1
|
Yao DW, Balanis NG, Eskin E, Graeber TG. A linear mixed model approach to gene expression-tumor aneuploidy association studies. Sci Rep 2019; 9:11944. [PMID: 31420589 PMCID: PMC6697733 DOI: 10.1038/s41598-019-48302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 08/02/2019] [Indexed: 11/09/2022] Open
Abstract
Aneuploidy, defined as abnormal chromosome number or somatic DNA copy number, is a characteristic of many aggressive tumors and is thought to drive tumorigenesis. Gene expression-aneuploidy association studies have previously been conducted to explore cellular mechanisms associated with aneuploidy. However, in an observational setting, gene expression is influenced by many factors that can act as confounders between gene expression and aneuploidy, leading to spurious correlations between the two variables. These factors include known confounders such as sample purity or batch effect, as well as gene co-regulation which induces correlations between the expression of causal genes and non-causal genes. We use a linear mixed-effects model (LMM) to account for confounding effects of tumor purity and gene co-regulation on gene expression-aneuploidy associations. When applied to patient tumor data across diverse tumor types, we observe that the LMM both accounts for the impact of purity on aneuploidy measurements and identifies a new association between histone gene expression and aneuploidy.
Collapse
Affiliation(s)
- Douglas W Yao
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. .,California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Dhuppar S, Mazumder A. Measuring cell cycle-dependent DNA damage responses and p53 regulation on a cell-by-cell basis from image analysis. Cell Cycle 2018; 17:1358-1371. [PMID: 29963960 DOI: 10.1080/15384101.2018.1482136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA damage in cells occurs from both endogenous and exogenous sources, and failure to repair such damage is associated with the emergence of different cancers, neurological disorders and aging. DNA damage responses (DDR) in cells are closely associated with the cell cycle. While most of our knowledge of DDR comes from bulk biochemistry, such methods require cells to be arrested at specific stages for cell cycle studies, potentially altering measured responses; nor is cell to cell variability in DDR or direct cell-level correlation of two response metrics measured in such methods. To overcome these limitations we developed a microscopy-based assay for determining cell cycle stages over large cell numbers. This method can be used to study cell-cycle-dependent DDR in cultured cells without the need for cell synchronization. Upon DNA damage γH2A.X induction was correlated to nuclear enrichment of p53 on a cell-by-cell basis and in a cell cycle dependent manner. Imaging-based cell cycle staging was combined with single molecule P53 mRNA detection and immunofluorescence for p53 protein in the very same cells to reveal an intriguing repression of P53 transcript numbers due to reduced transcription across different stages of the cell cycle during DNA damage. Our study hints at an unexplored mechanism for p53 regulation and underscores the importance of measuring single cell level responses to DNA damage.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- a TIFR Centre for Interdisciplinary Sciences , TIFR Hyderabad , Hyderabad , India
| | - Aprotim Mazumder
- a TIFR Centre for Interdisciplinary Sciences , TIFR Hyderabad , Hyderabad , India
| |
Collapse
|
3
|
Sui G, Cheng G, Yuan J, Hou X, Kong X, Niu H. Interleukin (IL)-13, Prostaglandin E2 (PGE2), and Prostacyclin 2 (PGI2) Activate Hepatic Stellate Cells via Protein kinase C (PKC) Pathway in Hepatic Fibrosis. Med Sci Monit 2018; 24:2134-2141. [PMID: 29633755 PMCID: PMC5909417 DOI: 10.12659/msm.906442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein kinase C (PKC), interleukin (IL)-13, prostaglandin E2 (PGE2), and prostacyclin 2 (PGI2) can all play crucial roles in pulmonary fibrosis. However, their functions remain unclear in hepatic fibrosis mediated by hepatic stellate cells (HSCs), which has been demonstrated to be related to transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF). MATERIAL AND METHODS All the experiments were based on LX-2 Hepatic stellate cells. The expression of TGF-β1 and PDGF were assessed by ELISA, RT-PCR, and Western blotting in human HSCs treated by IL-13, PGE2, and PGI2, respectively. At the same time, bridge assay and CCK8 assay were used to detect the cell proliferation and activity, PKC activity assay was used to test the activity of PKC, and PKC agonist and antagonist were used to verify the results obtained previously. RESULTS We found that IL-13, PGE2, and PGI2 significantly enhanced the expression of TGF-β1 and PDGF in human HSCs, which also clearly improved the proliferation and cell activity of HSCs. Moreover, PKC activity was significantly increased following IL-13, PGE2, and PGI2 treatments. We also found that the expression of TGF-β1 and PDGF, as well as the proliferation and cell activity of HSCs, were significantly enhanced by the PKC agonist phorbol 12-myristate 13-acetate (PMA), but suppressed by the PKC antagonist calphostin C. CONCLUSIONS We found that IL-13, PGE2, and PGI2 stimulated HSCs proliferation and secretion of TGF-β1 and PDGF by activating PKC, which predicted their potential roles in hepatic fibrosis.
Collapse
Affiliation(s)
- Guode Sui
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Guang Cheng
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Junjun Yuan
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Xuena Hou
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Xiaochen Kong
- Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Shandong, China (mainland)
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
4
|
Guo Y, Harwalkar J, Stacey DW, Hitomi M. Destabilization of cyclin D1 message plays a critical role in cell cycle exit upon mitogen withdrawal. Oncogene 2005; 24:1032-42. [PMID: 15592507 DOI: 10.1038/sj.onc.1208299] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclin D1 is critical for entry into, continuation of, and exit from the cell division cycle. Mitogen stimulation of quiescent cells induces cyclin D1 expression in a transcription-dependent manner. In actively cycling cells, on the other hand, fluctuation of cyclin D1 protein levels through the cell cycle is post-transcriptionally regulated. Cyclin D1 is expressed at low levels during S phase to allow efficient DNA synthesis, and induced to high levels in G2 phase through Ras activity to commit the cells to continuing cell cycle progression. Once induced in G2 phase, cyclin D1 expression becomes Ras independent through the next G1 phase, where it promotes G1/S transition. When mitogenic signaling is abrogated, however, cyclin D1 fails to increase during G2 phase and the cell becomes arrested in the next G1 phase. In this way, the expression levels of cyclin D1 in G2 phase determine the fate of the next cell cycle. Despite its importance of the mechanism of cyclin D1 suppression upon mitogen withdrawal is unknown. Using both quantitative fluorescence microscopy and biochemical analyses, we have found that, upon serum deprivation, cyclin D1 mRNA is downmodulated without any decline in its rate of transcription. Furthermore, cyclin D1 mRNA half-life becomes shorter when serum is removed. These results demonstrate that cyclin D1 message destabilization plays a critical role in cyclin D1 suppression during G2 phase of serum-deprived cultures, and therefore in the withdrawal from the cell cycle.
Collapse
Affiliation(s)
- Yang Guo
- The Department of Molecular Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
5
|
Guo Y, Stacey DW, Hitomi M. Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene 2002; 21:7545-56. [PMID: 12386817 DOI: 10.1038/sj.onc.1205907] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 07/11/2002] [Accepted: 07/18/2002] [Indexed: 01/25/2023]
Abstract
During continuous proliferation, cyclin D1 protein is induced to high levels in a Ras-dependent manner as cells progress from S phase to G2 phase. To understand the mechanism of the Ras-dependent cyclin D1 induction, cyclin D1 mRNA levels were determined by quantitative image analysis following fluorescent in situ hybridization. Although a slight increase in mRNA expression levels was detected during the S/G2 transition, this increase could not explain the more robust induction of cyclin D1 protein levels. This suggested the involvement of post-transcriptional regulation as a mechanism of cyclin D1 protein induction. To directly test this hypothesis, the cyclin D1 transcription rate was determined by run-on assays. The transcription rate of cyclin D1 stayed steady during the synchronous transition from S the G2 phase. We further demonstrated that cyclin D1 protein levels could increase during G2 phase in the absence of new mRNA synthesis. alpha-Amanitin, a transcription inhibitor, did not suppress cyclin D1 protein elevation as the cells progressed from S to G2 phase, even though the inhibitor was able to completely block cyclin D1 protein induction during reentry into the cell cycle from quiescence. The half life of cyclin D1 protein was shortest during S phase indicating that a change in protein stability might play a role in post-translational induction of cyclin D1 in G2 phase. These data indicate a fundamental difference in the regulation of cyclin D1 production during continuous cell cycle progression and re-initiation of the cell cycle.
