1
|
Tong X, Kim EJ, Lee JK. Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microb Cell Fact 2022; 21:94. [PMID: 35643504 PMCID: PMC9148488 DOI: 10.1186/s12934-022-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND NADPH is used as a reductant in various biosynthetic reactions. Cell-free bio-systems have gained considerable attention owing to their high energy utilization and time efficiency. Efforts have been made to continuously supply reducing power to the reaction mixture in a cyclical manner. The thylakoid membrane (TM) is a promising molecular energy generator, producing NADPH under light. Thus, TM sustainability is of major relevance for its in vitro utilization. RESULTS Over 70% of TMs prepared from Synechocystis sp. PCC6803 existed in a sealed vesicular structure, with the F1 complex of ATP synthase facing outward (right-side-out), producing NADPH and ATP under light. The NADPH generation activity of TM increased approximately two-fold with the addition of carbonyl cyanide-p-(trifluoromethoxy) phenylhydrazone (FCCP) or removal of the F1 complex using EDTA. Thus, the uncoupling of proton translocation from the electron transport chain or proton leakage through the Fo complex resulted in greater NADPH generation. Biosilicified TM retained more than 80% of its NADPH generation activity after a week at 30°C in the dark. However, activity declined sharply to below 30% after two days in light. The introduction of engineered water-forming NADPH oxidase (Noxm) to keep the electron transport chain of TM working resulted in the improved sustainability of NADPH generation activity in a ratio (Noxm to TM)-dependent manner, which correlated with the decrease of singlet oxygen generation. Removal of reactive oxygen species (ROS) by catalase further highlighted the sustainable NADPH generation activity of up to 80% in two days under light. CONCLUSION Reducing power generated by light energy has to be consumed for TM sustainability. Otherwise, TM can generate singlet oxygen, causing oxidative damage. Thus, TMs should be kept in the dark when not in use. Although NADPH generation activity by TM can be extended via silica encapsulation, further removal of hydrogen peroxide results in an improvement of TM sustainability. Therefore, as long as ROS formation by TM in light is properly handled, it can be used as a promising source of reducing power for in vitro biochemical reactions.
Collapse
Affiliation(s)
- Xiaomeng Tong
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea
| | - Eui-Jin Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Sangju-si, 37242, Korea.
| | - Jeong K Lee
- Department of Life Science, Sogang University, Mapo, Shinsu 1, Seoul, 121-742, Korea.
| |
Collapse
|
2
|
Zhan J, Steglich C, Scholz I, Hess WR, Kirilovsky D. Inverse regulation of light harvesting and photoprotection is mediated by a 3'-end-derived sRNA in cyanobacteria. THE PLANT CELL 2021; 33:358-380. [PMID: 33793852 PMCID: PMC8136909 DOI: 10.1093/plcell/koaa030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.
Collapse
Affiliation(s)
- Jiao Zhan
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Steglich
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Diana Kirilovsky
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
3
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Calzadilla PI, Muzzopappa F, Sétif P, Kirilovsky D. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:488-498. [PMID: 31029593 DOI: 10.1016/j.bbabio.2019.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
The phycobilisome, the cyanobacterial light harvesting complex, is a huge phycobiliprotein containing extramembrane complex, formed by a core from which rods radiate. The phycobilisome has evolved to efficiently absorb sun energy and transfer it to the photosystems via the last energy acceptors of the phycobilisome, ApcD and ApcE. ApcF also affects energy transfer by interacting with ApcE. In this work we studied the role of ApcD and ApcF in energy transfer and state transitions in Synechococcus elongatus and Synechocystis PCC6803. Our results demonstrate that these proteins have different roles in both processes in the two strains. The lack of ApcD and ApcF inhibits state transitions in Synechocystis but not in S. elongatus. In addition, lack of ApcF decreases energy transfer to both photosystems only in Synechocystis, while the lack of ApcD alters energy transfer to photosystem I only in S. elongatus. Thus, conclusions based on results obtained in one cyanobacterial strain cannot be systematically transferred to other strains and the putative role(s) of phycobilisomes in state transitions need to be reconsidered.
Collapse
Affiliation(s)
- Pablo I Calzadilla
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
5
|
Zlenko DV, Elanskaya IV, Lukashev EP, Bolychevtseva YV, Suzina NE, Pojidaeva ES, Kononova IA, Loktyushkin AV, Stadnichuk IN. Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:155-166. [DOI: 10.1016/j.bbabio.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
|
6
|
Elanskaya IV, Zlenko DV, Lukashev EP, Suzina NE, Kononova IA, Stadnichuk IN. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:280-291. [DOI: 10.1016/j.bbabio.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
7
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|
8
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Kirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. PHOTOSYNTHESIS RESEARCH 2015; 126:3-17. [PMID: 25139327 DOI: 10.1007/s11120-014-0031-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), SB2SM, Bat 532, Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191, Gif sur Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), UMR 8221, 91191, Gif sur Yvette, France.
