1
|
|
2
|
Fein A. Inositol 1,4,5-trisphosphate-induced calcium release is necessary for generating the entire light response of limulus ventral photoreceptors. J Gen Physiol 2003; 121:441-9. [PMID: 12719484 PMCID: PMC2217379 DOI: 10.1085/jgp.200208778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The experiments reported here were designed to answer the question of whether inositol 1,4,5-trisphosphate (IP3)-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors. For this purpose the membrane-permeable IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2APB) (Maruyama, T., T. Kanaji, S. Nakade, T. Kanno, and K. Mikoshiba. 1997. J. Biochem. (Tokyo). 122:498-505) was used. Previously, 2APB was found to inhibit the light activated current of Limulus ventral photoreceptors and reversibly inhibit both light and IP3 induced calcium release as well as the current activated by pressure injection of calcium into the light sensitive lobe of the photoreceptor (Wang, Y., M. Deshpande, and R. Payne. 2002. Cell Calcium. 32:209). In this study 2APB was found to inhibit the response to a flash of light at all light intensities and to inhibit the entire light response to a step of light, that is, both the initial transient and the steady-state components of the response to a step of light were inhibited. The light response in cells injected with the calcium buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was reversibly inhibited by 2APB, indicating that these light responses result from IP3-mediated calcium release giving rise to an increase in Cai. The light response obtained from cells after treatment with 100 microM cyclopiazonic acid (CPA), which acts to empty intracellular calcium stores, was reversibly inhibited by 2APB, indicating that the light response after CPA treatment results from IP3-mediated calcium release and a consequent rise in Cai. Together these findings imply that IP3-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors.
Collapse
MESH Headings
- Animals
- Boron Compounds/pharmacology
- Calcium/metabolism
- Calcium/physiology
- Calcium Channels
- Calcium Signaling
- Horseshoe Crabs/physiology
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Light
- Patch-Clamp Techniques
- Photoreceptor Cells, Invertebrate/drug effects
- Photoreceptor Cells, Invertebrate/physiology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Vision, Ocular
Collapse
Affiliation(s)
- Alan Fein
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030-3505, USA.
| |
Collapse
|
3
|
Schraermeyer U, Stieve H, Rack M. Cyclic 3',5'-nucleotide phosphodiesterase: cytochemical localization in photoreceptor cells of the fly Calliphora erythrocephala. JOURNAL OF NEUROCYTOLOGY 1993; 22:845-53. [PMID: 8270949 DOI: 10.1007/bf01186356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of cyclic 3',5'-nucleotide phosphodiesterase activity was determined in photoreceptor cells of the fly Calliphora erythrocephala. With cAMP as substrate, staining was most intense within the phototransducing region of these cells, the rhabdomeral microvilli and also in the extracellular space surrounding the microvilli and in the mitochondria. With cGMP as substrate, the intensity within the rhabdomeres was less marked, while their extracellular surroundings were stained heavily. Thus, compared to cGMP, cAMP is the better substrate for the phosphodiesterase in the rhabdomeres of the fly. For comparison, the same cytochemical method was used to localize the well-known phosphodiesterase activity in retinal tissue of the mouse. Under the same conditions as used for fly photoreceptors, a very intense reaction product was obtained in rod outer segments. With regard to the conflicting reports concerning the light-stimulated changes of cyclic nucleotides in invertebrate photoreceptor cells, the results presented here further argue for an important role of a cyclic nucleotide in the process of phototransduction of invertebrates.