Collapse
Affiliation(s)
- Yang Guo
- The Department of Molecular Biology, NC2-150 The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| | | | | |
Collapse
|
6
|
Harrison P, Gove C, Bomford A. Hepatic expression of hepatocyte growth factor gene mRNA in acute liver failure. Dig Dis Sci 2000; 45:1913-20. [PMID: 11117560 DOI: 10.1023/a:1005504311190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Hepatocyte growth factor plays a key role in liver regeneration but the role of liver in its synthesis in acute liver failure is unclear. We therefore measured hepatic expression of hepatocyte growth factor mRNA in this condition in comparison to H3 histone mRNA, a marker of cellular proliferation. Hepatocyte growth factor mRNA levels were quantified by specific RNase protection assay in nine patients with acute liver failure and found to be similar to those in six normal controls. Hepatocyte proliferation, as assessed by H3 histone mRNA expression, was not detected in normal liver but was present in six of nine patients with acute liver failure (P < 0.05) and was not correlated with expression of hepatocyte growth factor mRNA (rs = -0.28). Liver is unlikely to be the source of the high serum hepatocyte growth factor levels observed in acute liver failure.
Collapse
Affiliation(s)
- P Harrison
- Academic Department of Hepatology, Institute of Liver Studies, GKT School of Medicine, London, UK
| | | | | |
Collapse
|
7
|
Miwa Y, Harrison PM, Farzaneh F, Langley PG, Williams R, Hughes RD. Plasma levels and hepatic mRNA expression of transforming growth factor-beta1 in patients with fulminant hepatic failure. J Hepatol 1997; 27:780-8. [PMID: 9382963 DOI: 10.1016/s0168-8278(97)80313-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Transforming growth factor-beta1 is an important cytokine involved in cell growth and inflammation which has been shown to be inhibitory to hepatic DNA synthesis. The aim of this study was to investigate the plasma levels and hepatic mRNA expression of transforming growth factor-beta1 in patients with fulminant hepatic failure in whom liver regeneration may be impaired. METHODS Plasma levels of transforming growth factor-beta1 and human hepatocyte growth factor were measured in 57 fulminant hepatic failure patients and 20 healthy volunteers by ELISA. Northern blot analysis of transforming growth factor-beta1 and H3 histone, a marker for liver proliferation, was performed in liver tissue of 14 fulminant hepatic failure patients. RESULTS The plasma levels of total transforming growth factor-beta1 in fulminant hepatic failure patients on admission (median 38.8 ng/ml, range 8.4-108 ng/ml) were significantly higher than those in control subjects (23.0 ng/ml, 8.5-34.9 ng/ml, p<0.001). Significantly higher levels were observed in non-A, non-B hepatitis patients (57.9 ng/ml, 38.8-108 ng/ml, n=10, p<0.001) compared to patients with paracetamol overdose (37.1 ng/ml, 8.4-72.5 ng/ml, n=47). In contrast, the plasma levels of free transforming growth factor beta1 were greater in paracetamol overdose (623 pg/ml, 46.7-1241 pg/ml, n=21) than in non-A, non-B hepatitis (131 pg/ml, 77.2-254 pg/ml, n=9), with both being higher than control (72.3 pg/ml, 28.7-108, n=7, p<0.001). The plasma levels of human hepatocyte growth factor in patients with paracetamol overdose (7.04 ng/ml, 1.00-62.4 ng/ml) were significantly higher than those in patients with non-A, non-B hepatitis (4.48 ng/ml, 0.74-9.10 ng/ml, p<0.05). Northern blots showed increased mRNA expression of transforming growth factor-beta1 in paracetamol-overdose patients (n=8, p<0.05), but not in patients with non-A non-B hepatitis (n=6), compared to controls (n=4). CONCLUSIONS The increased circulating plasma TGF-beta1 in FHF may be part of the tissue repair process in fulminant hepatic failure. In patients with non-A, non-B hepatitis, the increased total transforming growth factor-beta1 together with a less elevated hepatocyte growth factor could be related to impaired liver regeneration in this group.
Collapse
Affiliation(s)
- Y Miwa
- Institute of Liver Studies, King's College School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
8
|
Schmidt BF, Chao J, Zhu Z, DeBiasio RL, Fisher G. Signal amplification in the detection of single-copy DNA and RNA by enzyme-catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide. J Histochem Cytochem 1997; 45:365-73. [PMID: 9071318 DOI: 10.1177/002215549704500304] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We demonstrate that the CAtalyzed Reporter Deposition method (CARD), utilizing the novel fluorescent reporter Cy3.29-tyramide, is successful in the Fluorescent in Situ Hybridization (FISH) detection of RNA and single-copy DNA. Histone 4 expression is detected in RNA extracts of 5-phase, synchronized HeLa cells by dot-blot analysis. Gene expression of histone 4 in HeLa cells is demonstrated by FISH via CARD, utilizing oligonucleotide probes. Fluorescence intensity measurements on CARD-amplified histone 4 RNA detection showed (a) a 25-fold amplification of the signal brightness by biotinylated oligonucleotide probes and (b) a sixfold amplification of the signal brightness by horseradish peroxidase (HRP)-labeled histone 4 probes vs the directly stained control. The sensitivity of the CARD method is demonstrated by the FISH detection of single-copy DNA on human corneal fibroblast and HeLa S5 interphase nuclei. Chromosomal localization of the single copy DNA is demonstrated on HeLa S3 metaphase chromosome spreads.
Collapse
Affiliation(s)
- B F Schmidt
- Center for Light Microscope, Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
9
|
Dirks RW, Raap AK. Cell-cycle-dependent gene expression studied by two-colour fluorescent detection of a mRNA and histone mRNA. Histochem Cell Biol 1995; 104:391-5. [PMID: 8574889 DOI: 10.1007/bf01458133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated whether a probe specific for histone H3 mRNA could be used as a marker to study cell-cycle dependency of gene expression by double-fluorescent RNA in situ hybridization (FISH). First, we showed that all S-phase cells in cell cultures having incorporated BrdU revealed histone H3 mRNA expression by RNA FISH, indicating that histone H3 expression is a reliable marker for S-phase cells. Second, we analysed whether the expression of human cytomegalovirus immediate early genes in rat 9G cells, which are known to be induced in an S-phase dependent way by cycloheximide, correlated with the expression of histone H3 mRNA. Double-hybridization experiments with a digoxigenin-labelled probe for IE mRNA and a fluoresceinated probe for histone H3 mRNA revealed that cells expressing IE mRNA also expressed histone H3 mRNA. Third, we examined the cell-cycle dependency of luciferase gene expression in X1 cells. Luciferase mRNA is heterogeneously expressed in X1 cell cultures, but cells expressing luciferase did not necessarily express histone H3 mRNA. This indicates that luciferase gene expression in X1 cells is not induced during S-phase. The results of our study show that histone H3 mRNA expression can be successfully used as a marker to establish cell-cycle dependency of gene expression by double-RNA FISH.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, University of Leiden, The Netherlands
| | | |
Collapse
|
10
|
Yu H, Ernst L, Wagner M, Waggoner A. Sensitive detection of RNAs in single cells by flow cytometry. Nucleic Acids Res 1992; 20:83-8. [PMID: 1738608 PMCID: PMC310329 DOI: 10.1093/nar/20.1.83] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A rapid and sensitive fluorescent in situ hybridization method has been developed to probe RNA contents of individual cells by flow cytometry. Fixed cells in suspension were hybridized with 5' end-fluorophore-labeled oligodeoxynucleotides complementary to defined regions of the RNA of interest and analyzed by flow cytometry. With this method, we monitored combinations of histone H4 mRNA, 18S rRNA and 28S rRNA levels in synchronized HeLa S3 cells by multicolor analysis. A fluorescence signal equivalent to 1800 copies of histone H4 mRNA per cell was detected with signal-to-background ratio of 5.4. If non-specific binding of the fluorophore-labeled probe can be reduced, as few as 100 copies of mRNA of the size of H4 could be detected in individual cells by flow cytometry.
