17
|
van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW. Immunogold Labeling of Cryosections from High-Pressure Frozen Cells. Traffic 2007; 8:471-85. [PMID: 17451551 DOI: 10.1111/j.1600-0854.2007.00552.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Immunogold labeling of cryosections according to Tokuyasu (Tokuyasu KT. A technique for ultracyotomy of cell suspensions and tissues. J Cell Biol 1973;57:551-565), is an important and widely used method for immunoelectron microscopy. These sections are cut from material that is chemically fixed at room temperature (room temperature fixation, RTF). Lately in many morphological studies fast freezing followed by cryosubstitution fixation (CSF) is used instead of RTF. We have explored some new methods for applying immunogold labeling on cryosections from high-pressure frozen cells (HepG2 cells, primary chondrocytes) and tissues (cartilage and exocrine pancreas). As immunolabeling has to be carried out on thawed and stable sections, we explored two ways to achieve this: (1) The section fixation method, as briefly reported before (Liou W et al. Histochem Cell Biol 1996;106:41-58 and Möbius W et al. J Histochem Cytochem 2002;50:43-55.) in which cryosections from freshly frozen cells were stabilized in mixtures of sucrose and methyl cellulose and varying concentrations of glutaraldehyde, formaldehyde and uranyl acetate (UA). Only occasionally does this method reveal section areas with excellent cell preservation and negatively stained membranes like Tokuyasu sections of RTF material. (Liou et al.) (2) The rehydration method, a novel approach, in which CSF with glutaraldehyde and/or osmium tetroxide (OsO4) was followed by rehydration and cryosectioning as in the Tokuyasu method. Especially, the addition of UA and low concentrations of water to the CSF medium favored superb membrane contrast. Immunogold labeling was as efficient as with the Tokuyasu method.
Collapse
Affiliation(s)
- Elly van Donselaar
- Department of Cell Biology, Institute of Biomembranes, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Csermely P, Söti C, Blatch GL. Chaperones as parts of cellular networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:55-63. [PMID: 17205675 DOI: 10.1007/978-0-387-39975-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most important interactions between cellular molecules have a high affinity, are unique and specific, and require a network approach for a detailed description. Molecular chaperones usually have many first and second neighbors in protein-protein interaction networks and they play a prominent role in signaling and transcriptional regulatory networks of the cell. Chaperones may uncouple protein, signaling, membranous, organellar and transcriptional networks during stress, which gives an additional protection for the cell at the network-level. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms. This chaperone effect on the emergent properties of cellular networks may be generalized to proteins having a specific, central position and low affinity, weak links in protein networks. Cellular networks are preferentially remodeled in various diseases and aging, which may help us to design novel therapeutic and anti-aging strategies.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Puskin Street 9, H-1 088 Budapest, Hungary.
| | | | | |
Collapse
|
19
|
Waingeh VF, Gustafson CD, Kozliak EI, Lowe SL, Knull HR, Thomasson KA. Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys J 2005; 90:1371-84. [PMID: 16326908 PMCID: PMC1367288 DOI: 10.1529/biophysj.105.070052] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.
Collapse
Affiliation(s)
- Victor F Waingeh
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
21
|
Abstract
Although the role of macromolecular interactions in cell function has attracted considerable attention, important questions about the organization of cells remain. To help clarify this situation, we used a simple protocol that measures macromolecule release after gentle permeabilization for the examination of the status of endogenous macromolecules. Treatment of Chinese hamster ovary cells with saponin under carefully controlled conditions allowed entry of molecules of at least 800 kDa; however, there were minimal effects on internal cellular architecture and protein synthesis remained at levels comparable to those seen with intact cells. Most importantly, total cellular protein and RNA were released from these cells extremely slowly. The release of actin-binding proteins and a variety of individual cytoplasmic proteins mirrored that of total protein, while marker proteins from subcellular compartments were not released. In contrast, glycolytic enzymes leaked rapidly, indicating that cells contain at least two distinct populations of cytoplasmic proteins. Addition of microfilament-disrupting agents led to rapid and extensive release of cytoplasmic macromolecules and a dramatic reduction in protein synthesis. These observations support the conclusion that mammalian cells behave as highly organized, macromolecular assemblies (dependent on the actin cytoskeleton) in which endogenous macromolecules normally are not free to diffuse over large distances.
Collapse
Affiliation(s)
- Alice Hudder
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
22
|
Csermely P, Sőti C, Kalmar E, Papp E, Pato B, Vermes A, Sreedhar AS. Molecular chaperones, evolution and medicine. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.theochem.2003.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Abstract
Protection against oxidative stress is highly interrelated with the function of the most ancient cellular defense system, the network of molecular chaperones, heat shock, or stress-proteins. These ubiquitous, conserved proteins help other proteins and macromolecules to fold or re-fold and reach their final, native conformation. Redox regulation of protein folding becomes especially important during the preparation of extracellular proteins to the outside oxidative milieu, which should take place in a gradual and step-by-step controlled manner in the endoplasmic reticulum or in the periplasm. Several chaperones, such as members of the Hsp33 family in yeast and the plethora of small heat shock proteins as well as one of the major chaperones, Hsp70 are able to act against cytoplasmic oxidative damage. Abrupt changes of cellular redox status lead to chaperone induction. The function of several chaperones is tightly regulated by the surrounding redox conditions. Moreover, our recent data suggest that chaperones may act as a central switchboard for the transmission of redox changes in the life of the cell.