| |
Collapse
|
10
|
Singh NK, Sonani RR, Rastogi RP, Madamwar D. The phycobilisomes: an early requisite for efficient photosynthesis in cyanobacteria. EXCLI JOURNAL 2015; 14:268-89. [PMID: 26417362 PMCID: PMC4553884 DOI: 10.17179/excli2014-723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 01/26/2023]
Abstract
Cyanobacteria trap light energy by arrays of pigment molecules termed “phycobilisomes (PBSs)”, organized proximal to "reaction centers" at which chlorophyll perform the energy transduction steps with highest quantum efficiency. PBSs, composed of sequential assembly of various chromophorylated phycobiliproteins (PBPs), as well as nonchromophoric, basic and hydrophobic polypeptides called linkers. Atomic resolution structure of PBP is a heterodimer of two structurally related polypeptides but distinct specialised polypeptides- a and ß, made up of seven alpha-helices each which played a crucial step in evolution of PBPs. PBPs carry out various light dependent responses such as complementary chromatic adaptation. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and the questions that remain unresolved.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Shri A. N. Patel PG Institute (M. B. Patel Science College Campus), Anand, Sardargunj, Anand - 388001, Gujarat, India
| | - Ravi Raghav Sonani
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India
| | - Rajesh Prasad Rastogi
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India
| |
Collapse
|
11
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Abstract
Presented is a historical perspective of one scientist's journey from war-torn Europe to the opportunities presented by a flexible US educational system. It celebrates the opening of the science establishment that began in the 1950s and its fostering of basic research, and recognizes individuals who were instrumental in guiding the author's education as well as those with whom she later participated in collaborative algal plant research. The initial discovery and later elucidation of phycobilisome structure are elaborated, including the structural connection with photosystem II. Furthermore, she summarizes some of her laboratory's results on carotenoids and its exploration of the isoprenoid pathway in cyanobacteria. Finally, she comments on the gender gap and how her generation benefited when opportunities for women scientists were enlarged.
Collapse
Affiliation(s)
- Elisabeth Gantt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Tian L, Gwizdala M, van Stokkum IHM, Koehorst RBM, Kirilovsky D, van Amerongen H. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 2012; 102:1692-700. [PMID: 22500770 DOI: 10.1016/j.bpj.2012.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022] Open
Abstract
In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting phycobilisomes (PBs) to protect the photosynthetic system against photodamage. This process requires the binding of the red active form of the Orange Carotenoid Protein (OCP(r)), which can effectively quench the excited state of one of the allophycocyanin bilins. Recently, an in vitro reconstitution system was developed using isolated OCP and isolated PBs from Synechocystis PCC 6803. Here we have used spectrally resolved picosecond fluorescence to study wild-type and two mutated PBs. The results demonstrate that the quenching for all types of PBs takes place on an allophycocyanin bilin emitting at 660 nm (APC(Q)(660)) with a molecular quenching rate that is faster than (1 ps)(-1). Moreover, it is concluded that both the mechanism and the site of quenching are the same in vitro and in vivo. Thus, utilization of the in vitro system should make it possible in the future to elucidate whether the quenching is caused by charge transfer between APC(Q)(660) and OCP or by excitation energy transfer from APC(Q)(660) to the S(1) state of the carotenoid--a distinction that is very hard, if not impossible, to make in vivo.
Collapse
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Sun L, Wang S. PHYCOBILIPROTEIN COMPONENTS AND CHARACTERISTICS OF THE PHYCOBILISOME FROM A THERMOPHILIC CYANOBACTERIUM MYXOSARCINA CONCINNA(1). JOURNAL OF PHYCOLOGY 2011; 47:1304-1315. [PMID: 27020354 DOI: 10.1111/j.1529-8817.2011.01067.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phycocyanin (PC) and three allophycocyanin (AP) components (designated PC, AP1, AP2, and AP3) were prepared from Myxosarcina concinna Printz phycobilisomes by the native gradient PAGE performed in a neutral buffer system combined with the ion exchange column chromatography on DEAE-DE52 cellulose. PC contained one β subunit () and two α ones ( and ), and it carried two rod linkers ( and ) and one rod-core linker (). AP1 and AP3 were characterized as peripheral core APs, whereas AP2 was an inner-core one. AP2 and AP3 were demonstrated to function as the terminal emitters. Each of the three APs contained two β subunits ( and ), two α subunits ( and ) and an inner-core linker (). AP2 and AP3 had another subunit of the allophycocyanin B (AP-B) type () belonging to the β subunit group, and AP1 and AP3 carried their individual specific core linkers ( and ), respectively. No AP component was shown to associate with the core-membrane linker LCM . The functions of the linker polypeptides in the phycobilisome (PBS) construction are discussed.
Collapse
Affiliation(s)
- Li Sun
- College of Chemistry and Biology, Yantai University, Yantai 264005, ChinaCollege of Photo-electronic Information Science and Technology, Yantai University, Yantai 264005, China
| | - Shumei Wang
- College of Chemistry and Biology, Yantai University, Yantai 264005, ChinaCollege of Photo-electronic Information Science and Technology, Yantai University, Yantai 264005, China
| |
Collapse
|
15
|
Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z. Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:319-27. [PMID: 22138629 DOI: 10.1016/j.bbabio.2011.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022]
Abstract
Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.