Collapse
Affiliation(s)
- H Yu
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | | | | |
Collapse
|
11
|
Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991; 324:933-40. [PMID: 1900574 DOI: 10.1056/nejm199104043241401] [Citation(s) in RCA: 489] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation of unknown pathogenesis. Transforming growth factor (TGF) beta 1 induces the production of extracellular matrix proteins by liver cells and has been implicated in the pathogenesis of hepatic fibrosis in laboratory animals. TGF alpha is a hepatocyte mitogen that participates in liver regeneration. METHODS Using Northern blot analysis, we studied the expression of TGF beta 1 messenger RNA (mRNA) in liver specimens from 42 patients with chronic hepatitis and cirrhosis and 12 subjects with either normal or fatty livers. The results were correlated with measurements of procollagen Type I mRNA in liver tissue, procollagen Type III peptide in serum, and the degree of histologic injury. We also investigated whether TGF alpha mRNA would be detectable in biopsy specimens of livers with proliferative activity. RESULTS TGF beta 1 mRNA expression correlated closely with the expression of procollagen Type I mRNA (r = 0.94) and serum procollagen Type III peptide (r = 0.89) and with the histologic activity index (r = 0.73). All patients with increased fibrogenic activity (serum procollagen Type III peptide level, greater than 11.9 micrograms per liter) had increased levels of TGF beta 1 mRNA (2 to 14 times the levels in the control group or in patients with normal fibrogenic activity), and both TGF alpha and H3 histone (a marker of DNA synthesis) mRNAs were detectable in patients with regenerative nodules. Six of eight patients with hepatitis C treated with interferon alfa for one year had sustained clinical responses with normalization of serum procollagen Type III peptide and aminotransferase activity. All these patients had normal levels of TGF beta 1 mRNA in liver specimens obtained at the end of the year. CONCLUSIONS TGF beta 1 may have an important role in the pathogenesis of fibrosis in patients with chronic liver disease, and TGF alpha expression may be associated with liver regeneration in these patients.
Collapse
Affiliation(s)
- A Castilla
- Department of Internal Medicine, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
12
|
Abstract
We have studied the structure and expression of histone H2B mRNA and genes in the parasitic protozoan Leishmania enrietti. A genomic clone containing three tandemly repeated genes has been sequenced and shown to encode three identical histone proteins and two types of closely related mRNA sequence. We have also sequenced three independent cDNA clones and demonstrated that the Leishmania H2B mRNAs are polyadenylated, similar to the basal histone mRNAs of higher eucaryotes and the histone mRNAs of yeast. In addition, the Leishmania mRNAs contain inverted repeats near the poly(A) tail which could form stem-loops similar in secondary structure, but not in sequence, to the 3' stem-loops of nonpolyadenylated replication-dependent histones of higher eucaryotes. Unlike the replication-dependent histones, the Leishmania histone H2B mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis. The histone mRNAs are differentially expressed during the parasite life cycle and accumulate to a higher level in the extracellular promastigotes (the form which in nature lives within the gut of the insect vector) than in the intracellular amastigotes (the form that lives within the mammalian host macrophages).
Collapse
|
13
|
Kodama H, Ito M, Hattori T, Nakamura K, Komamine A. Isolation of Genes that Are Preferentially Expressed at the G(1)/S Boundary during the Cell Cycle in Synchronized Cultures of Catharanthus roseus Cells. PLANT PHYSIOLOGY 1991; 95:406-11. [PMID: 16667998 PMCID: PMC1077545 DOI: 10.1104/pp.95.2.406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A cDNA library was screened for genes that may be involved in the progression of the cell cycle of cells of higher plants. The Catharanthus roseus L. (G) Don. cells were synchronized by the double phosphate starvation method, and a lambdagt11 cDNA library was prepared using poly(A)(+) RNA from cells in the S phase of the cell cycle. Two independent sequences, cyc02 and cyc07, were identified by differential screening. The levels of cyc02 and cyc07 mRNAs increased dramatically, but transiently, at the G(1)/S boundary of the cell cycle. High levels of cyc02 mRNA, but not of cyc07 mRNA, were also present in cells arrested at the G(1) phase by phosphate starvation. In an asynchronous batch culture, cyc02 and cyc07 mRNAs accumulated transiently at different stages of the growth cycle, cyc02 mRNA early in the stationary phase, and cyc07 mRNA in the midlogarithmic phase. When the proliferation of cells was arrested by nutrient starvation, i.e. by sucrose or nitrogen starvation, the relative amounts of the cyc02 and cyc07 mRNAs decreased. These results indicate that cyc02 and cyc07 contain nucleotide sequences from growth-related genes. The analysis of nucleotide sequence of cyc02 shows that the predicted product of this gene is basic and is composed of 101 amino acids. No significant homology to other known proteins was detected.
Collapse
Affiliation(s)
- H Kodama
- Biological Institute, Faculty of Science, Tohoku University, Sendai 980, Japan
| | | | | | | | | |
Collapse
|
14
|
Peacocke M, Campisi J. Cellular senescence: a reflection of normal growth control, differentiation, or aging? J Cell Biochem 1991; 45:147-55. [PMID: 2055943 DOI: 10.1002/jcb.240450205] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Normal cells, with few exceptions, cannot proliferate indefinitely. Cell populations--in vivo and in culture--generally undergo only a limited number of doublings before proliferation invariably and irreversibly ceases. This process has been termed the finite lifespan phenotype or cellular senescence. There is long-standing, albeit indirect, evidence that cellular senescence plays an important role in complex biological processes as diverse as normal growth control, differentiation, development, aging, and tumorigenesis. In recent years, it has been possible to develop a molecular framework for understanding some of the fundamental features of cellular senescence. This framework derives primarily from the physiology, genetics, and molecular biology of cells undergoing senescence in culture. Our understanding of senescence, and the mechanisms that control it, is still in its infancy. Nonetheless, recent data raise some intriguing possibilities regarding potential molecular bases for the links between senescence in culture and normal and abnormal growth control, differentiation, and aging.
Collapse
Affiliation(s)
- M Peacocke
- Department of Dermatology, Boston University School of Medicine, Massachusetts 02118
| | | |
Collapse
|
15
|
Abstract
We have studied the structure and expression of histone H2B mRNA and genes in the parasitic protozoan Leishmania enrietti. A genomic clone containing three tandemly repeated genes has been sequenced and shown to encode three identical histone proteins and two types of closely related mRNA sequence. We have also sequenced three independent cDNA clones and demonstrated that the Leishmania H2B mRNAs are polyadenylated, similar to the basal histone mRNAs of higher eucaryotes and the histone mRNAs of yeast. In addition, the Leishmania mRNAs contain inverted repeats near the poly(A) tail which could form stem-loops similar in secondary structure, but not in sequence, to the 3' stem-loops of nonpolyadenylated replication-dependent histones of higher eucaryotes. Unlike the replication-dependent histones, the Leishmania histone H2B mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis. The histone mRNAs are differentially expressed during the parasite life cycle and accumulate to a higher level in the extracellular promastigotes (the form which in nature lives within the gut of the insect vector) than in the intracellular amastigotes (the form that lives within the mammalian host macrophages).