Collapse
Affiliation(s)
- Eszter Papp
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary
| | | | | | | |
Collapse
|
24
|
Söti C, Csermely P. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem Int 2002; 41:383-9. [PMID: 12213225 DOI: 10.1016/s0197-0186(02)00043-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperones are highly conserved proteins responsible for the preservation and repair of the correct conformation of cellular macromolecules, such as proteins, RNAs, etc. Environmental stress leads to chaperone (heat-shock protein, stress protein) induction reflecting the protective role of chaperones as a key factor for cell survival and in repairing cellular damage after stress. The present review summarizes our current knowledge about the chaperone-deficiency in the aging process, as well as the possible involvement of chaperones in neurodegenerative diseases, such as in Alzheimer's, Parkinson's, Huntington- and prion-related diseases. We also summarize a recent theory implying chaperones as "buffers" of variations in the human genome, which role probably increased during the last 200 years of successful medical practice minimizing natural selection. Chaperone-buffered, silent mutations may be activated during the aging process, which leads to the phenotypic exposure of previously hidden features and might contribute to the onset of polygenic diseases, such as atherosclerosis, cancer, diabetes and several neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Söti
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 8 Budapest, Hungary
| | | |
Collapse
|
25
|
Nakhost A, Kabir N, Forscher P, Sossin WS. Protein kinase C isoforms are translocated to microtubules in neurons. J Biol Chem 2002; 277:40633-9. [PMID: 12183453 DOI: 10.1074/jbc.m205099200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of protein kinase C (PKC) increases microtubule (MT) growth lifetimes, resulting in extension of a nocodazole-sensitive population of MTs in Aplysia growth cones. We examined whether the two phorbol ester-activated PKCs in Aplysia, the Ca(2+)-activated PKC Apl I and the Ca(2+)-independent PKC Apl II, are associated with these MTs. Phorbol esters translocated PKC to the Triton X-100-insoluble fraction, and a significant portion of this translocated pool was sensitive to low concentrations of nocodazole. Low doses of nocodazole had no effect on the amount of PKC in the Triton X-100-insoluble fraction in the absence of phorbol esters, whereas higher doses of nocodazole reduced basal levels of PKC Apl II. The F-actin cytoskeletal disrupter, latrunculin A, removed both PKCs from the Triton X-100-insoluble fraction in both control and phorbol ester-treated nervous systems. PKC Apl II also directly interacted with purified MTs. In detergent-extracted cells, both PKCs immunolocalized predominantly with MTs. PKCs were associated with newly formed MTs invading the actin-rich peripheral growth cone domain after PKC activation. Our results are consistent with a central role for PKCs in regulating MT extension.
Collapse
Affiliation(s)
- Arash Nakhost
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
26
|
Galli-Resta L, Novelli E, Viegi A. Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development 2002; 129:3803-14. [PMID: 12135919 DOI: 10.1242/dev.129.16.3803] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the vertebrate retina cell layers support serial processing, while monolayered arrays of homotypic neurones tile each layer to allow parallel processing. How neurones form layers and arrays is still largely unknown. We show that monolayered retinal arrays are dynamic structures based on dendritic interactions between the array cells. The analysis of three developing retinal arrays shows that these become regular as a net of dendritic processes links neighbouring array cells. Molecular or pharmacological perturbations of microtubules within dendrites lead to a stereotyped and reversible disruption of array organization: array cells lose their regular spacing and the arrangement in a monolayer. This leads to a micro-mechanical explanation of how monolayers of regularly spaced ‘like-cells’ are formed.
Collapse
Affiliation(s)
- Lucia Galli-Resta
- Istituto di Neuroscienze CNR, Laboratorio di Neurofisiologia, Via G. Moruzzi 1, 56100 Pisa, Italy.
| | | | | |
Collapse
|
27
|
Schindler R, Weichselsdorfer E, Wagner O, Bereiter-Hahn J. Aldolase-localization in cultured cells: Cell-type and substrate-specific regulation of cytoskeletal associations. Biochem Cell Biol 2001. [DOI: 10.1139/o01-137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of aldolase as a true F- and G-actin binding protein, including modulating actin polymerization, initiating bundling, and giving rise to supramolecular structures that emanate from actin fibrils, has been established using indirect immunofluorescence, permeabilization of XTH-2 cells and keratocytes, and microinjection of fluorescence-labeled aldolase. In addition, binding to intermediate filaments, vimentin, and cytokeratins has been demonstrated. In permeabilized cells in the presence of fructose-1,6-bisphosphate (202000 µM) aldolase shifts from association with actin fibres to intermediate filaments. Plenty of free binding sites on microtubules have been revealed by addition of fluorochromed aldolase derived from rabbit skeletal muscle. However, endogenous aldolase was never found associated with microtubules. Differences in actin polymerization in the presence of aldolase as revealed by pyrene-labeled actin fluorimetry and viscosimetry were explained by electron microscopy showing the formation of rod-like structures (10 nm wide, 2060 nm in length) by association of aldolase with G-actin, which prevents further polymerization. Upon the addition of fructose-1,6-bisphosphate, G-actinaldolase mixture polymerizes to a higher viscosity and forms stiffer filaments than pure actin of the same concentration.Key words: aldolase, cytoskeleton, electron microscopy, viscosimetry.