Collapse
Affiliation(s)
- Eyal Tamary
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gwizdala M, Wilson A, Kirilovsky D. In vitro reconstitution of the cyanobacterial photoprotective mechanism mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. THE PLANT CELL 2011; 23:2631-43. [PMID: 21764991 PMCID: PMC3226224 DOI: 10.1105/tpc.111.086884] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/10/2011] [Accepted: 07/06/2011] [Indexed: 05/19/2023]
Abstract
In conditions of fluctuating light, cyanobacteria thermally dissipate excess absorbed energy at the level of the phycobilisome, the light-collecting antenna. The photoactive Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) have essential roles in this mechanism. Absorption of blue-green light converts the stable orange (inactive) OCP form found in darkness into a metastable red (active) form. Using an in vitro reconstituted system, we studied the interactions between OCP, FRP, and phycobilisomes and demonstrated that they are the only elements required for the photoprotective mechanism. In the process, we developed protocols to overcome the effect of high phosphate concentrations, which are needed to maintain the integrity of phycobilisomes, on the photoactivation of the OCP, and on protein interactions. Our experiments demonstrated that, whereas the dark-orange OCP does not bind to phycobilisomes, the binding of only one red photoactivated OCP to the core of the phycobilisome is sufficient to quench all its fluorescence. This binding, which is light independent, stabilizes the red form of OCP. Addition of FRP accelerated fluorescence recovery in darkness by interacting with the red OCP and destabilizing its binding to the phycobilisome. The presence of phycobilisome rods renders the OCP binding stronger and allows the isolation of quenched OCP-phycobilisome complexes. Using the in vitro system we developed, it will now be possible to elucidate the quenching process and the chemical nature of the quencher.
Collapse
Affiliation(s)
- Michal Gwizdala
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Adjélé Wilson
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France
- Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| |
Collapse
|
17
|
Lemaux PG, Grossman A. Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa. Proc Natl Acad Sci U S A 2010; 81:4100-4. [PMID: 16593484 PMCID: PMC345376 DOI: 10.1073/pnas.81.13.4100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies raised against mixtures of phycobilisome polypeptides from the eukaryotic alga Cyanidium caldarium were used in an immunological screen to detect expression of phycobiliprotein genes in an Escherichia coli library containing segments of plastid (chloroplast, cyanelle) DNA from another eukaryotic alga, Cyanophora paradoxa. The four candidate clones obtained were mapped by restriction analysis and found to be overlapping. The clone with the smallest insert (1.4 kilobases) was partially sequenced and a coding region similar to the carboxyl terminus of the phycobiliprotein subunit beta-phycocyanin was found. The coding region for the beta-phycocyanin gene in C. paradoxa has been mapped to the small single copy region on the cyanelle genome, and its orientation has been determined. A short probe unique to a conserved chromophore binding site shared by at least two phycobiliprotein subunits has now been generated from the carboxyl terminus of the beta-phycocyanin gene. This probe may be useful in identifying specific phycobiliprotein subunit genes, beta-phycocyanin, beta-phycoerythrocyanin, and possibly beta-phycoerythrin, in other eukaryotic algae and in prokaryotic cyanobacteria.
Collapse
Affiliation(s)
- P G Lemaux
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford, CA 94305
| | | |
Collapse
|
18
|
Egelhoff T, Grossman A. Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci U S A 2010; 80:3339-43. [PMID: 16593323 PMCID: PMC394038 DOI: 10.1073/pnas.80.11.3339] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vivo labeling of eukaryotic phycobilisomes in the presence of inhibitors of translation on 70S and 80S ribosomes demonstrates that some of the polypeptides of this light-harvesting complex are synthesized in the cytoplasm while others are synthesized in the chloroplast. The major pigmented polypeptides, the alpha and beta subunits of the biliproteins (molecular weights between 15,000 and 20,000) and the anchor protein (molecular weight about 90,000) are translated on 70S ribosomes. This suggests that these polypeptides are made within the algal chloroplast. Because the alpha and beta subunits comprise a group of closely related polypeptides, the genes encoding these polypeptides may reside in the plastid genome as a multigene family. Other prominent phycobilisome polypeptides, including a nonpigmented polypeptide that may be involved in maintaining the structural integrity of the complex, are synthesized on cytoplasmic ribosomes. Because the synthesis of phycobilisomes appears to require the expression of genes in two subcellular compartments, this system may be an excellent model for: (i) examining interaction between nuclear and plastid genomes: (ii) elucidating the molecular processes involved in the evolution of plastid genes: (iii) clarifying the events in the synthesis and assembly of macromolecular complexes in the chloroplast.
Collapse
Affiliation(s)
- T Egelhoff
- Department of Biology, Herrin Hall, Stanford University, Stanford, California 94305
| | | |
Collapse
|
19
|
Liu LN, Aartsma TJ, Thomas JC, Lamers GEM, Zhou BC, Zhang YZ. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns. J Biol Chem 2008; 283:34946-53. [PMID: 18930925 PMCID: PMC3259867 DOI: 10.1074/jbc.m805114200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.
Collapse
Affiliation(s)
- Lu-Ning Liu
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Thijs J. Aartsma
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Jean-Claude Thomas
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Gerda E. M. Lamers
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Bai-Cheng Zhou
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| |
Collapse
|
20
|
Boulay C, Abasova L, Six C, Vass I, Kirilovsky D. Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1344-54. [DOI: 10.1016/j.bbabio.2008.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
21
|
Mullineaux CW. Phycobilisome-reaction centre interaction in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2008; 95:175-82. [PMID: 17922214 DOI: 10.1007/s11120-007-9249-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 05/03/2023]
Abstract
The phycobilisome is a remarkable light-harvesting antenna that combines high efficiency with functional flexibility and the ability to capture light across a broad spectral range. A combination of biochemical, structural and spectroscopic studies has given an excellent picture of the structure and function of isolated phycobilisomes. However, we still know remarkably little about the interaction of the phycobilisome with the thylakoid membrane and the reaction centres. This article will discuss the various current ideas about this question and explain the things we need to know more about. As a working model, I propose that the phycobilisome is attached to the membrane by multiple weak charge-charge interactions with lipid head-groups and/or proteins, and that the core-membrane linker polypeptide ApcE provides a flexible surface allowing interaction with multiple membrane components.