Collapse
|
16
|
Viel A, Maestro R, Toffoli G, Grion G, Boiocchi M. c-myc overexpression is a tumor-specific phenomenon in a subset of human colorectal carcinomas. J Cancer Res Clin Oncol 1990; 116:288-94. [PMID: 2196264 DOI: 10.1007/bf01612905] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcriptional activity of the c-myc proto-oncogene was examined in 25 primary human colorectal carcinomas and their corresponding normal mucosae. The purpose was to determine whether the elevated levels of c-myc expression, frequently detected in this type of tumor, might be the consequence of alterations in the cell growth rate or the effect of a real transcriptional deregulation of the gene. In about 44% of the tumors the elevated c-myc expression was consequent to the enhanced growth rate of the neoplastic tissue, as estimated by the expression of the S-phase-specific histone H3 gene. In the other 56%, c-myc overexpression did not entirely depend on the proliferative activity of the neoplastic population. In this latter group, c-myc deregulation did not reside in structural modifications of the putative regulatory regions of the gene. Therefore, c-myc overexpression, at least in a subset of colorectal cancer, seems to be consequent to alterations in transregulative phenomena exerted on the c-myc gene by other genetic loci.
Collapse
Affiliation(s)
- A Viel
- Division of Experimental Oncology 1, Centro di Riferimento Oncologico, Aviano
| | | | | | | | | |
Collapse
|
17
|
Levine RA, Seshadri T, Hann SR, Campisi J. Posttranscriptional changes in growth factor-inducible gene regulation caused by antiproliferative interferons. CELL REGULATION 1990; 1:215-26. [PMID: 2100198 PMCID: PMC361447 DOI: 10.1091/mbc.1.2.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growth factors stimulate quiescent fibroblasts to progress through G0/G1, in part by inducing the expression of genes whose products are necessary or permissive for cell proliferation. Interferons, by contrast, inhibit progress through G0/G1 by mechanisms that are poorly understood. We show, in BALB/c murine 3T3 fibroblasts (A31 cells), that alpha/beta-interferon (IFN) had no effect the growth factor-dependent induction of several messenger ribonucleic acids (mRNAs), including those encoding ornithine decarboxylase (odc), fibronectin and the c-fos and c-myc protooncogenes. However, IFN caused an abnormal accumulation of fibronectin and c-myc mRNA on polysomes and markedly increased the stability of c-myc mRNA. Moreover, despite high, induced levels of mRNA, IFN inhibited the serum-stimulated rise in odc enzyme activity and the increased rate of fibronectin protein synthesis. By contrast, IFN had no effect on c-fos protein synthesis, nor did it affect the synthesis of most, but not all, proteins detectable by two-dimensional gel electrophoresis. The data suggest IFN inhibits proliferation by suppressing the expression of a subset of growth factor-inducible genes through a selective, posttranscriptional mechanism.
Collapse
Affiliation(s)
- R A Levine
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118
| | | | | | | |
Collapse
|
18
|
Stein GS, Stein JL, Lian JB, Van Wijnen AJ, Wright KL, Pauli U. Modifications in molecular mechanisms associated with control of cell cycle regulated human histone gene expression during differentiation. CELL BIOPHYSICS 1989; 15:201-23. [PMID: 2480181 DOI: 10.1007/bf02989684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone proteins are preferentially synthesized during the S-phase of the cell cycle, and the temporal and functional coupling of histone gene expression with DNA replication is mediated at both the transcriptional and posttranscriptional levels. The genes are transcribed throughout the cell cycle, and a 3-5-fold enhancement in the rate of transcription occurs during the first 2 h following initiation of DNA synthesis. Control of histone mRNA stability also accounts for some of the 20-100fold increase in cellular histone mRNA levels during S-phase and for the rapid and selective degradation of the mRNAs at the natural completion of DNA replication or when DNA synthesis is inhibited. Two segments of the proximal promoter, designated Sites I and II, influence the specificity and rate of histone gene transcription. Occupancy of Sites I and II during all periods of the cell cycle by three transacting factors (HiNF-A, HiNF-C, and HiNF-D) suggests that these protein-DNA interactions are responsible for the constitutive transcription of histone genes. Binding of HiNF-D in Site II is selectively lost, whereas occupancy of Site I by HiNF-A and -C persists when histone gene transcription is down regulated when cells terminally differentiate. These results are consistent with a primary role for interactions of HiNF-D with a proximal promoter element in rendering cell growth regulated human histone genes transcribable in proliferating cells.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester
| | | | | | | | | | | |
Collapse
|
19
|
S-phase-specific transcription regulatory elements are present in a replication-independent testis-specific H2B histone gene. Mol Cell Biol 1989. [PMID: 2725487 DOI: 10.1128/mcb.9.3.1005] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The testis-specific H2B histone (TH2B) gene is expressed in pachytene spermatocytes during meiotic prophase I in the absence of any significant DNA synthesis. Unlike somatic histones, synthesis of testis-specific histones is not affected by inhibitors of DNA synthesis. A genomic rat TH2B gene was cloned by using a DNA fragment derived from TH2B cDNA as a probe. Expression of the cloned TH2B was investigated by gene transfer experiments. From these studies, we found that the 5' upstream region of the cloned TH2B gene contained S-phase-specific transcription elements which regulated expression of a reporter gene in an S-phase-specific manner. The S-phase-regulatory element was found to be located in two regions containing CCAAT elements between -153 and -110 base pairs (bp) and an octamer element (ATTTGCAT) between -109 and -84 bp. The two regions were required for a maximal stimulation of transcription of the cloned TH2B gene in S phase. On the other hand, only the octamer element was reported be important for the S-phase-specific transcription of human H2B gene. Since the synthesis of the TH2B histone is independent of DNA synthesis and specific for pachytene spermatocytes in vivo, the presence of the S-phase-specific transcription regulatory elements in the TH2B gene is surprising.
Collapse
|
20
|
Kodama H, Kawakami N, Watanabe A, Komamine A. Phase-Specific Polypeptides and Poly(A) RNAs during the Cell Cycle in Synchronous Cultures of Catharanthus roseus Cells. PLANT PHYSIOLOGY 1989; 89:910-7. [PMID: 16666641 PMCID: PMC1055943 DOI: 10.1104/pp.89.3.910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [(35)S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G(2) phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G(2) phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G(2) phase. In the G(1) and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)(+) RNA isolated at each phase. Three poly(A)(+) RNAs increased in amount from the G(1) to the S phase and one poly (A)(+) RNA increased preferentially from the G(2) phase to cytokinesis.
Collapse
Affiliation(s)
- H Kodama
- Biological Institute, Faculty of Science, Tohoku University, Sendai, 980, Japan
| | | | | | | |
Collapse
|
21
|
Hwang I, Chae CB. S-phase-specific transcription regulatory elements are present in a replication-independent testis-specific H2B histone gene. Mol Cell Biol 1989; 9:1005-13. [PMID: 2725487 PMCID: PMC362690 DOI: 10.1128/mcb.9.3.1005-1013.1989] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The testis-specific H2B histone (TH2B) gene is expressed in pachytene spermatocytes during meiotic prophase I in the absence of any significant DNA synthesis. Unlike somatic histones, synthesis of testis-specific histones is not affected by inhibitors of DNA synthesis. A genomic rat TH2B gene was cloned by using a DNA fragment derived from TH2B cDNA as a probe. Expression of the cloned TH2B was investigated by gene transfer experiments. From these studies, we found that the 5' upstream region of the cloned TH2B gene contained S-phase-specific transcription elements which regulated expression of a reporter gene in an S-phase-specific manner. The S-phase-regulatory element was found to be located in two regions containing CCAAT elements between -153 and -110 base pairs (bp) and an octamer element (ATTTGCAT) between -109 and -84 bp. The two regions were required for a maximal stimulation of transcription of the cloned TH2B gene in S phase. On the other hand, only the octamer element was reported be important for the S-phase-specific transcription of human H2B gene. Since the synthesis of the TH2B histone is independent of DNA synthesis and specific for pachytene spermatocytes in vivo, the presence of the S-phase-specific transcription regulatory elements in the TH2B gene is surprising.