Collapse
|
28
|
Nakamura F. Biochemical, electron microscopic and immunohistological observations of cationic detergent-extracted cells: detection and improved preservation of microextensions and ultramicroextensions. BMC Cell Biol 2001; 2:10. [PMID: 11425343 PMCID: PMC33398 DOI: 10.1186/1471-2121-2-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2001] [Accepted: 06/13/2001] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Filopodia, retraction fibers and microvilli, are fragile microextensions of the plasma membrane that are easily damaged by mechanical force during specimen preparation for microscopy. To preserve these structures for electron microscopy glutaraldehyde is generally used, but it often causes antigen masking. By contrast, formaldehyde is generally used for immunofluorescence light microscopy, but few studies have been concerned with the loss of microextensions. RESULTS We demonstrate in biochemical experiments that cultured cells needed to be kept in 4% formaldehyde for at least 60 min at room temperature or for 20 min at 37 degrees C to irreversibly crosslink most of the polypeptides. Also, fragmentation of fragile microextensions was observed after Triton X-100 extraction depending on concentration and extent of crosslinking. We also report on a novel fixation procedure that includes the cationic detergent dodecyltrimethylammonium chloride (DOTMAC). Treatment of NIH3T3 cells with DOTMAC resulted in complete removal of membrane lipids and in good preservation of the cytoskeleton in microextensions as well as preservation of ultramicroextensions of <0.05 microm in diameter that have not been observed previously unless glutaraldehyde was used. Stress fibers and microextensions of DOTMAC-extracted cells were readily stained with anti-beta-actin antibodies, and antibodies to vinculin and moesin stained focal contacts and microextensions, respectively. CONCLUSIONS Some microextensions were fragmented by the standard Triton X-100 permeabilization method. By contrast, DOTMAC completely extracted membrane lipids while maintaining the cytoskeleton of microextensions. Thus, DOTMAC treatment may provide a valuable new tool for the reliable visualization of previously undetectable or poorly detectable antigens while preserving the actin cytoskeleton of microextensions.
Collapse
Affiliation(s)
- F Nakamura
- Laboratory of Environmental Biochemistry, Department of Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
29
|
Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 2001; 28:145-9. [PMID: 11182371 DOI: 10.1016/s8756-3282(00)00421-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Osteocytes are the most numerous cells in bone, embedded within the mineralized bone matrix. Their slender cytoplasmic processes form a complex intercellular network. In addition, these processes are thought to be important structures in the response to mechanical stress. This study provides an extensive analysis of the three-dimensional structure of the osteocyte and its processes in 16-day-old embryonic chick calvariae, based on nondestructive subsurface histotomography using both confocal laser scanning (CLS) microscopy and differential interference contrast (DIC) microscopy. OB7.3, a chicken osteocyte-specific monoclonal antibody, and Texas Red-X-conjugated phalloidin were used to confirm the osteocyte phenotype and to identify whole cells in the calvariae, respectively. Serial CLS images revealed morphological changes in bone cells up to 20 microm in depth. Osteocytes had widely spread their processes into the osteoblast layer, and we found for the first time that some of these processes had elongated to the vascular-facing surface of the osteoblast layer. Furthermore, stereotype images reconstructed from CLS images could show the three-dimensional distribution of these processes. Using the stereopair image, we could evaluate the frequency of processes between osteocytes and osteoblasts. Complementation of DIC microscopy revealed canaliculi and lacunae with high contrast. The distributional pattern of canaliculi generally coincided with that of the osteocyte processes. We consider that the combination method of CLS microscopy and DIC microscopy using a laser scanning microscope is a very useful new technical approach for investigating osteocytes in bone.
Collapse
Affiliation(s)
- H Kamioka
- Department of Orthodontics, Okayama University Dental School, Okayama, Japan
| | | | | |
Collapse
|
30
|
Cattaneo-Pangrazzi RM, Schott H, Wunderli-Allenspach H, Derighetti M, Schwendener RA. Induction of cell cycle-dependent cytotoxicity and apoptosis by new heterodinucleoside phosphate dimers of 5-fluorodeoxyuridine in PC-3 human prostate cancer cells. Biochem Pharmacol 2000; 60:1887-96. [PMID: 11108805 DOI: 10.1016/s0006-2952(00)00479-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fluorodeoxyuridine (5-FdUrd) is an antineoplastic agent with clinical activity against different types of solid tumours. To enhance the effectiveness of this drug, we have synthesised new heterodinucleoside phosphate dimers of 5-FdUrd. These dimers were compared to 5-FdUrd for their cytotoxic effect and the cell cycle dependence of cytotoxicity, as well as for their capacity to induce apoptosis and inhibit thymidylate synthetase (TS) in androgen-independent human PC-3 prostate tumour cells. Incubation of the cells with the dimers N(4)-palmitoyl-2'-deoxycytidylyl-(3'-->5')-5-fluoro-2'-deoxyuri din e (dCpam-5-FdUrd) and 2'-deoxy-5-flourouridylyl-(3'-->5')-2'-deoxy-5-fluoro-N(4)-octa decylc ytidine (5-FdUrd-5-FdC18) resulted in a marked cytotoxicity with IC(50) values of 4 microM, similar to 5-FdUrd. In contrast to 5-FdUrd, 100% toxicity was achieved with concentrations of 100-200 microM 5-FdUrd-5-FdC18. Flow cytometric analysis revealed an increase in the cell population in S-phase after treatment with 5-FdUrd, 5-FdUrd-5-FdC18, and dCpam-5-FdUrd from 36 to 63%, 50%, and 77%, respectively. dCpam-5-FdUrd was more potent than 5-FdUrd in arresting the cell cycle. Significant S-phase arrest was indicated by a decreased proportion of cells in G1- and G2/M-phases. Cell cycle arrest and inhibition of cell proliferation were followed by apoptosis, as shown by a 6- to 8-fold increased binding of Apo2.7 antibody, a 9- to 11-fold increase in caspase-3 activity, DNA fragmentation, and by cell morphology showing the appearance of apoptotic bodies. Importantly, 5-FdUrd-5-FdC18 increased the number of apoptotic cells to 160% compared to 5-FdUrd under the same conditions. As with 5-FdUrd, the two dimers also inhibited TS in a time- and concentration-dependent manner, although requiring 100-fold higher concentrations. In conclusion, dCpam-5-FdUrd and 5-FdUrd-5-FdC18 exert stronger cytotoxicity and induce more S-phase arrest and apoptosis than does 5-FdUrd in PC-3 cells, suggesting their potential role in the treatment of human prostate cancer.