Collapse
Affiliation(s)
- Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
22
|
Kondo K, Ochiai Y, Katayama M, Ikeuchi M. The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. PLANT PHYSIOLOGY 2007; 144:1200-10. [PMID: 17468217 PMCID: PMC1914160 DOI: 10.1104/pp.107.099267] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phycobilisome (PBS) is a supramolecular antenna complex required for photosynthesis in cyanobacteria and bilin-containing red algae. While the basic architecture of PBS is widely conserved, the phycobiliproteins, core structure and linker polypeptides, show significant diversity across different species. By contrast, we recently reported that the unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses two types of PBSs that differ in their interconnecting "rod-core linker" proteins (CpcG1 and CpcG2). CpcG1-PBS was found to be equivalent to conventional PBS, whereas CpcG2-PBS retains phycocyanin rods but is devoid of the central core. This study describes the functional analysis of CpcG1-PBS and CpcG2-PBS. Specific energy transfer from PBS to photosystems that was estimated for cells and thylakoid membranes based on low-temperature fluorescence showed that CpcG2-PBS transfers light energy preferentially to photosystem I (PSI) compared to CpcG1-PBS, although they are able to transfer to both photosystems. The preferential energy transfer was also supported by the increased photosystem stoichiometry (PSI/PSII) in the cpcG2 disruptant. The cpcG2 disruptant consistently showed retarded growth under weak PSII light, in which excitation of PSI is limited. Isolation of thylakoid membranes with high salt showed that CpcG2-PBS is tightly associated with the membrane, while CpcG1-PBS is partly released. CpcG2 is characterized by its C-terminal hydrophobic segment, which may anchor CpcG2-PBS to the thylakoid membrane or PSI complex. Further sequence analysis revealed that CpcG2-like proteins containing a C-terminal hydrophobic segment are widely distributed in many cyanobacteria.
Collapse
Affiliation(s)
- Kumiko Kondo
- Department of Biological Sciences , University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
23
|
Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. THE PLANT CELL 2006; 18:992-1007. [PMID: 16531492 PMCID: PMC1425857 DOI: 10.1105/tpc.105.040121] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/06/2006] [Accepted: 02/17/2006] [Indexed: 05/07/2023]
Abstract
Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light-induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not DeltapH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein.
Collapse
Affiliation(s)
- Adjélé Wilson
- Unité de Recherche Associée 2096, Centre National de la Recherche Scientifique, Service de Bioénergétique, 91191 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
24
|
Aráoz R, Häder DP. Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00411.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Liu LN, Chen XL, Zhang YZ, Zhou BC. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:133-42. [PMID: 15922288 DOI: 10.1016/j.bbabio.2005.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022]
Abstract
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- State Key Lab of Microbial Technology, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
26
|
Sun L, Wang S. Allophycocyanin complexes from the phycobilisome of a thermophilic blue-green alga Myxosarcina concinna Printz. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2003; 72:45-53. [PMID: 14644565 DOI: 10.1016/j.jphotobiol.2003.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The core polypeptide components of the intact phycobilisomes (PBSs) prepared by the sucrose gradients in 0.9 M phosphate buffer from a thermophilic cyanobacterium Myxosarcina concinna Printz were investigated. Three allophycocyanins, designated AP1, AP2, and AP3, of the PBS cores were successfully prepared by using the gradient polyacrylamide gel electrophoresis (PAGE) performed in neutral, instead of alkaline, buffer system. The spectral properties of AP2 and AP3 demonstrated that they both had fluorescence emission maxima at 684/685 nm at 77 K, which was identical to those of the intact PBSs, and showed the absorption of allophycocyanin B (AP-B) subunit. Sodium dodecyl sulfate-PAGE revealed that the three biliprotein complexes were all composed of heterogeneous subunits and two more linker polypeptides (Ls), AP1 alpha(22.3)alpha(19.5)beta(17.4)beta(15.7)L(13.8)L(11.3)L(9.5), AP2 alpha(22.3)alpha(19.5)beta(17.4)beta(15.7)beta(15.1)L(11.3)L(9.5), and AP3 alpha(22.3)alpha(19.5)beta(17.4)beta(15.7)beta(15.1)L(11.3)L(9.5)L(8.3). Compared with the characteristics of AP1, beta(15.1), which belonged to the beta subunit group, was the AP-B subunit of AP2 and AP3. Because AP2 was only obtained together with the PBS by the aid of 2% (v/v) Triton X-100, but not AP3, it was closely related to anchoring the PBS core on thylakoid membranes though the polypeptide analysis showed that AP2 had no core-membrane linker (LCM). Aggregates of the three AP biliproteins were proposed based on the present results, and their functions in the PBS core construction and the energy transfer to PS II and PS I were discussed.