Collapse
Affiliation(s)
- U Schraermeyer
- Institut für Biologie II (Zoologie), RWTH Aachen, Germany
| | | | | |
Collapse
|
4
|
Hanna WJ, Johnson EC, Chaves D, Renninger GH. Photoreceptor cells dissociated from the compound lateral eye of the horseshoe crab, Limulus polyphemus, II: Function. Vis Neurosci 1993; 10:609-20. [PMID: 7687862 DOI: 10.1017/s0952523800005319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A combination of enzymatic digestions and mechanical disruption was used to isolate photoreceptor cells from the compound lateral eye of the horseshoe crab, Limulus polyphemus. The cells were maintained in a culture medium and tested for function using whole-cell and cell-attached patch configurations of the gigaseal technique. The cells dissociated from the eye generated spontaneous voltage and current bumps in the dark, and depolarized in a graded fashion to increasing intensities of light over several decades, producing responses similar to those of cells in vivo. Currents evoked during voltage clamp were similar to those in ventral photoreceptor cells of Limulus, although transient currents in the dark- and light-activated currents were smaller in isolated lateral eye cells, perhaps because of the slow speed and spatial nonuniformity of the clamp in these large cells. In addition to isolated cells, dissociation of the compound eye produced small clusters of cells and isolated ommatidia which were also tested for function. Comparison of the electrical characteristics of isolated cells with those of cells in small clusters and in their ommatidial matrix suggests that the electrical junctions normally connecting photoreceptor cells within an ommatidium are functional in the latter groups, but not in isolated cells. Cell-attached patches of rhabdomeral membrane of isolated cells contained light-activated channels, resembling those observed in ventral photoreceptor cells, but no voltage-activated channels. Similar patches of arhabdomeral membrane contained voltage-activated channels, but no light-activated channels. We conclude that this preparation is suitable for studies of processes involved in generating the light response in invertebrate photoreceptor cells.
Collapse
Affiliation(s)
- W J Hanna
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Abstract
Photoreceptor cells were enzymatically dissociated from the eye of the file clam, Lima scabra. Micrographs of solitary cells reveal a villous rhabdomeric lobe, a smooth soma, and a heavily pigmented intermediate region. Membrane voltage recordings using patch electrodes show resting potentials around -60 mV. Input resistance ranges from 300 M omega to greater than 1 G omega, while membrane capacitance is of the order of 50-70 pF. In darkness, quantum bumps occur spontaneously and their frequency can be increased by dim continuous illumination in a fashion graded with light intensity. Stimulation with flashes of light produces a depolarizing photoresponse which is usually followed by a transient hyperpolarization if the stimulus is sufficiently intense. Changing the membrane potential with current-clamp causes the early phase to invert around +10 mV, while the hyperpolarizing dip disappears around -80 mV. With bright light, the biphasic response is followed by an additional depolarizing wave, often accompanied by a burst of action potentials. Both Na and Ca ions are required in the extracellular solution for normal photoexcitation: the response to flashes of moderate intensity is greatly degraded either when Na is replaced with Tris, or when Ca is substituted with Mg. By contrast, quantum bumps elicited by dim, sustained light are not affected by Ca removal, but they are markedly suppressed in a reversible way in 0 Na sea water. It was concluded that the generation of the receptor potential is primarily dependent on Na ions, whereas Ca is probably involved in a voltage-dependent process that shapes the photoresponse. Light adaptation by repetitive flashes leads to a decrease of the depolarizing phase and a concomitant enhancement of the hyperpolarizing dip, eventually resulting in a purely hyperpolarizing photoresponse. Dark adaptation restores the original biphasic shape of the photoresponse.