Collapse
|
31
|
Ouporov IV, Keith TJ, Knull HR, Thomasson KA. Computer simulations of glycolytic enzyme interactions with F-actin. J Biomol Struct Dyn 2000; 18:311-23. [PMID: 11089651 DOI: 10.1080/07391102.2000.10506668] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Muscle actin and fructose-1,6-bisphosphate aldolase (aldolase) were chemically crosslinked to produce an 80 kDa product representing one subunit of aldolase linked to one subunit of actin. Hydroxylamine digestion of the crosslinked product resulted in two 40.5 kDa fragments, one that was aldolase linked to the 12 N-terminal residues of actin. Brownian dynamics simulations of muscle aldolase and GAPDH with F-actin (muscle, yeast, and various mutants) estimated the association free energy. Mutations of residues 1-4 of muscle actin to Ala individually or two in combination of the first four residues reduced the estimated binding free energy. Simulations showed that muscle aldolase binds with the same affinity to the yeast actin as to the double mutated muscle actin; these mutations make the N-terminal of muscle actin identical to yeast, supporting the conclusion that the actin N-terminus participates in binding. Because the depth of free energy wells for yeast and the double mutants is less than for native rabbit actin, the simulations support experimental findings that muscle aldolase and GAPDH have a higher affinity for muscle actin than for yeast actin. Furthermore, Brownian dynamics revealed that the lower affinity of yeast actin for aldolase and GAPDH compared to muscle actin, was directly related to the acidic residues at the N-terminus of actin.
Collapse
Affiliation(s)
- I V Ouporov
- Department of Chemistry, University of North Dakota, Grand Forks 58202, USA
| | | | | | | |
Collapse
|
32
|
McGrath JL, Osborn EA, Tardy YS, Dewey CF, Hartwig JH. Regulation of the actin cycle in vivo by actin filament severing. Proc Natl Acad Sci U S A 2000; 97:6532-7. [PMID: 10823888 PMCID: PMC18648 DOI: 10.1073/pnas.100023397] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Indexed: 01/13/2023] Open
Abstract
Cycling of actin subunits between monomeric and filamentous phases is essential for cell crawling behavior. We investigated actin filament turnover rates, length, number, barbed end exposure, and binding of cofilin in bovine arterial endothelial cells moving at different speeds depending on their position in a confluent monolayer. Fast-translocating cells near the wound edge have short filament lifetimes compared with turnover values that proportionately increase in slower moving cells situated at increasing distances from the wound border. Contrasted with slow cells exhibiting slow actin filament turnover speeds, fast cells have less polymerized actin, shorter actin filaments, more free barbed ends, and less actin-associated cofilin. Cultured primary fibroblasts manifest identical relationships between speed and actin turnover as the endothelial cells, and fast fibroblasts expressing gelsolin have higher actin turnover rates than slow fibroblasts that lack this actin-severing protein. These results implicate actin filament severing as an important control mechanism for actin cycling in cells.
Collapse
Affiliation(s)
- J L McGrath
- Hematology Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
33
|
Frixione E. Recurring views on the structure and function of the cytoskeleton: a 300-year epic. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:73-94. [PMID: 10891854 DOI: 10.1002/1097-0169(200006)46:2<73::aid-cm1>3.0.co;2-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Some unnoticed or seldom remembered precedents of current views on biological motion and its structural bases are briefly outlined, followed by a concise recapitulation of how the present theory has been constructed in the last few decades. It is shown that the evolution of the concept of fibers as main constituents of living matter led to hypothesizing microscopic structures closely resembling microtubules in the 18th century. At the beginning of this period, fibers sliding over each other and driven by interposed moving elements were envisioned as the cause of muscle contraction. In the following century, an account of the mechanism of myofibril contraction visualized longitudinal displacements of myosin-containing submicroscopic rodlets. The existence of fibrils in the protoplasm of non-muscle cells, a subject of long debate in the second half of the 19th century, was virtually discarded as irrelevant or fallacious 100 years ago. The issue resurfaced in the early 1930s as a theoretical notion--the cytosquelette--nearly two decades before intracellular filamentous structures were first observed with electron microscopy. The role originally assumed for such fibrils as signal conductors is nowadays being reappraised, although under new interpretations with a much wider significance including modulation of gene expression, morphogenesis, and even consciousness. Since all of the above ancestral conceptions were eventually abandoned, the corresponding current views are, to a certain extent, recurrent.
Collapse
Affiliation(s)
- E Frixione
- Departamento de Biología Celular and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigacíon y de Estudios Avanzados del IPN, México.
| |
Collapse
|
34
|
Abstract
Stimulation of platelet PAR-1 receptors results in the rapid (10 to 30 seconds) and extensive (30% to 40% of total) guanosine triphosphate (GTP) charging of endogenous platelet rac, previously identified as a possible key intermediate in the signal pathway between PAR-1 and actin filament barbed-end uncapping, leading to actin assembly. During PAR-1–mediated platelet activation, rac distributes from the cell interior to the cell periphery, and this reorganization is resistant to the inhibition of PI-3-kinase activity. Rac, in resting or activated platelets, is Triton X-100 soluble, suggesting that it does not form tight complexes with actin cytoskeletal proteins, though its retention in octyl-glucoside-treated platelets and ultrastructural observations of activated platelets implies that rac binds to plasma membranes, where it can interact with phosphoinositide kinases implicated in actin assembly reactions. PAR-1 stimulation also rapidly and extensively activates cdc42, though, in contrast to rac, some cdc42 associates with the actin cytoskeleton in resting platelets, and the bound fraction increases during stimulation. The differences in subcellular distribution and previous evidence showing quantitatively divergent effects of rac and cdc42 on actin nucleation in permeabilized platelets indicate different signaling roles for these GTPases.