Collapse
Affiliation(s)
- Li Sun
- Department of Biochemistry, Yantai University, Yantai, Shandong 264005, PR China
| | | |
Collapse
|
27
|
Beutler M, Wiltshire KH, Arp M, Kruse J, Reineke C, Moldaenke C, Hansen UP. A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:33-46. [PMID: 12686419 DOI: 10.1016/s0005-2728(03)00022-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fluorometric determination of the chlorophyll (Chl) content of cyanobacteria is impeded by the unique structure of their photosynthetic apparatus, i.e., the phycobilisomes (PBSs) in the light-harvesting antennae. The problems are caused by the variations in the ratio of the pigment PC to Chl a resulting from adaptation to varying environmental conditions. In order to include cyanobacteria in fluorometric analysis of algae, a simplified energy distribution model describing energy pathways in the cyanobacterial photosynthetic apparatus was conceptualized. Two sets of mathematical equations were derived from this model and tested. Fluorescence of cyanobacteria was measured with a new fluorometer at seven excitation wavelength ranges and at three detection channels (650, 685 and 720 nm) in vivo. By employing a new fit procedure, we were able to correct for variations in the cyanobacterial fluorescence excitation spectra and to account for other phytoplankton signals. The effect of energy-state transitions on the PC fluorescence emission of PBSs was documented. The additional use of the PC fluorescence signal in combination with our recently developed mathematical approach for phytoplankton analysis based on Chl fluorescence spectroscopy allows a more detailed study of cyanobacteria and other phytoplankton in vivo and in situ.
Collapse
Affiliation(s)
- M Beutler
- Max-Planck-Institut (MPI) für Limnologie, Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
|
30
|
Mimuro M, Ookubo T, Takahashi D, Sakawa T, Akimoto S, Yamazaki I, Miyashita H. Unique fluorescence properties of a cyanobacterium Gloeobacter violaceus PCC 7421: reasons for absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C. PLANT & CELL PHYSIOLOGY 2002; 43:587-94. [PMID: 12091711 DOI: 10.1093/pcp/pcf070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We investigated the reason for the absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C in the cyanobacterium Gloeobacter violaceus using two methods: p-nitrothiophenol (p-NTP) treatment and time-resolved fluorescence spectra. The p-NTP treatment showed that PSII Chl a fluorescence was specifically affected in a manner similar to that for Synechocystis sp. PCC 6803 and spinach chloroplasts, although there were no components modified by the p-NTP treatment, indicating an absence of the long-wavelength PSI Chl a fluorescence. The time-resolved fluorescence spectra with a time resolution of 1.3 ps and spectral resolution of 1.0 nm gave no indication of the presence of the long-wavelength PSI fluorescence in the wavelength region between 700 nm and 760 nm, indicating that a very fast energy transfer among Chl a molecules could not account for the absence of the long-wavelength PSI fluorescence. From these data, it seems that the absence of the long-wavelength PSI fluorescence is due to a lack of the formation of a component responsible for the fluorescence at -196 degrees C, which may originate from a difference in the amino acid sequence. We discuss the significance of this phenomenon and interpret our findings in terms of the evolution of cyanobacteria.
Collapse
Affiliation(s)
- Mamoru Mimuro
- Department of Physics, Biology and Informatics, Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8512 Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Watson BA, Waaland SD, Waaland JR. Phycocyanin from the red alga, Anotrichium tenue: modification of properties by a colorless polypeptide (Mr 30,000). Biochemistry 2002. [DOI: 10.1021/bi00364a019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Sarcina M, Tobin MJ, Mullineaux CW. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem 2001; 276:46830-4. [PMID: 11590154 DOI: 10.1074/jbc.m107111200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variant of fluorescence recovery after photobleaching allows us to observe the diffusion of photosynthetic complexes in cyanobacterial thylakoid membranes in vivo. The unicellular cyanobacterium Synechococcus sp. PCC7942 is a wonderful model organism for fluorescence recovery after photobleaching, because it has a favorable membrane geometry and is well characterized and transformable. In Synechococcus 7942 (as in other cyanobacteria) we find that photosystem II is immobile, but phycobilisomes diffuse rapidly on the membrane surface. The diffusion coefficient is 3 x 10(-10) cm(2) s(-1) at 30 degrees C. This shows that the association of phycobilisomes with reaction centers is dynamic; there are no stable phycobilisome-reaction center complexes in vivo. We report the effects of mutations that change the phycobilisome size and membrane lipid composition. 1) In a mutant with no phycobilisome rods, the phycobilisomes remain mobile with a slightly faster diffusion coefficient. This confirms that the diffusion we observe is of intact phycobilisomes rather than detached rod elements. The faster diffusion coefficient in the mutant indicates that the rate of diffusion is partly determined by the phycobilisome size. 2) The temperature dependence of the phycobilisome diffusion coefficient indicates that the phycobilisomes have no integral membrane domain. It is likely that association with the membrane is mediated by multiple weak interactions with lipid head groups. 3) Changing the lipid composition of the thylakoid membrane has a dramatic effect on phycobilisome mobility. The results cannot be explained in terms of changes in the fluidity of the membrane; they suggest that lipids play a role in controlling phycobilisome-reaction center interaction.
Collapse
Affiliation(s)
- M Sarcina
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
33
|
|
34
|
Galland-Irmouli AV, Pons L, Luçon M, Villaume C, Mrabet NT, Guéant JL, Fleurence J. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 739:117-23. [PMID: 10744320 DOI: 10.1016/s0378-4347(99)00433-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria widely used as a fluorescent probe. In this study, phycoerythrin of the red macroalga Palmaria palmata was extracted by grinding the algal sample in liquid nitrogen, homogenisation in phosphate buffer and centrifugation. Phycoerythrin was then purified from this crude extract using preparative polyacrylamide gel electrophoresis (PAGE) with a continuous elution system and detected by its pink colour and fluorescence. The pigment presented a typical spectrum of R-phycoerythrin, with three absorbance maxima at 499, 545 and 565 nm, and displayed a fluorescence maximum at 578 nm. The absorbance ratio A565/A280, a criterion for purity, was 3.2. A single protein of relative molecular mass 240,000 was detected on native-PAGE with silver staining. Sodium dodecyl sulphate-PAGE demonstrated the presence of two major subunits with Mr 20,000 and 21,000, respectively, and a very minor subunit of Mr 30,000. These observations are consistent with the (alphabeta)6gamma subunit composition characteristic of R-phycoerythrin. Phycoerythrin of Palmaria palmata was determined to be present in larger amounts in autumn and showed a good stability up to 60 degrees C and between pH 3.5 and 9.5. In conclusion, phycoerythrin of Palmaria palmata was purified in a single-step using preparative PAGE. Obtaining pure R-phycoerythrin of Palmaria palmata will allow one to evaluate its fluorescence properties for future applications in biochemical techniques.