Collapse
Affiliation(s)
- I Hwang
- Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7260
| | | |
Collapse
|
22
|
LaBella F, Sive HL, Roeder RG, Heintz N. Cell-cycle regulation of a human histone H2b gene is mediated by the H2b subtype-specific consensus element. Genes Dev 1988; 2:32-9. [PMID: 3128460 DOI: 10.1101/gad.2.1.32] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian histone gene transcription is increased approximately fivefold during the transition from the G1 phase to the S phase of the cell cycle. In this study, we present a detailed in vivo analysis of the human histone H2b promoter, which establishes that transcriptional regulation of this gene is mediated by a subtype-specific consensus element containing the core octanucleotide ATTTGCAT. Our results demonstrate that the activity of this sequence is specific for S phase. Comparative analysis of different replication variant mammalian histone gene promoters and our knowledge of the transcription factors interacting with the human histone H2b and H4 promoters allow us to conclude that coordinate regulation of histone gene transcription in higher eukaryotes is mediated by distinct factors. We propose a simple model for transcriptional regulation of mammalian histone gene expression, which incorporates both the distinct features of the individual histone gene promoters and the apparent functional equivalence of the specific sequence elements regulating transcription of each histone gene subtype.
Collapse
Affiliation(s)
- F LaBella
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
23
|
Lawrence JB, Singer RH, Villnave CA, Stein JL, Stein GS. Intracellular distribution of histone mRNAs in human fibroblasts studied by in situ hybridization. Proc Natl Acad Sci U S A 1988; 85:463-7. [PMID: 3422437 PMCID: PMC279570 DOI: 10.1073/pnas.85.2.463] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have used in situ hybridization to study the intracellular distribution of mRNAs for cell cycle-dependent core and H1 histone proteins in human WI-38 fibroblasts. Because histones are abundant nuclear proteins and histone mRNA expression is tightly coupled to DNA synthesis, it was of interest to determine whether histone mRNAs are localized near the nucleus. Cells were hybridized with tritiated DNA probes specific for either histone H1, histone H4, actin, or poly(A)+ mRNA and were processed for autoradiography. In exponentially growing cultures, the fraction of histone mRNA-positive cells correlated well with the fraction of cells in S phase and was eliminated by hydroxyurea inhibition of DNA synthesis. Within individual cells the label for histone mRNA was widely distributed throughout the cytoplasm and did not appear to be more heavily concentrated near the nucleus. However, histone mRNA appeared to exhibit patchy, nonhomogeneous localization, and a quantitative evaluation confirmed that grain distributions were not as uniform as they were after hybridizations to poly(A)+ mRNA. Actin mRNA in WI-38 cells was also widely distributed throughout the cytoplasm but differed from histone mRNA in that label for actin mRNA was frequently most dense at the outermost region of narrow cell extensions. The localization of actin mRNA was less pronounced but qualitatively very similar to that previously described for chicken embryonic myoblasts and fibroblasts. We conclude that localization of histones in WI-38 cells is not facilitated by localization of histone protein synthesis near the nucleus and that there are subtle but discrete and potentially functional differences in the distributions of histone, actin, and poly(A)+ mRNAs.
Collapse
Affiliation(s)
- J B Lawrence
- University of Massachusetts Medical School, Worcester 01605
| | | | | | | | | |
Collapse
|
24
|
Helms SR, van Wijnen AJ, Kroeger P, Shiels A, Stewart C, Hirshman J, Stein JL, Stein GS. Identification of an enhancer-like element upstream from a cell cycle dependent human H4 histone gene. J Cell Physiol 1987; 132:552-8. [PMID: 2821016 DOI: 10.1002/jcp.1041320319] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have identified a segment of DNA in the region 6,500 nucleotides upstream from a cell-cycle-dependent human H4 histone gene (pF0108A) which exhibits properties of an enhancer element. This distal element is not required for cap site initiation from the F0108A H4 histone gene. When the enhancer element is present in the genome as a stable integrated sequence, either in its natural upstream location or in a construct where the element is moved just upstream from the proximal promoter sequences, a 25-fold increase in the level of human H4 histone RNAs is observed. This increased level of mRNA reflects an increase in the rate of transcription. The enhancer effect is also observed when the distal element is inserted in inverse orientation with respect to this gene. In addition, the far upstream element can increase expression of a prokaryotic chloramphenicol acetyl transferase (CAT) gene under control of the simian virus 40 (SV40) early promotor, indicating that the ability to influence transcription is not confined to the gene with which it is normally associated. The ability of the histone gene distal enhancer element to function in both mouse and human cells indicates that transacting regulatory factors encoded by either the human or murine genome are capable of mediating the functional properties of this element, further supporting the cross-species compatibility of regulatory sequences and molecules that influence transcription of human histone genes.
Collapse
Affiliation(s)
- S R Helms
- University of Florida College of Medicine, Gainesville 32610
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The mouse histone H4 gene, when stably transformed into L cells on the PSV2gpt shuttle vector, is cell cycle regulated in parallel with the endogenous H4 genes. This was determined in exponentially growing pools of transformants fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cell cycle without the use of treatments that arrest growth. Linker additions in the 5' noncoding region of the H4 RNA or in the coding region of the gene did not affect the cell cycle-regulated expression of the modified H4 gene even though the overall level of expression was altered. However, replacing the H4 promoter with the human alpha-2 globin promoter, so that the histone transcript produced by the chimeric gene remains essentially unchanged, resulted in the constitutive expression of H4 mRNA during all phases of the cell cycle with no net increase in H4 mRNA levels during the G1-to-S transition. From these results we conclude that all the information necessary for the cell cycle-regulated expression of the H4 gene is contained in the 5.2-kilobase subclone used in these studies with 228 nucleotides of 5'-flanking DNA and that the increase in H4 mRNA during the G1-to-S transition in the cell cycle is mediated by the H4 promoter and not by the increased stability of the H4 RNA.
Collapse
|
26
|
Seiler-Tuyns A, Paterson BM. Cell cycle regulation of a mouse histone H4 gene requires the H4 promoter. Mol Cell Biol 1987; 7:1048-54. [PMID: 3561406 PMCID: PMC365175 DOI: 10.1128/mcb.7.3.1048-1054.1987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mouse histone H4 gene, when stably transformed into L cells on the PSV2gpt shuttle vector, is cell cycle regulated in parallel with the endogenous H4 genes. This was determined in exponentially growing pools of transformants fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cell cycle without the use of treatments that arrest growth. Linker additions in the 5' noncoding region of the H4 RNA or in the coding region of the gene did not affect the cell cycle-regulated expression of the modified H4 gene even though the overall level of expression was altered. However, replacing the H4 promoter with the human alpha-2 globin promoter, so that the histone transcript produced by the chimeric gene remains essentially unchanged, resulted in the constitutive expression of H4 mRNA during all phases of the cell cycle with no net increase in H4 mRNA levels during the G1-to-S transition. From these results we conclude that all the information necessary for the cell cycle-regulated expression of the H4 gene is contained in the 5.2-kilobase subclone used in these studies with 228 nucleotides of 5'-flanking DNA and that the increase in H4 mRNA during the G1-to-S transition in the cell cycle is mediated by the H4 promoter and not by the increased stability of the H4 RNA.
Collapse
|
27
|
Multiple sequence elements are required for maximal in vitro transcription of a human histone H2B gene. Mol Cell Biol 1987. [PMID: 3025588 DOI: 10.1128/mcb.6.10.3329] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of our studies on the cell cycle regulation of human histone gene expression, we examined the elements governing transcription of a human histone H2B gene in nuclear extracts derived from human HeLa cells. Circular templates were transcribed at 5- to 10-fold higher levels than were linear templates. A series of deletion, linker-substitution, and point mutants defined cis-acting promoter sequences that were recognized in nuclear extracts. These sequences extended from 118 to 21 base pairs 5' to the transcription initiation site. Elements recognized included (from 5' to 3') a series of direct repeats, a CCAAT homology, a human histone-specific hexamer, an H2B consensus element, and a TATA box. Sequence elements 5' to the hexamer were required for its function. In contrast, the H2B consensus element could function independently of more-5' promoter elements and in turn was essential for the function of upstream elements. An interesting feature of this consensus is that its core octanucleotide (ATTTGCAT) is found in several nonhistone genes. By comparison with functional elements in an H4 promoter, we infer that a combinatorial interaction of general and gene-specific factors may contribute to the S-phase elevation of H2B transcription.