Collapse
|
35
|
Tanaka K, Itoh K. Reorganization of stress fiber-like structures in spreading platelets during surface activation. J Struct Biol 1998; 124:13-41. [PMID: 9931271 DOI: 10.1006/jsbi.1998.4051] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha-Actinin and myosin were associated into reorganized actin cable networks and partly formed stress fiber-like structures in platelets during surface activation. Double-label immunofluorescence staining using antibodies against alpha-actinin and platelet myosin heavy chain (MHC) showed that alpha-actinin and myosin were colocalized in the cell center at the early stage of activation and dynamically redistributed with shape change. In the later stage, two proteins were colocalized around the granulomeres. alpha-Actinin was also seen beneath the surface membrane while myosin was not. Occasionally, both proteins were segregated, revealed granular staining in the cell body of flattened platelets and often aligned irregular alternate arrangement in the actin cables. Immunoelectron microscopy (immunogold) employing antibodies against MHC and myosin light chain (MLC) demonstrated that myosin, associated with actin cytoskeleton was precisely filamentous (328 nm in average length, 15 nm in width) and bipolar with a central bare zone, since MLCs were located at both ends. Myosin formed a cluster composed of several filaments with repeating alignment, suggesting each cluster corresponded to the granular staining pattern of immunofluorescence. These observations indicated that the organization of alpha-actinin and myosin in actin cables in activated platelets resembled that in stress fibers in various cultured cells.
Collapse
Affiliation(s)
- K Tanaka
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Osaka, Higashinari-ku, 537-8511, Japan
| | | |
Collapse
|
36
|
McGrath JL, Tardy Y, Dewey CF, Meister JJ, Hartwig JH. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J 1998; 75:2070-8. [PMID: 9746549 PMCID: PMC1299879 DOI: 10.1016/s0006-3495(98)77649-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The analogous techniques of photoactivation of fluorescence (PAF) and fluorescence recovery after photobleaching (FRAP) have been applied previously to the study of actin dynamics in living cells. Traditionally, separate experiments estimate the mobility of actin monomer or the lifetime of actin filaments. A mathematical description of the dynamics of the actin cytoskeleton, however, predicts that the evolution of fluorescence in PAF and FRAP experiments depends simultaneously on the diffusion coefficient of actin monomer, D, the fraction of actin in filaments, FF, and the lifetime of actin filaments, tau (, Biophys. J. 69:1674-1682). Here we report the application of this mathematical model to the interpretation of PAF and FRAP experiments in subconfluent bovine aortic endothelial cells (BAECs). The following parameters apply for actin in the bulk cytoskeleton of subconfluent BAECs. PAF: D = 3.1 +/- 0.4 x 10(-8) cm2/s, FF = 0.36 +/- 0.04, tau = 7.5 +/- 2.0 min. FRAP: D = 5.8 +/- 1.2 x 10(-8) cm2/s, FF = 0.5 +/- 0.04, tau = 4.8 +/- 0.97 min. Differences in the parameters are attributed to differences in the actin derivatives employed in the two studies and not to inherent differences in the PAF and FRAP techniques. Control experiments confirm the modeling assumption that the evolution of fluorescence is dominated by the diffusion of actin monomer, and the cyclic turnover of actin filaments, but not by filament diffusion. The work establishes the dynamic state of actin in subconfluent endothelial cells and provides an improved framework for future applications of PAF and FRAP.
Collapse
Affiliation(s)
- J L McGrath
- Division of Experimental Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Tanaka-Kamioka K, Kamioka H, Ris H, Lim SS. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 1998; 13:1555-68. [PMID: 9783544 DOI: 10.1359/jbmr.1998.13.10.1555] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteocytes are derived from a select group of osteoblasts that have undergone a final differentiation. Due to their inaccessibility when embedded in the bone matrix, very little is known about the osteocyte cytoskeleton. This study provides an extensive analysis of the osteocyte cytoskeleton, based on the successful isolation of osteocytes from 16-day embryonic chick calvariae. We used OB7.3, a chicken osteocyte-specific monoclonal antibody, to confirm the osteocytic phenotype of the isolated cells and established culture conditions to promote growth of cells that most resemble osteocytes in vivo. Immunofluorescence staining with antitubulin, antivimentin, and antiactin showed the relative distribution of the microtubules, intermediate filaments, and actin filaments in both osteocyte cell body and processes. Field emission scanning electron microscopy revealed the three-dimensional relationships of the cytoskeletal elements and a unique organization of actin bundles that spanned the cell body and osteocyte processes. When combined with drug studies, these experiments demonstrate that actin filaments are crucial for the maintenance of osteocyte shape. Furthermore, we identified two actin-bundling proteins, alpha-actinin and fimbrin, in osteocyte processes. The prominence and unique distribution of fimbrin in osteocyte processes provides the possibility of its use as an intracellular marker to distinguish osteocytes from osteoblasts.
Collapse
Affiliation(s)
- K Tanaka-Kamioka
- Department of Anatomy, Indiana University Medical Center, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
38
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 743] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
39
|
Humbel BM, de Jong MD, Müller WH, Verkleij AJ. Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc Res Tech 1998; 42:43-58. [PMID: 9712162 DOI: 10.1002/(sici)1097-0029(19980701)42:1<43::aid-jemt6>3.0.co;2-s] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For scarce antigens or antigens which are embedded in a dense macromolecular structure, on-section labeling, the first method of choice, is not always successful. Often, the antigen can be localized by immunofluorescence microscopy, usually by a pre-embedding labeling method. Most of these methods lead to loss of ultrastructural details and, hence, labeling at electron microscope resolution does not add essential information. The scope of this paper is to compare five permeabilization methods for pre-embedding labelling for electron microscopy. We aim for a method that is easy to use and suitable for routine investigations. For our ongoing work, special attention is given to labeling of the cell nucleus. Accessibility of cytoplasmic and nuclear antigens is monitored with a set of different marker antibodies. From this investigation, we suggest that prefixation with formaldehyde/glutaraldehyde is necessary to stabilize the ultrastructure before using a detergent (Triton X-100 or Brij 58) to permeabilize or remove the membranes. The experimental conditions for labeling should be checked first with fluorescence or fluorescence-gold markers by fluorescence microscopy. Then either ultrasmall gold particles (with or without fluorochrome) with silver enhancement or, if the ultrasmall gold particles are obstructed, peroxidase markers are advised. The most promising technique to localize scarce antigens with good contrast is the combination of a pre-embedding peroxidase/tyramide-FITC or -biotin labeling followed by an on-section colloidal gold detection.