Collapse
Affiliation(s)
- A V Galland-Irmouli
- Laboratoire de Pathologie Cellulaire et Moléculaire en Nutrition, EP CNRS 0616, Faculté de Médecine, BP 184, Vandoeuvre lès Nancy, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E, Miyachi S. Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:250-61. [PMID: 10482787 DOI: 10.1016/s0005-2728(99)00067-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the localization, structure and function of the biliproteins of the oxygenic photosynthetic prokaryote Acaryochloris marina, the sole organism known to date that contains chlorophyll d as the predominant photosynthetic pigment. The biliproteins were isolated by means of sucrose gradient centrifugation, ion exchange and gel filtration chromatography. Up to six biliprotein subunits in a molecular mass range of 15.5-18.4 kDa were found that cross-reacted with antibodies raised against phycocyanin or allophycocyanin from a red alga. N-Terminal sequences of the alpha- and beta-subunits of phycocyanin showed high homogeneity to those of cyanobacteria and red algae, but not to those of cryptomonads. As shown by electron microscopy, the native biliprotein aggregates are organized as rod-shaped structures and located on the cytoplasmic side of the thylakoid membranes predominantly in unstacked thylakoid regions. Biochemical and spectroscopic analysis revealed that they consist of four hexameric units, some of which are composed of phycocyanin alone, others of phycocyanin together with allophycocyanin. Spectroscopic analysis of isolated photosynthetic reaction center complexes demonstrated that the biliproteins are physically attached to the photosystem II complexes, transferring light energy to the photosystem II reaction center chlorophyll d with high efficiency.
Collapse
Affiliation(s)
- Q Hu
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Cyanobacterial phycobilisomes harvest light and cause energy migration usually toward photosystem II reaction centers. Energy transfer from phycobilisomes directly to photosystem I may occur under certain light conditions. The phycobilisomes are highly organized complexes of various biliproteins and linker polypeptides. Phycobilisomes are composed of rods and a core. The biliproteins have their bilins (chromophores) arranged to produce rapid and directional energy migration through the phycobilisomes and to chlorophyll a in the thylakoid membrane. The modulation of the energy levels of the four chemically different bilins by a variety of influences produces more efficient light harvesting and energy migration. Acclimation of cyanobacterial phycobilisomes to growth light by complementary chromatic adaptation is a complex process that changes the ratio of phycocyanin to phycoerythrin in rods of certain phycobilisomes to improve light harvesting in changing habitats. The linkers govern the assembly of the biliproteins into phycobilisomes, and, even if colorless, in certain cases they have been shown to improve the energy migration process. The Lcm polypeptide has several functions, including the linker function of determining the organization of the phycobilisome cores. Details of how linkers perform their tasks are still topics of interest. The transfer of excitation energy from bilin to bilin is considered, particularly for monomers and trimers of C-phycocyanin, phycoerythrocyanin, and allophycocyanin. Phycobilisomes are one of the ways cyanobacteria thrive in varying and sometimes extreme habitats. Various biliprotein properties perhaps not related to photosynthesis are considered: the photoreversibility of phycoviolobilin, biophysical studies, and biliproteins in evolution. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- R MacColl
- Wadsworth Center, New York State Department of Health, Albany, New York, 12201-0509, USA
| |
Collapse
|
37
|
Bald D, Kruip J, Rögner M. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? PHOTOSYNTHESIS RESEARCH 1996; 49:103-18. [PMID: 24271608 DOI: 10.1007/bf00117661] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/1996] [Accepted: 06/25/1996] [Indexed: 05/06/2023]
Abstract
Cyanobacteria, as the most simple organisms to perform oxygenic photosynthesis differ from higher plants especially with respect to the thylakoid membrane structure and the antenna system used to capture light energy. Cyanobacterial antenna systems, the phycobilisomes (PBS), have been shown to be associated with Photosystem 2 (PS 2) at the cytoplasmic side, forming a PS 2-PBS-supercomplex, the structure of which is not well understood. Based on structural data of PBS and PS 2, a model for such a supercomplex is presented. Its key features are the PS 2 dimer as prerequisite for formation of the supercomplex and the antiparallel orientation of PBS-cores and the two PS 2 monomers which form the 'contact area' within the supercomplex. Possible consequences for the formation of 'superstructures' (PS 2-PBS rows) within the thylakoid membrane under so-called 'state 1' conditions are discussed. As there are also indications for specific functional connections of PBS with Photosystem 1 (PS 1) under so-called 'state 2' conditions, we show a model which reconciles the need for a structural interaction between PBS and PS 1 with the difference in structural symmetry (2-fold rotational symmetry of PBS-cores, 3-fold rotational symmetry of trimeric PS 1). Finally, the process of dynamic coupling and uncoupling of PBS to PS 1 and PS 2, based on the presented models, shows analogies to mechanisms for the regulation of photosynthetic electron flow in higher plants-despite the very different organization of their thylakoid membranes in comparison to cyanobacteria.