Collapse
|
28
|
Seiler-Tuyns A, Paterson BM. A chimeric mouse histone H4 gene containing either an intron or poly(A) addition signal behaves like a basal histone. Nucleic Acids Res 1986; 14:8845-62. [PMID: 3024121 PMCID: PMC311915 DOI: 10.1093/nar/14.22.8845] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have modified the basic structure of the mouse H4 histone gene by introducing, in one case, the IVS-II of the human beta globin gene in the middle of the H4 coding region and, in the second case, the poly(A) addition signal from either the chicken vimentin gene or the alpha globin gene, displacing the hairpin loop structure in the 3' direction. Constructs were placed into the vector, PSV2gpt, and stably transformed into L cells. Pools of 100-500 independent transformants were analyzed for H4 expression. Even though the intron is processed correctly, the growth regulated expression of the modified gene is lost and the gene is now expressed at a constant basal level. Furthermore, unprocessed transcripts accumulate in the nucleus of Go cells when compared to exponentially growing cultures. Polyadenylated H4 RNA is correctly processed but expressed at reduced levels (30 fold) in a constitutive manner, independent of the growth state of the cell. The altered expression of these chimeric H4 genes compared to the endogenous copy or the transfected wild type gene suggests a structural model to explain the cell cycle independent expression of the basal histones.
Collapse
|
29
|
Sive HL, Heintz N, Roeder RG. Multiple sequence elements are required for maximal in vitro transcription of a human histone H2B gene. Mol Cell Biol 1986; 6:3329-40. [PMID: 3025588 PMCID: PMC367078 DOI: 10.1128/mcb.6.10.3329-3340.1986] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
As part of our studies on the cell cycle regulation of human histone gene expression, we examined the elements governing transcription of a human histone H2B gene in nuclear extracts derived from human HeLa cells. Circular templates were transcribed at 5- to 10-fold higher levels than were linear templates. A series of deletion, linker-substitution, and point mutants defined cis-acting promoter sequences that were recognized in nuclear extracts. These sequences extended from 118 to 21 base pairs 5' to the transcription initiation site. Elements recognized included (from 5' to 3') a series of direct repeats, a CCAAT homology, a human histone-specific hexamer, an H2B consensus element, and a TATA box. Sequence elements 5' to the hexamer were required for its function. In contrast, the H2B consensus element could function independently of more-5' promoter elements and in turn was essential for the function of upstream elements. An interesting feature of this consensus is that its core octanucleotide (ATTTGCAT) is found in several nonhistone genes. By comparison with functional elements in an H4 promoter, we infer that a combinatorial interaction of general and gene-specific factors may contribute to the S-phase elevation of H2B transcription.
Collapse
|
30
|
Changes in the levels of three different classes of histone mRNA during murine erythroleukemia cell differentiation. Mol Cell Biol 1986. [PMID: 3018484 DOI: 10.1128/mcb.5.11.2879] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a gene-specific S1 nuclease assay to study the changes in steady-state mRNA levels of several core histone variants during the differentiation of murine erythroleukemia cells. These studies allowed us to distinguish three distinct expression classes of histone genes. The expression of the major replication-dependent class of histone genes was tightly linked to DNA synthesis. The concentrations of these transcripts decreased rapidly as cell division slowed during the process of differentiation. In contrast, the replication-independent H3.3 transcript levels were constitutively maintained throughout differentiation and were unaffected by inhibitors of DNA or protein synthesis. We also identified among the cloned histone genes used as probes a third expression class, the partially replication-dependent variants. Expression of these transcripts became transiently uncoupled from the reduced rate of DNA synthesis accompanying the early stages of differentiation. We show that their synthesis is sensitive to the DNA synthesis inhibitor hydroxyurea but that selective uncoupling from DNA synthesis of these histone mRNAs occurs at a specific stage of differentiation. We present several hypotheses to explain how this might be accomplished. The expression characteristics of the mRNAs studied coincided with those of the proteins for which they code, indicating that changes in the relative levels of the different variants is mediated at least in part by changes in mRNA levels.
Collapse
|
31
|
Green L, Schlaffer I, Wright K, Moreno ML, Berand D, Hager G, Stein J, Stein G. Cell cycle-dependent expression of a stable episomal human histone gene in a mouse cell. Proc Natl Acad Sci U S A 1986; 83:2315-9. [PMID: 3458197 PMCID: PMC323287 DOI: 10.1073/pnas.83.8.2315] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have constructed a recombinant plasmid that includes a cell cycle-dependent human H4 histone gene with 650 base pairs of 5' and 900 base pairs of 3' flanking sequences and the 69% transforming fragment of bovine papilloma virus. When transfected into C127 mouse cells, this plasmid is maintained as a stable episome with approximately 20 copies per cell. Micrococcal nuclease digestion indicates that the episomal human histone gene is packaged as chromatin. The human H4 histone transcript is initiated at the correct 5' start site and undergoes selective destabilization when DNA synthesis is inhibited. When C127 cells containing the episomal H4 histone gene are synchronized, the human H4 histone mRNA levels are regulated coordinately with DNA replication and parallel those of transcripts from the murine chromosomal H4 histone genes. Our results suggest that the regulatory sequences and/or regulatory molecules associated with murine and human histone genes are compatible. The human histone gene-bovine papillomavirus episome is therefore a viable system for studying cell cycle-regulated histone gene expression under conditions where control is not influenced at the site of chromosomal integration by cis-acting elements of genes normally not contiguous.
Collapse
|
32
|
Wu RS, Panusz HT, Hatch CL, Bonner WM. Histones and their modifications. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:201-63. [PMID: 3519076 DOI: 10.3109/10409238609083735] [Citation(s) in RCA: 213] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histones constitute the protein core around which DNA is coiled to form the basic structural unit of the chromosome known as the nucleosome. Because of the large amount of new histone needed during chromosome replication, the synthesis of histone and DNA is regulated in a complex manner. During RNA transcription and DNA replication, the basic nucleosomal structure as well as interactions between nucleosomes must be greatly altered to allow access to the appropriate enzymes and factors. The presence of extensive and varied post-translational modifications to the otherwise highly conserved histone primary sequences provides obvious opportunities for such structural alterations, but despite concentrated and sustained effort, causal connections between histone modifications and nucleosomal functions are not yet elucidated.
Collapse
|
33
|
Ruzdijic SD, Bird RC, Jacobs FA, Sells BH. Specific mRNP complexes. Characterization of the proteins bound to histone H4 mRNAs isolated from L6 myoblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 153:587-94. [PMID: 2866959 DOI: 10.1111/j.1432-1033.1985.tb09341.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
These studies were designed to identify the proteins associated with specific mRNAs. L6 myoblasts contain a unique poly(A)-rich H4 mRNA as well as poly(A)-minus H4 mRNA subspecies. We have characterized the proteins present in both poly(A)-rich and poly(A)-minus histone H4 mRNP complexes following ultraviolet cross-linking in vivo. In addition, the muscle-specific myosin heavy chain (MHC) mRNP complex was characterized in myoblasts. [35S]Methionine-labelled poly(A)-rich and poly(A)-minus RNP complexes were prepared from both the polysomal and free (post-polysomal) RNP compartments. From each fraction the mRNP encoding histone H4 or MHC was purified by hybrid selection to a cloned human histone H4 gene or MHC cDNA. A unique set of 6-16 proteins was found bound to each of the specific mRNP complexes. These proteins were a subset of the total population of either polysomal or free RNP proteins and some proteins appeared common among the different hybrid-selected RNP fractions. The results demonstrate that (a) mRNAs bind a different set of proteins depending upon whether they are present in the polysomal or free mRNP fraction; (b) the presence of poly(A) sequences affects the proteins which bind to H4 mRNA in the free RNP compartment.