Collapse
Affiliation(s)
- B M Humbel
- Department of Molecular Cell Biology, Institute for Biomembranes, Utrecht University, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Rothen-Rutishauser B, Krämer SD, Braun A, Günthert M, Wunderli-Allenspach H. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm Res 1998; 15:964-71. [PMID: 9688045 DOI: 10.1023/a:1011953405272] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Madin Darby Canine Kidney (MDCK) cells were grown in culture, and age-related morphological changes in the cytoskeleton and tight junction (TJ) network were used to define stages in view of establishing an optimal in vitro model for the epithelial barrier. METHODS Growth curves and transepithelial electrical resistance (TEER) were determined, and the cytoskeleton (actin, alpha-tubulin, vimentin) and TJ (Zonula occludens proteins ZO1, ZO2) were investigated with immunofluorescent methods by confocal laser scanning microscopy (CLSM) and digital image restoration. RESULTS TEER measurements indicated that TJ were functional after one day. Values then remained constant. Four morphological stages could be distinguished. Stage I (0-1 day): Sub confluent cultures with flat cells; TJ established after cell-to-cell contacts are made. Stage II (2-6 days): Confluent monolayers with a complete TJ network, which remains intact throughout the later stages. Stage III (7-14 days): Rearrangement in the cytoskeleton; constant cell number; volume and surface area of cells reduced (cobble-stone appearance). Stage IV (> or = 15 days): Dome formation, i.e. thickening and spontaneous uplifting of the cell monolayer. CONCLUSIONS Based on the structural characteristics of stage III cell cultures, which are closest to the in vivo situation, we expect them to represent an optimal in vitro model to study drug transport and/or interactions with drugs and excipients.
Collapse
|
41
|
Lymphocyte-Specific Protein 1 Expression in Eukaryotic Cells Reproduces the Morphologic and Motile Abnormality of NAD 47/89 Neutrophils. Blood 1998. [DOI: 10.1182/blood.v91.12.4786] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Despite its name, the actin-binding protein lymphocyte-specific protein1 (LSP1) is found in all hematopoetic cells, and yet its role in cell function remains unclear. Recently, LSP1 was identified as the 47-kD protein overexpressed in the polymorphonuclear neutrophils of patients with a rare neutrophil disorder, neutrophil actin dysfunction with abnormalities of 47-kD and 89-kD proteins (NAD 47/89). These neutrophils are immotile, defective in actin polymerization in response to agonists, and display distinctive, fine, “hairlike” F-actin-rich projections on their cell surfaces. We now show that overexpression of LSP1 produces F-actin bundles that are likely responsible for the morphologic and motile abnormalities characteristic of the NAD 47/89 phenotype. Coincident with LSP1 overexpression, cells from each of several different eukaryotic lines, including a highly motile human melanoma line, develop hairlike surface projections that branch distinctively and contain F-actin and LSP1. The hairlike projections are supported at their core by thick actin bundles, composed of actin filaments of mixed polarity, which periodically anastomose to generate a branching structure. The motility of the melanoma cells is inhibited even at low levels of LSP1 expression. Therefore, these studies show that overexpression of LSP1 alone can recreate the morphologic and motile defects seen in NAD 47/89 and suggest that LSP1 is distinct from other known actin binding proteins in its effect on F-actin network structure.
Collapse
|
42
|
Lymphocyte-Specific Protein 1 Expression in Eukaryotic Cells Reproduces the Morphologic and Motile Abnormality of NAD 47/89 Neutrophils. Blood 1998. [DOI: 10.1182/blood.v91.12.4786.412k25_4786_4795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite its name, the actin-binding protein lymphocyte-specific protein1 (LSP1) is found in all hematopoetic cells, and yet its role in cell function remains unclear. Recently, LSP1 was identified as the 47-kD protein overexpressed in the polymorphonuclear neutrophils of patients with a rare neutrophil disorder, neutrophil actin dysfunction with abnormalities of 47-kD and 89-kD proteins (NAD 47/89). These neutrophils are immotile, defective in actin polymerization in response to agonists, and display distinctive, fine, “hairlike” F-actin-rich projections on their cell surfaces. We now show that overexpression of LSP1 produces F-actin bundles that are likely responsible for the morphologic and motile abnormalities characteristic of the NAD 47/89 phenotype. Coincident with LSP1 overexpression, cells from each of several different eukaryotic lines, including a highly motile human melanoma line, develop hairlike surface projections that branch distinctively and contain F-actin and LSP1. The hairlike projections are supported at their core by thick actin bundles, composed of actin filaments of mixed polarity, which periodically anastomose to generate a branching structure. The motility of the melanoma cells is inhibited even at low levels of LSP1 expression. Therefore, these studies show that overexpression of LSP1 alone can recreate the morphologic and motile defects seen in NAD 47/89 and suggest that LSP1 is distinct from other known actin binding proteins in its effect on F-actin network structure.
Collapse
|
43
|
Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper G. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 1998; 82:751-61. [PMID: 9562434 DOI: 10.1161/01.res.82.7.751] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.