Collapse
Affiliation(s)
- D Bald
- Institute of Botany, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | | | | |
Collapse
|
38
|
Lebedev N, Van Cleve B, Armstrong G, Apel K. Chlorophyll Synthesis in a Deetiolated (det340) Mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and Photoactive PChlide-F655. THE PLANT CELL 1995; 7:2081-2090. [PMID: 12242369 PMCID: PMC161063 DOI: 10.1105/tpc.7.12.2081] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chlorophyll (Chl) synthesis in Arabidopsis is controlled by two light-dependent NADPH-protochlorophyllide (PChlide) oxidoreductases (PORs), one (POR A) that is active transiently in etiolated seedlings at the beginning of illumination and another (POR B) that also operates in green plants. The function of these two enzymes during the light-induced greening of dark-grown seedlings has been studied in the wild type and a deetiolated (det340) mutant of Arabidopsis. One of the consequences of the det mutation is that POR A is constitutively down-regulated, and therefore, synthesis of the POR A enzyme is shut off. When grown in the dark, the det340 mutant lacks POR A and the photoactive PChlide-F655 species but maintains the second PChlide reductase, POR B. Previously, photoactive PChlide-F655 has often been considered to be the only PChlide form that leads to Chl formation. Despite its deficiency in POR A and photoactive PChlide-F655, the det340 mutant is able to green when placed in the light. Chl accumulation, however, proceeds abnormally. At the beginning of illumination, seedlings of det340 mutants are extremely susceptible to photooxidative damage and accumulate Chl only at extremely low light intensities. They form core complexes of photosystems I and II but are almost completely devoid of light-harvesting structures. The results of this study demonstrate that in addition to the route of Chl synthesis that has been studied extensively in illuminated dark-grown wild-type plants, a second branch of Chl synthesis exists that is driven by POR B and does not require POR A.
Collapse
Affiliation(s)
- N. Lebedev
- Institute for Plant Sciences, Swiss Federal Institute of Technology Zurich (ETH), Universitatstrasse 2, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Garnier F, Dubacq JP, Thomas JC. Evidence for a Transient Association of New Proteins with the Spirulina maxima Phycobilisome in Relation to Light Intensity. PLANT PHYSIOLOGY 1994; 106:747-754. [PMID: 12232367 PMCID: PMC159583 DOI: 10.1104/pp.106.2.747] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Environmental parameters are known to affect phycobilisomes. Variations of their structure and relative composition in phycobiliproteins have been observed. We studied the effect of irradiance variations on the phycobilisome structure in the cyanobacterium Spirulina maxima and discovered the appearance of new polypeptides associated with the phycobilisomes under an increased light intensity. In high light, the six rods of phycocyanin associated with the central core of allophycocyanin contained only one to two phycocyanin hexamers instead of the two to three they contained in low light. The concomitant disappearance of a 33-kD linker polypeptide was observed. Moreover, in high light three polypeptides of 29, 30, and 47 kD, clearly unrelated to linkers, were found to be associated with the phycobilisome fraction: protein labeling showed that a specific association of these polypeptides was induced by high light. One polypeptide, at least, would play the role of a chaperone protein. Not only the synthesis of these proteins, which appeared slightly increased in high light, but also their association with phycobilisome structure are light intensity dependent.
Collapse
Affiliation(s)
- F. Garnier
- Laboratoire de Photoregulation et Dynamique des Membranes Vegetales, Ecole Normale Superieure, Centre National de la Recherche Scientifique Unite de Recherche Associee 1810, Groupement de Recherche 1002, 46 Rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
40
|
Ficner R, Huber R. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:103-6. [PMID: 8243457 DOI: 10.1111/j.1432-1033.1993.tb18356.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional structure of the light-harvesting pigment-protein b-phycoerythrin from the red alga Porphyridium cruentum has been determined at 0.23-nm resolution. The b-phycoerythrin structure is very similar to the structure of B-phycoerythrin from Porphyridium sordidum. Besides three non-identical residues there are only small differences between b-phycoerythrin and B-phycoerythrin alpha and beta subunits, respectively. In the crystals b-phycoerythrin forms an (alpha beta)6 hexamer (molecular mass: 236 kDa), whereas B-phycoerythrin additionally contains a 30-kDa gamma subunit. The comparison of the b-phycoerythrin and B-phycoerythrin electron-density maps clearly reveals, that the gamma subunit is located inside the (alpha beta)6 aggregate.
Collapse
Affiliation(s)
- R Ficner
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
41
|
|
42
|
Grossman AR, Schaefer MR, Chiang GG, Collier JL. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 1993; 57:725-49. [PMID: 8246846 PMCID: PMC372933 DOI: 10.1128/mr.57.3.725-749.1993] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.