Collapse
Affiliation(s)
- E Nasi
- Department of Physiology, Boston University School of Medicine, Massachusetts 02118
| |
Collapse
|
6
|
Kass L, Pelletier JL, Renninger GH, Barlow RB. Efferent neurotransmission of circadian rhythms in Limulus lateral eye. II. Intracellular recordings in vitro. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988; 164:95-105. [PMID: 2466993 DOI: 10.1007/bf00612723] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated efferent neurotransmission in the Limulus lateral eye by studying the action of pharmacological agents on responses of photoreceptor cells in vitro. We recorded transmembrane potentials from single cells in slices of retina that were excised during the day and maintained for several days in a culture medium. Potentials recorded in the absence of pharmacological agents resemble those recorded from cells in vivo during the day. Octopamine, a putative efferent neurotransmitter, induced changes in photoreceptor potentials that mimicked in part those generated at night by a circadian clock located in the brain. Specifically, octopamine (100 to 500 microM) decreased the frequency of occurrence of quantum bumps in the dark and increased the amplitude of photoreceptor responses to intermediate and high light intensities. Similar actions were produced by naphazoline (25 to 100 microM, potent agonist of octopamine), forskolin (8 to 400 microM, activator of adenylate cyclase), IBMX (1 mM, inhibitor of phosphodiesterase), and 8-bromo-cAMP (500 microM, analogue of cAMP). 8-bromo-cGMP (500 microM, analogue of cGMP) decreased the rate of spontaneous quantum bumps only. Our results support the hypothesis that (1) octopamine is an efferent neurotransmitter of circadian rhythms in the Limulus eye and that (2) it activates adenylate cyclase to increase levels of the second messenger, cAMP, in photoreceptor cells. Circadian changes in photoreceptor responses to moderate intensities may be a specific action of cAMP, since cGMP has no effect. Circadian changes in the rate of spontaneous quantum bumps may involve a less specific intermediate, since both cAMP and cGMP reduce bump rate. Characteristics of the retinal slice preparation precluded a detailed study of the effects of pharmacological agents on retinal morphology.
Collapse
Affiliation(s)
- L Kass
- Department of Zoology, University of Maine, Orono 04469
| | | | | | | |
Collapse
|
7
|
Abstract
Efferent fibers from a central circadian clock innervate photoreceptors along the ventral nerve of Limulus and release octopamine when active. We have recorded ERG-like responses from the ventral eye in vivo over several day periods. We have also used intracellular microelectrodes to study changes in ventral photoreceptor function during exogenous applications of octopamine (the putative efferent neurotransmitter), IBMX (a phosphodiesterase inhibitor), and forskolin (an adenylate cyclase activator): (1) Responses to light measured at night from ventral photoreceptors in vivo are greater in amplitude than those recorded during the day; (2) Octopamine and agents that increase intracellular levels of cAMP in ventral photoreceptors decrease the rate of spontaneous (dark) bumps, increase photoreceptor response to light without changing threshold, and often increase the bump duration; and (3) These changes in function of ventral photoreceptors are similar to those that have been observed in the photoreceptor of the lateral eye during circadian clock activity at night, and in vitro in the presence of those same pharmacological agents.
Collapse
Affiliation(s)
- L Kass
- Department of Zoology, University of Maine, Orono 04469
| | | |
Collapse
|
8
|
|
9
|
Johnson EC, Robinson PR, Lisman JE. Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature 1986; 324:468-70. [PMID: 3024014 DOI: 10.1038/324468a0] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hyperpolarizing receptor potential in vertebrate rod photoreceptors appears to be mediated by the second messenger, cyclic GMP. Injection of cGMP into rods or application of cGMP to inside-out membrane patches activates a conductance resembling that produced by light. Light produces a rapid reduction of cGMP in living rods, leading to closure of sodium channels and membrane hyperpolarization. In most invertebrate photoreceptors the response to light is depolarizing. We have investigated whether cGMP is involved in controlling the increase in sodium conductance that underlies this depolarization. We show here that injection of cGMP into Limulus photoreceptors produces a depolarization that mimics the receptor potential. We also show that the cGMP concentration of the squid retina increases rapidly during exposure to light. These results support the hypothesis that cGMP mediates the light-induced depolarization in invertebrate photoreceptors and suggests that vertebrate and invertebrate phototransduction may be more similar than previously thought.