Collapse
Affiliation(s)
- H Tagawa
- Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina and the Veterans Administration Medical Center, Charleston 29425-2221, USA
| | | | | | | | | | | |
Collapse
|
44
|
Pingel S, Wang ZE, Locksley RM. Distribution of protein kinase C isoforms after infection of macrophages with Leishmania major. Infect Immun 1998; 66:1795-9. [PMID: 9529117 PMCID: PMC108124 DOI: 10.1128/iai.66.4.1795-1799.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We characterized the effects of Leishmania infection on activation-induced translocation of protein kinase C (PKC) isoforms in murine bone marrow-derived macrophages. Although PKC-dependent gene expression was attenuated by infection, the distribution and translocation of PKC isoforms were unaffected. However, subsequent dissociation from membranes was substantially delayed for some isoforms, particularly PKCbeta.
Collapse
Affiliation(s)
- S Pingel
- Department of Medicine, University of California San Francisco, 94143-0654, USA
| | | | | |
Collapse
|
45
|
Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 1998; 17:1362-70. [PMID: 9482733 PMCID: PMC1170484 DOI: 10.1093/emboj/17.5.1362] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rac, a member of the rho family of GTPases, when activated transmits signals leading to actin-based membrane ruffling in fibroblasts. Compared with wild-type fibroblasts, gelsolin null (Gsn-) dermal fibroblasts have a markedly reduced ruffling response to serum or EGF stimulation, which signal through rac. Bradykinin-induced filopodial formation, attributable to activation of cdc42, is similar in both cell types. Wild-type fibroblasts exhibit typical lamellipodial extension during translational locomotion, whereas Gsn- cells move 50% slower using structures resembling filopodia. Multiple Gsn- tissues as well as Gsn- fibroblasts overexpress rac, but not cdc42 or rho, 5-fold. Re-expression of gelsolin in Gsn- fibroblasts by stable transfection or adenovirus reverts the ruffling response, translational motility and rac expression to normal. Rac migrates to the cell membrane following EGF stimulation in both cell types. Gelsolin is an essential effector of rac-mediated actin dynamics, acting downstream of rac recruitment to the membrane.
Collapse
Affiliation(s)
- T Azuma
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR, Cooper G. Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 1997; 139:963-73. [PMID: 9362514 PMCID: PMC2139973 DOI: 10.1083/jcb.139.4.963] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/1997] [Revised: 10/10/1997] [Indexed: 02/05/2023] Open
Abstract
Increased microtubule density, for which microtubule stabilization is one potential mechanism, causes contractile dysfunction in cardiac hypertrophy. After microtubule assembly, alpha-tubulin undergoes two, likely sequential, time-dependent posttranslational changes: reversible carboxy-terminal detyrosination (Tyr-tubulin left and right arrow Glu-tubulin) and then irreversible deglutamination (Glu-tubulin --> Delta2-tubulin), such that Glu- and Delta2-tubulin are markers for long-lived, stable microtubules. Therefore, we generated antibodies for Tyr-, Glu-, and Delta2-tubulin and used them for staining of right and left ventricular cardiocytes from control cats and cats with right ventricular hypertrophy. Tyr- tubulin microtubule staining was equal in right and left ventricular cardiocytes of control cats, but Glu-tubulin and Delta2-tubulin staining were insignificant, i.e., the microtubules were labile. However, Glu- and Delta2-tubulin were conspicuous in microtubules of right ventricular cardiocytes from pressure overloaded cats, i.e., the microtubules were stable. This finding was confirmed in terms of increased microtubule drug and cold stability in the hypertrophied cells. In further studies, we found an increase in a microtubule binding protein, microtubule-associated protein 4, on both mRNA and protein levels in pressure-hypertrophied myocardium. Thus, microtubule stabilization, likely facilitated by binding of a microtubule-associated protein, may be a mechanism for the increased microtubule density characteristic of pressure overload cardiac hypertrophy.
Collapse
Affiliation(s)
- H Sato
- Cardiology Section of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina 29401, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Borowski P, Oehlmann K, Heiland M, Laufs R. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cyclic AMP-dependent protein kinase. J Virol 1997; 71:2838-43. [PMID: 9060639 PMCID: PMC191408 DOI: 10.1128/jvi.71.4.2838-2843.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chronic hepatitis resulting from hepatitis C virus (HCV) infection develops into cirrhosis in at least half of infected patients and increases the risk of hepatocellular carcinoma. The pathogenic effects of a number of viruses result from the disturbance of intracellular signal cascades caused by viral antigens. Therefore, we investigated the interaction of nonstructural protein 3 (NS3) of HCV with the cyclic AMP-dependent signal pathway. We found a similarity between the HCV sequence Arg-Arg-Gly-Arg-Thr-Gly-Arg-Gly-Arg-Arg-Gly-Ile-Tyr-Arg localized in NS3 and the general consensus sequence of protein kinase A (PKA). Consequently, the catalytic (C) subunit of PKA bound to a bacterially expressed fragment of HCV polyprotein containing amino acid residues 1189 to 1525. When this fragment was introduced into cells, it inhibited the translocation of the C subunit into the nucleus after stimulation with forskolin. The result of this inhibition was significantly reduced histone phosphorylation. Therefore, the presence of NS3 in the cytoplasm of infected cells may affect a wide range of PKA functions and contribute to the pathogenesis of the diseases caused by HCV.