Collapse
Affiliation(s)
- A R Grossman
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | | | | | |
Collapse
|
43
|
Reuter W, Nickel-Reuter C. Molecular assembly of the phycobilisomes from the cyanobacterium Mastigocladus laminosus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1993. [DOI: 10.1016/1011-1344(93)80040-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Capuano V, Thomas J, Tandeau de Marsac N, Houmard J. An in vivo approach to define the role of the LCM, the key polypeptide of cyanobacterial phycobilisomes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53093-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Plumley FG, Martinson TA, Herrin DL, Ikeuchi M, Schmidt GW. STRUCTURAL RELATIONSHIPS OF THE PHOTOSYSTEM I AND PHOTOSYSTEM II CHLOROPHYLL a/b AND a/c LIGHT-HARVESTING APOPROTEINS OF PLANTS AND ALGAE. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb02270.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Gindt YM, Zhou J, Bryant DA, Sauer K. Core mutations of Synechococcus sp. PCC 7002 phycobilisomes: a spectroscopic study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 15:75-89. [PMID: 1460543 DOI: 10.1016/1011-1344(92)87007-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Three cyanobacterial strains harboring mutations affecting phycobilisome (PBS) cores were studied using steady state absorption and fluorescence and time-resolved fluorescence. The apcF mutant, missing beta 18, and the apcDF mutant, missing both alpha APB and beta 18, showed only small spectroscopic differences from the wild-type strain; their PBS emission was blue shifted by 10 nm, whereas their absorption spectra and time-resolved fluorescence kinetics were virtually unchanged. The third mutant studied was the apcE/C186S mutant in which the chromophore-binding cysteine-186 in the LCM99 polypeptide has been substituted with serine. The apcE/C186S mutant contained a modified chromophore which significantly changed the spectroscopic properties of the PBS complex. The apcE/C186S PBS absorbed more than the wild-type strain at 705 nm, and the emission spectrum gave two peaks at 660 nm and 715 nm. The time-resolved kinetics of the apcE/C186S mutant PBS were also significantly altered from those of the wild-type strain.
Collapse
Affiliation(s)
- Y M Gindt
- Chemical Biodynamics Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
47
|
Reuter W, Nickel C, Wehrmeyer W. Isolation of allophycocyanin B from Rhodella violacea results in a model of the core from hemidiscoidal phycobilisomes of rhodophyceae. FEBS Lett 1990; 273:155-8. [PMID: 2226847 DOI: 10.1016/0014-5793(90)81073-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two 'trimeric' allophycocyanin complexes could be isolated from the hemidiscoidal phycobilisomes of Rhodella violacea. AP = (alpha *AP alpha 2AP beta 2AP beta *AP) and APB = (alpha *AP alpha AP alpha APB beta 2AP beta *AP). Lc13.5APB. The isolation was performed by combined methods of gradient centrifugation, hydroxylapatite chromatography and 'native' polyacrylamide gel electrophoresis. AP showed the well-known spectral characteristics of allophycocyanin without linker polypeptide. APB is characterized by its long wavelength absorbing shoulder (675 nm) and fluorescence emission (682 nm), respectively. The existence of two low molecular linker polypeptides Lc12.5 and Lc13.5APB in the phycobilisomes of Rhodella violacea, their stoichiometric calculations and the localization of Lc13.5APB in allophycocyanin B facilitated the construction of a model of the phycobilisome core.
Collapse
Affiliation(s)
- W Reuter
- Fachbereich Biologie der Universität, Marburg, FRG
| | | | | |
Collapse
|
48
|
Mimuro M. Studies on excitation energy flow in the photosynthetic pigment system; Structure and energy transfer mechanism. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf02489628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Algarra P, Thomas JC, Mousseau A. Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis. PLANT PHYSIOLOGY 1990; 92:570-6. [PMID: 16667317 PMCID: PMC1062336 DOI: 10.1104/pp.92.3.570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle.
Collapse
Affiliation(s)
- P Algarra
- Departamento de Ecología. Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | | | | |
Collapse
|
50
|
Oelmüller R, Conley PB, Federspiel N, Briggs WR, Grossman AR. Changes in Accumulation and Synthesis of Transcripts Encoding Phycobilisome Components during Acclimation of Fremyella diplosiphon to Different Light Qualities. PLANT PHYSIOLOGY 1988; 88:1077-83. [PMID: 16666425 PMCID: PMC1055719 DOI: 10.1104/pp.88.4.1077] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We have used gene-specific DNA fragments as hybridization probes to quantitate the levels of transcripts encoding several phycobilisome polypeptides in the cyanobacterium Fremyella diplosiphon in response to changes in the light environment. While the levels of transcripts encoding allophycocyanin, the core linker polypeptide, and the constitutive phycocyanin subunits are similar in F. diplosiphon grown either in red or green light, the levels of other transcripts change dramatically. Transcripts encoding the inducible phycocyanin subunits are barely detected in green light-grown cells and very abundant in red light-grown cells, while the level of phycoerythrin mRNA is approximately 10-fold more in green than red light-grown cells. Quantitation of the phycoerythrin and inducible phycocyanin transcripts after transfer of cultures from green to red light and red to green light demonstrate that both increase rapidly upon exposure of cells to inductive illumination. The decrease in the phycoerythrin mRNA level in red light is much slower than the decline in the levels of the inducible phycocyanin transcripts in green light. Since the half-lives of the inducible phycocyanin and phycoerythrin transcripts do not change when F. diplosiphon is exposed to red or green illumination, the steady state levels of these mRNAs are primarily controlled by the rate of transcription. Therefore, the high level of phycoerythrin mRNA maintained for several hours after cultures are transferred from green to red illumination must result from continued transcription of the phycoerythrin gene set. Differences in expression from the phycoerythrin and inducible phycocyanin gene sets in response to light quality are discussed in terms of possible mechanisms involved in their regulation.
Collapse
Affiliation(s)
- R Oelmüller
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305-1297
| | | | | | | | | |
Collapse
|