Collapse
|
34
|
Brown DT, Wellman SE, Sittman DB. Changes in the levels of three different classes of histone mRNA during murine erythroleukemia cell differentiation. Mol Cell Biol 1985; 5:2879-86. [PMID: 3018484 PMCID: PMC369098 DOI: 10.1128/mcb.5.11.2879-2886.1985] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used a gene-specific S1 nuclease assay to study the changes in steady-state mRNA levels of several core histone variants during the differentiation of murine erythroleukemia cells. These studies allowed us to distinguish three distinct expression classes of histone genes. The expression of the major replication-dependent class of histone genes was tightly linked to DNA synthesis. The concentrations of these transcripts decreased rapidly as cell division slowed during the process of differentiation. In contrast, the replication-independent H3.3 transcript levels were constitutively maintained throughout differentiation and were unaffected by inhibitors of DNA or protein synthesis. We also identified among the cloned histone genes used as probes a third expression class, the partially replication-dependent variants. Expression of these transcripts became transiently uncoupled from the reduced rate of DNA synthesis accompanying the early stages of differentiation. We show that their synthesis is sensitive to the DNA synthesis inhibitor hydroxyurea but that selective uncoupling from DNA synthesis of these histone mRNAs occurs at a specific stage of differentiation. We present several hypotheses to explain how this might be accomplished. The expression characteristics of the mRNAs studied coincided with those of the proteins for which they code, indicating that changes in the relative levels of the different variants is mediated at least in part by changes in mRNA levels.
Collapse
|
35
|
Chrysogelos S, Riley DE, Stein G, Stein J. A human histone H4 gene exhibits cell cycle-dependent changes in chromatin structure that correlate with its expression. Proc Natl Acad Sci U S A 1985; 82:7535-9. [PMID: 2999768 PMCID: PMC390851 DOI: 10.1073/pnas.82.22.7535] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
By use of synchronized human HeLa S3 cells, a site sensitive to both DNase I and nuclease S1 was identified 50-150 base pairs upstream of the ATG codon of a cell cycle-dependent histone H4 gene. This site expanded to include a broad region of approximately equal to 300 base pairs sensitive to DNase I throughout S phase and then narrowed again to the original site after the completion of DNA replication. The level of nuclease S1 sensitivity was greatest during early S phase, when the gene is replicated and its transcription rate is maximal. The chromatin structure of the human beta-globin gene, which is not expressed in HeLa cells, was also analyzed throughout the cell cycle, and in no case was a sub-band seen as a result of DNase I or nuclease S1 digestion, nor were there any changes in nuclease sensitivity correlated with its replication. Thus the cell cycle-dependent chromatin alterations in this histone H4 gene appear to be due to the coupled replication and expression of this gene rather than simply its replication. These results suggest that histone genes, as compared with developmentally regulated genes, exhibit an "intermediate" level of regulation whereby the gene is never in a completely inactive conformation, but changes in chromatin structure occur as a function of the cell cycle and expression.
Collapse
|
36
|
Lüscher B, Stauber C, Schindler R, Schümperli D. Faithful cell-cycle regulation of a recombinant mouse histone H4 gene is controlled by sequences in the 3'-terminal part of the gene. Proc Natl Acad Sci U S A 1985; 82:4389-93. [PMID: 3925455 PMCID: PMC390419 DOI: 10.1073/pnas.82.13.4389] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have analyzed the expression of endogenous histone H4 genes and of a newly introduced H4 gene in 21-Tb cells, a mouse mastocytoma cell-cycle mutant. Endogenous H4 mRNAs were less abundant by a factor of 120-180 in G1-arrested than in exponentially multiplying cells. However, H4 transcription rates were only decreased by a factor of 3 under these conditions, as determined by in vitro elongation of nascent transcripts. This indicates that post-transcriptional control of histone mRNA levels is important, in accord with published data. We introduced a mouse H4 gene, modified by a 12-base-pair (bp) insertion in its coding sequence, into 21-Tb cells by DNA-mediated gene transfer. The levels of transcripts from this gene were regulated in parallel with those of the endogenous genes. Moreover, fusion of the simian virus 40 (SV40) early promoter to a 463-bp fragment containing the 3'-terminal half of the mouse H4 gene, including 230 bp of spacer sequences, led to the regulated expression of SV40/H4 fusion RNA. However, a small proportion of SV40-initiated transcripts were not processed to histone-specific 3' ends, but extended farther through the downstream Escherichia coli galactokinase gene to a SV40 polyadenylylation site. In contrast to the short SV40/H4 RNA, the levels of these longer transcripts were not reduced in G1-arrested cells. These results show that sequences in the 3'-terminal part of the H4 gene can regulate gene expression in the cell cycle, presumably at the post-transcriptional level, as long as they are not positioned much more distant from the terminus than normal.
Collapse
|
37
|
Bonneau AM, Darveau A, Sonenberg N. Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J Cell Biol 1985; 100:1209-18. [PMID: 2984214 PMCID: PMC2113755 DOI: 10.1083/jcb.100.4.1209] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.
Collapse
|
38
|
Abstract
The inhibition of protein synthesis in exponentially growing S49 cells leads to a specific fivefold increase in histone mRNA in 30 min. The rate of transcription of histone mRNA, measured in intact or digitonin-permeabilized cells, is increased slightly, if at all, by cycloheximide inhibition of protein synthesis. Both approach-to-equilibrium labeling and pulse-chase experiments show that cycloheximide prolongs histone mRNA half-life from approximately 30 min to greater than 2 h. Histone mRNA made before the addition of cycloheximide becomes stable after the inhibition of protein synthesis, whereas removal of the inhibitor is followed by rapid degradation of histone mRNA. This suggests that the increased stability of histone mRNA during inhibition of protein synthesis results not from alteration of the structure of the mRNA, but from the loss of an activity in the cell which regulates histone mRNA turnover.
Collapse
|
39
|
Abstract
The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA synthesis, observed when DNA replication is inhibited by a variety of drugs, is not maintained after adenovirus infection.
Collapse
|
40
|
Abstract
The inhibition of protein synthesis in exponentially growing S49 cells leads to a specific fivefold increase in histone mRNA in 30 min. The rate of transcription of histone mRNA, measured in intact or digitonin-permeabilized cells, is increased slightly, if at all, by cycloheximide inhibition of protein synthesis. Both approach-to-equilibrium labeling and pulse-chase experiments show that cycloheximide prolongs histone mRNA half-life from approximately 30 min to greater than 2 h. Histone mRNA made before the addition of cycloheximide becomes stable after the inhibition of protein synthesis, whereas removal of the inhibitor is followed by rapid degradation of histone mRNA. This suggests that the increased stability of histone mRNA during inhibition of protein synthesis results not from alteration of the structure of the mRNA, but from the loss of an activity in the cell which regulates histone mRNA turnover.
Collapse
|
41
|
Grove GW, Zweidler A. Regulation of nucleosomal core histone variant levels in differentiating murine erythroleukemia cells. Biochemistry 1984; 23:4436-43. [PMID: 6593094 DOI: 10.1021/bi00314a030] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During hexamethylenebis(acetamide)-induced terminal differentiation of murine erythroleukemia (MEL) cells in vitro, the histone variant proportions undergo changes similar to those observed in vivo in terminally differentiating cells of the young mouse. Thus, there is a rapid increase in the relative amounts of the variants H2A.1 and H2B.2 in parallel with the increase in the number of hemoglobin-producing cells and the sharp decrease in the growth rate. We show that the changes in variant proportions are not associated with slower growth per se but are most likely due to differential changes in the rates of variant synthesis as a result of commitment to terminal differentiation. In addition, we observed an inducer-specific increase in the rate of synthesis and the relative amount of the minor H2A variant 4, well before hemoglobin accumulation. We also present evidence that H2A and H2B histones are synthesized and incorporated into chromatin at a significant rate even when DNA synthesis is inhibited, suggesting turnover of these histones. H2A and H2B turnover can be detected directly even in exponentially growing cells. H2A.1 and H2B.2 have higher turnover rates than H2A.2 and H2B.1, respectively, in exponentially growing cells, a difference which is even more pronounced in induced cells. The magnitude of the differential turnover is not sufficient to account for the changes in the histone variant proportions in the short life of induced MEL cells but could explain the slow accumulation of H2A.2, H2B.1, and H3.3 in nondividing adult tissues of the mouse.