Collapse
|
10
|
Belardetti F, Schacher S, Siegelbaum SA. Action potentials, macroscopic and single channel currents recorded from growth cones of Aplysia neurones in culture. J Physiol 1986; 374:289-313. [PMID: 2427703 PMCID: PMC1182721 DOI: 10.1113/jphysiol.1986.sp016080] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Action potentials, macroscopic ionic currents and single channel currents were recorded from growth cones of Aplysia right upper quadrant (r.u.q.) cells in culture, using the patch-clamp technique. Recordings were obtained from both intact growth cones and from growth cones that had been mechanically isolated from the rest of the neurone. In current-clamp mode, greater than half of the isolated growth cones display an all-or-none action potential when depolarized above 0 mV with outward current pulses. The remaining growth cones display only a graded depolarization that is unaffected by tetrodotoxin (TTX). In whole-cell voltage clamp almost all isolated growth cones display a rapidly activating and inactivating inward current followed by a delayed outward current in response to depolarizations positive to -20 mV. The rapid inward current reverses direction at around +70 to +80 mV and is completely suppressed by 100 microM-TTX, which suggests that this current is carried by the fast Hodgkin-Huxley sodium current channels. The delayed outward current appears to result from the activation of both the delayed rectifier potassium current, IK, and the calcium-activated potassium current, IC. The growth cones do not display any prominent early transient outward current, IA. The sodium current, INA, was studied in isolation by substituting caesium for potassium ions in the pipette solution. INa is half-inactivated at a holding potential of -36 mV, reaches half-maximal activation with a depolarization to 0 mV, and has a mean peak current density of 13 microA/cm2. The time course of inactivation is well described by a single exponential (tau = 3 ms at 0 mV). In cell-attached patches, a rapidly activating and inactivating inward current channel was recorded with an average unit conductance of 6.9 pS. The activation and inactivation parameters of the ensemble averaged current closely match the measured values from the macroscopic sodium current. At very positive potentials we recorded a voltage-dependent outward current channel with a conductance of around 35 pS. No significant inward calcium current was observed in whole-cell measurements and few single calcium channel currents were measured in cell-attached patches, suggesting a sparse distribution of calcium channels in the r.u.q. growth cones.
Collapse
|
11
|
Levitan ES, Levitan IB. Apparent loss of calcium-activated potassium current in internally perfused snail neurons is due to accumulation of free intracellular calcium. J Membr Biol 1986; 90:59-65. [PMID: 2422384 DOI: 10.1007/bf01869686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Internal perfusion of Helix neurons with a solution containing potassium aspartate, MgCl2, ATP, and HEPES causes the calcium-activated potassium current (IK(Ca)) evoked by depolarizing voltage steps to decrease with time. When internal free Ca++ is strongly buffered to 10(-7) M by including 0.5 mM EGTA and 0.225 mM CaCl2 in the internal solution, IK(Ca) remains constant for up to 3 hours of perfusion. In cells where IK(Ca) is small at the start of perfusion, perfusion with the strongly buffered 10(-7) M free Ca++ solution produces increases in IK(Ca) which ultimately saturate. In cells perfused with solutions buffered to 10(-6) M free Ca++, IK(Ca) is low and does not change with perfusion. These results lead us to conclude that IK(Ca) is stable in perfused Helix neurons and that the apparent loss of IK(Ca) seen initially with perfusion is due to accumulation of cytoplasmic calcium. Since the calcium current (ICa) provides the Ca++ which activates IK(Ca) during a depolarizing pulse, ICa is also stable in perfused cells when free intracellular Ca++ is buffered. Perfusion with 1 microM calmodulin (CaM) produces no effect on IK(Ca) with either 10(-7) or 10(-6) M free internal calcium. Inhibiting endogenous CaM by including 50 microM trifluoperazine (TFP) in both the bath and the internal perfusion solution also produces no effect on IK(Ca) with 10(-7) M free internal calcium. It is concluded that CaM plays no role in IK(Ca) activation.