Collapse
Affiliation(s)
- P Borowski
- Institut für Medizinische Mikrobiologie und Immunologie, Universitätskrankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
48
|
Knull H, Minton AP. Structure within eukaryotic cytoplasm and its relationship to glycolytic metabolism. Cell Biochem Funct 1996; 14:237-48. [PMID: 8952042 DOI: 10.1002/cbf.698] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Taken together, the results reviewed here indicate that both structural proteins and enzymes exist in a relatively mobile, uncomplexed form and in a relatively immobile form, complexed with the matrix. The relative amounts of free and complexed forms of each protein are dependent upon the local concentrations of both small molecules and other macromolecules and hence may vary in time and space throughout the cell. Free and cytomatrix-bound enzymes exchange rapidly, while free and cytomatrix-bound structural proteins exchange more slowly. These two distinct time scales suggest that the slowly exchanging structural proteins form the core of fibrous structural elements--having many stabilizing intermolecular contacts with near neighbours--whereas the more rapidly exchanging enzymes adsorb to the surface of the structural elements and have fewer near neighbour contacts. The hierarchical nature of these associations is depicted schematically in Figure 3. Metabolism is proposed to proceed primarily via transport of small metabolites rather than by transport of enzymes, which may be organized in functional clusters to facilitate, metabolic regulation.
Collapse
Affiliation(s)
- H Knull
- Department of Biochemistry, School of Medicine, University of North Dakota, Grand Forks 58202, USA
| | | |
Collapse
|
49
|
Abstract
The binding properties of hepatic aldolase (B) were determined in digitonin-permeabilized rat hepatocytes after the cells had been preincubated with either glycolytic or gluconeogenic substrates. In hepatocytes that had been preincubated in medium containing 5 mM glucose as sole carbohydrate substrate, binding of aldolase to the hepatocyte matrix was maximal at low KCl concentrations (20 mM) or bivalent cation concentrations (1 mM Mg2+) and half-maximal dissociation occurred at 50 mM KCl. Preincubation of hepatocytes (for 10-30 min) with glucose or mannose (10-40 mM), fructose, sorbitol, dihydroxyacetone or glycerol (1-10 mM), caused a leftward shift of the salt dissociation curve (maximum binding at 10 mM KCl; half-maximum dissociation at 35 mM KCl) but did not affect the proportion of bound enzyme at low or high KCl concentrations. Galactose and 2-deoxyglucose had no effect on aldolase binding. Inhibitors of glucokinase (mannoheptulose and glucosamine) suppressed the effects of glucose but not the effects of sorbitol, glycerol or dihydroxyacetone. Glucagon suppressed the effects of glucose, fructose and dihydroxyacetone but not glycerol. Poly(ethylene glycol) (PEG) (2-10%), added to the permeabilization medium, increased aldolase binding and caused a rightward shift in the salt dissociation curve. In the presence of PEG (6-8%), the effects of substrates on aldolase dissociation were shifted to higher salt concentrations (50-100 mM versus 35 mM KCl). The effects of substrates (added to the intact cell) on aldolase binding to the permeabilized cell could be mimicked by addition of the phosphorylated derivatives of these substrates to the permeabilized cell. Of the intermediates tested dihydroxyacetone phosphate and fructose 1,6-bisphosphate were the most effective at dissociating aldolase (A50 values of 20 microM and 40 microM respectively). Other effective intermediates in order of decreasing potency were fructose 1-phosphate, glycerol 3-phosphate, glucose 1,6-bisphosphate/fructose 2,6-bisphosphate. These results show that aldolase B binds to the hepatocyte matrix by a salt-dependent mechanism that is influenced by macromolecular crowding and metabolic intermediates. Maximum binding occurs when hepatocytes are incubated in the absence of glycolytic and gluconeogenic substrates and minimum binding occurs in the presence of substrates that are precursors of either fructose 1,6-bisphosphate or triose phosphates. Since the bound form of aldolase represents a kinetically less active state it is proposed that aldolase binding and dissociation may be a mechanism for buffering the concentrations of metabolic intermediates.
Collapse
Affiliation(s)
- L Agius
- Department of Medicine, University of Newcastle upon Tyne, U.K
| |
Collapse
|
50
|
Tagawa H, Rozich JD, Tsutsui H, Narishige T, Kuppuswamy D, Sato H, McDermott PJ, Koide M, Cooper G. Basis for increased microtubules in pressure-hypertrophied cardiocytes. Circulation 1996; 93:1230-43. [PMID: 8653846 DOI: 10.1161/01.cir.93.6.1230] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We have shown the levels of the sarcomere and the cardiocyte that a persistent increase in microtubule density accounts to a remarkable degree for the contractile dysfunction seen in pressure-overload right ventricular hypertrophy. In the present study, we have asked whether these linked phenotypic and contractile abnormalities are an immediate and direct effect of load input into the cardiocyte or instead a concomitant of hypertrophic growth in response to pressure overloading. METHODS AND RESULTS The feline right ventricle was pressure-overloaded by pulmonary artery banding. The quantity of microtubules was estimated from immunoblots and immunofluorescent micrographs, and their mechanical effects were assessed by measuring sarcomere motion during microtubule depolymerization. The biogenesis of microtubules was estimated from Northern and Western blot analyses of tubulin mRNAs and proteins. These measurements were made in control cats and in operated cats during and after the completion of right ventricular hypertrophy; the left ventricle from each heart served as a normally loaded same-animal control. We have shown that the alterations in microtubule density and sarcomere mechanics are not an immediate consequence of pressure overloading but instead appear in parallel with the load-induced increase in cardiac mass. Of potential mechanistic importance, both these changes and increases in tubulin poly A+ mRNA and protein coexist indefinitely after a new, higher steady state of right ventricular mass is reached. CONCLUSIONS Because we find persistent increases both in microtubules and in their biosynthetic precursors in pressure-hypertrophied myocardium, the mechanisms for this cytoskeletal abnormality must be sought through studies of the control both of microtubule stability and of tubulin synthesis.
Collapse
Affiliation(s)
- H Tagawa
- Cardiology Section of the Department of Medicine, Medical University of South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|