Collapse
|
42
|
Abstract
It has been well documented that core and H1 histone mRNAs accumulate in a manner which closely parallels the initiation of DNA synthesis and histone protein synthesis, suggesting that the onset of histone gene expression early during S phase is at least in part transcriptionally mediated. In fact, it appears that throughout S phase the synthesis of histone proteins is modulated by the availability of histone mRNAs. On the other hand, the stability of histone mRNAs and the destabilization of histone mRNAs when DNA replication is completed or inhibited are highly selective, tightly coupled and largely post-transcriptionally controlled. We present a model to account for histone mRNA turnover whereby the natural or inhibitor-induced termination of DNA replication results in an immediate loss of high affinity binding sites for newly synthesized histone proteins which in turn brings about a transient accumulation of unbound histones. These unbound histones could modify the histone translation complex, via interactions with polysomal histone mRNAs, in such a manner as to render histone mRNAs accessible to cellular ribonucleases. This type of mechanism would be operative solely at the post-transcriptional level and would be compatible with the rapid, RNA synthesis-independent destabilization of histone mRNAs which occurs following inhibition of DNA replication, as well as with the requirement for protein synthesis for histone mRNA destabilization to be initiated.
Collapse
|
43
|
Flint SJ, Plumb MA, Yang UC, Stein GS, Stein JL. Effect of adenovirus infection on expression of human histone genes. Mol Cell Biol 1984; 4:1363-71. [PMID: 6095065 PMCID: PMC368919 DOI: 10.1128/mcb.4.7.1363-1371.1984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA synthesis, observed when DNA replication is inhibited by a variety of drugs, is not maintained after adenovirus infection.
Collapse
|
44
|
Woodland HR, Warmington JR, Ballantine JE, Turner PC. Are there major developmentally regulated H4 gene classes in Xenopus? Nucleic Acids Res 1984; 12:4939-58. [PMID: 6330691 PMCID: PMC318890 DOI: 10.1093/nar/12.12.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Primer extension analysis has been used to study the principal H4 mRNAs present at different developmental stages and in several adult tissues of Xenopus borealis and X. laevis. In X. borealis a single sequence class predominates in oocytes, tadpoles and cultured fibroblasts. There is also a polymorphic minor type which shows no developmental regulation. The primer extension bands obtained from adult liver and kidney RNA appear to be the same as ovary and therefore these tissues almost certainly contain the same major H4 mRNA species. This is confirmed by S1 mapping of the 3' end of the mRNA. Thus for H4 genes in X. borealis there is no evidence of the kind of switches in histone gene expression seen in sea urchins or certain protostomes. The situation in X. laevis is complicated by considerably higher gene variability both within and between individuals. Nevertheless, in this species, as in X. borealis, there seems to be no major developmental switch in the regulation of H4 gene expression, a conclusion that also holds for an H1C and an H3 gene.
Collapse
|
45
|
Rapid reversible changes in the rate of histone gene transcription and histone mRNA levels in mouse myeloma cells. Mol Cell Biol 1984. [PMID: 6700595 DOI: 10.1128/mcb.4.2.351] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of histone mRNAs are reduced 90 to 95% after treatment of mouse myeloma cells with inhibitors of DNA synthesis which disrupt deoxynucleotide metabolism. In contrast, novobiocin, which inhibits DNA synthesis but does not alter deoxynucleotide metabolism, did not alter histone mRNA levels. Upon reversing the inhibition by fluorodeoxyuridine by feeding with thymidine, histone mRNA levels are restored to control levels within 40 to 60 min. The rate of histone gene transcription is reduced 75 to 80% within 10 min after treatment with fluorodeoxyuridine and increased to control levels within 10 min after refeeding with thymidine. Inhibition of protein synthesis with cycloheximide or puromycin in cells which had been treated with fluorodeoxyuridine resulted in an increase of histone mRNA levels. This was partly due to an increase in the rate of transcription. The data indicate that both transcription and mRNA degradation are linked to deoxynucleotide metabolism. Continued protein synthesis is necessary for maintaining the inhibition of histone gene transcription.
Collapse
|
46
|
Abstract
The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus.
Collapse
|
47
|
Regulation of histone mRNA production and stability in serum-stimulated mouse 3T6 fibroblasts. Mol Cell Biol 1984. [PMID: 6656760 DOI: 10.1128/mcb.3.11.1920] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We measured the content and metabolism of histone mRNA in mouse 3T6 fibroblasts during a serum-induced transition from the resting to growing state. The content of several histone H3 and H2b mRNAs was measured by an S1 nuclease procedure. All of these increase in parallel by a factor of about 50 during S phase. However, the rate of H3 gene transcription increased only fivefold during this period, as determined in an in vitro transcription assay. This suggests that histone mRNA content is also controlled at the posttranscriptional level. When resting cells were serum stimulated in the presence of cytosine arabinoside, the rate of H3 gene transcription increased to about the same extent as that in control-stimulated cells. However, cytoplasmic H3 mRNA content increased only five to seven-fold. The half-life of H3 mRNA during S phase was about 4 to 5 h. When cytosine arabinoside was added to cells in the S phase, the half-life of the message decreased to about 15 min. The rapid turnover of H3 mRNA was prevented when the drug was added in the presence of cycloheximide or puromycin. The rate of H3 gene transcription decreased by only 35% after treatment with cytosine arabinoside. These results suggest that H3 gene transcription is not tightly coupled to DNA replication but is controlled temporally during the resting to growing transition. However, there is a correlation between the rate of DNA synthesis and the stability of histone H3 mRNA.
Collapse
|
48
|
Graves RA, Marzluff WF. Rapid reversible changes in the rate of histone gene transcription and histone mRNA levels in mouse myeloma cells. Mol Cell Biol 1984; 4:351-7. [PMID: 6700595 PMCID: PMC368702 DOI: 10.1128/mcb.4.2.351-357.1984] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The levels of histone mRNAs are reduced 90 to 95% after treatment of mouse myeloma cells with inhibitors of DNA synthesis which disrupt deoxynucleotide metabolism. In contrast, novobiocin, which inhibits DNA synthesis but does not alter deoxynucleotide metabolism, did not alter histone mRNA levels. Upon reversing the inhibition by fluorodeoxyuridine by feeding with thymidine, histone mRNA levels are restored to control levels within 40 to 60 min. The rate of histone gene transcription is reduced 75 to 80% within 10 min after treatment with fluorodeoxyuridine and increased to control levels within 10 min after refeeding with thymidine. Inhibition of protein synthesis with cycloheximide or puromycin in cells which had been treated with fluorodeoxyuridine resulted in an increase of histone mRNA levels. This was partly due to an increase in the rate of transcription. The data indicate that both transcription and mRNA degradation are linked to deoxynucleotide metabolism. Continued protein synthesis is necessary for maintaining the inhibition of histone gene transcription.
Collapse
|
49
|
Alterman RB, Ganguly S, Schulze DH, Marzluff WF, Schildkraut CL, Skoultchi AI. Cell cycle regulation of mouse H3 histone mRNA metabolism. Mol Cell Biol 1984; 4:123-32. [PMID: 6583492 PMCID: PMC368666 DOI: 10.1128/mcb.4.1.123-132.1984] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus.
Collapse
|
50
|
Green L, Stein G, Stein J. Histone gene expression in human diploid fibroblasts: analysis of histone mRNA levels using cloned human histone genes. Mol Cell Biochem 1984; 60:123-30. [PMID: 6708944 DOI: 10.1007/bf00222482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cellular abundance of H2A, H2B, H3 and H4 histone mRNA sequences was determined prior to and at various times after stimulation of non-dividing human diploid fibroblasts to proliferate. The representation of histone mRNAs was quantitated by electrophoretic fractionation of total cellular RNAs, diffusion transfer to nitrocellulose and hybridization with a series of cloned genomic human histone sequences. The levels of mRNAs for the four core histones were observed to be temporally and quantitatively coupled with both DNA replication and histone protein synthesis. Therefore, a contribution to the regulation of histone gene expression at a transcriptional level is suggested.
Collapse
|