Collapse
|
12
|
Stern JH, Kaupp UB, MacLeish PR. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem. Proc Natl Acad Sci U S A 1986; 83:1163-7. [PMID: 3006029 PMCID: PMC323032 DOI: 10.1073/pnas.83.4.1163] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effect of calcium ions on the cGMP-activated current of outer segment membrane was examined by the excised-patch technique. Changes in the extracellular calcium concentration had marked effects on the cGMP-activated current, while changes in intracellular calcium concentration were ineffective. Changes in calcium concentration in the absence of cGMP had little, if any, effect on membrane conductance. These results suggest that both intracellular cGMP and extracellular calcium can directly affect the conductance underlying the light response in rod cells. The pharmacological agent l-cis-diltiazem reversibly inhibited the cGMP-activated current when applied to the intracellular side of an excised patch. When superfused over intact rod cells, l-cis-diltiazem reversibly blocked much of the normal light response. The isomer, d-cis-diltiazem, did not significantly affect either patches or intact rod cells. Thus, the light-regulated conductance has binding sites for both calcium and cGMP that may interact during the normal light response in rod cells and a site specific for l-cis-diltiazem that can be used to identify and further study the conductance mechanism.
Collapse
|
13
|
Stern J, Chinn K, Robinson P, Lisman J. The effect of nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors. J Gen Physiol 1985; 85:157-69. [PMID: 3981126 PMCID: PMC2215797 DOI: 10.1085/jgp.85.2.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effect of intracellular nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors has been examined. Internal dialysis of photoreceptors with solutions lacking nucleotide leads to an elevation of the quantum bump rate that can be reversed by introduction of nucleotide. Similarly, elevation occurs after treating intact cells with the metabolic inhibitor 2-deoxyglucose. This effect can be reversed by intracellular injection of ATP. The rate of spontaneous quantum bumps in unpoisoned cells can be reduced to below normal levels by injection of ATP. These results support the hypothesis that high-energy nucleotides suppress the rate of spontaneous quantum bumps.
Collapse
|
14
|
Minke B, Stephenson RS. The characteristics of chemically induced noise inMusca photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985. [DOI: 10.1007/bf00610727] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Abstract
Photoreceptor outer segments isolated from squid retina are known to contain a light-activated GTP-binding protein. Here it is shown that these photoreceptors contain around 0.01 mol cyclic GMP per mol rhodopsin. Adding GTP in the dark stimulates the production of 0.0003-0.001 mol cyclic GMP/mol rhodopsin per min. GTP and light cause a 2-fold faster increase in cyclic GMP. These results show that either (1) squid rhodopsin activates a guanylate cyclase, or (2) there is a constant guanylate cyclase activity and photoexcited rhodopsin inhibits a cyclic GMP phosphodiesterase.
Collapse
|
16
|
Light dependence of oxidative metabolism in fly compound eyes studied in vivo by microspectrofluorometry. Naturwissenschaften 1983. [DOI: 10.1007/bf00377410] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Corson DW, Fein A. Chemical excitation of Limulus photoreceptors. I. Phosphatase inhibitors induce discrete-wave production in the dark. J Gen Physiol 1983; 82:639-57. [PMID: 6315860 PMCID: PMC2228711 DOI: 10.1085/jgp.82.5.639] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Molybdate, tungstate, fluoride, vanadate, and GTP-gamma-S [guanosine-5'-0-(3-thiotriphosphate)] were injected into Limulus ventral photoreceptors by ionophoresis from microelectrodes. All of these drugs induce discrete waves of depolarization similar in waveform to, but smaller in amplitude than, those normally elicited by dim light. As for light-evoked waves, the amplitude of drug-induced waves decreases with light adaptation. For the compounds examined so far (fluoride, vanadate, GTP-gamma-S), the drug-induced waves share a reversal potential with light-induced discrete waves at about +15 mV. The induction of discrete waves by fluoride, vanadate, and molybdate was found to be reversible, whereas the induction of waves by GTP-gamma-S was not. Unlike fluoride and vanadate, which induce waves when added to the bath, molybdate appears to be ineffective when applied extracellularly. Because of the similarity of the drug-induced waves to light-induced discrete waves, we conclude that the drug-induced waves arise from a process similar or perhaps identical to visual excitation of the photoreceptor. However, the smaller size of drug-induced waves suggests that they arise at a stage of phototransduction subsequent to the isomerization of rhodopsin. On the basis of the chemical properties and action of the drugs, we suggest that discrete waves may arise through the activation of a GTP-binding protein.
Collapse
|