1
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
2
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Matsui T, Sugiyama R, Sakanashi K, Tamura Y, Iida M, Nambu Y, Higuchi T, Suematsu M, Ikeda-Saito M. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J Biol Chem 2018; 293:16931-16939. [PMID: 30237172 DOI: 10.1074/jbc.ra118.004641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Discovery of unidentified protein functions is of biological importance because it often provides new paradigms for many research areas. Mammalian heme oxygenase (HO) enzyme catalyzes the O2-dependent degradation of heme into carbon monoxide (CO), iron, and biliverdin through numerous reaction intermediates. Here, we report that H2S, a gaseous signaling molecule, is part of a novel reaction pathway that drastically alters HO's products, reaction mechanism, and catalytic properties. Our prediction of this interplay is based on the unique reactivity of H2S with one of the HO intermediates. We found that in the presence of H2S, HO produces new linear tetrapyrroles, which we identified as isomers of sulfur-containing biliverdin (SBV), and that only H2S, but not GSH, cysteine, and polysulfides, induces SBV formation. As BV is converted to bilirubin (BR), SBV is enzymatically reduced to sulfur-containing bilirubin (SBR), which shares similar properties such as antioxidative effects with normal BR. SBR was detected in culture media of mouse macrophages, confirming the existence of this H2S-induced reaction in mammalian cells. H2S reacted specifically with a ferric verdoheme intermediate of HO, and verdoheme cleavage proceeded through an O2-independent hydrolysis-like mechanism. This change in activation mode diminished O2 dependence of the overall HO activity, circumventing the rate-limiting O2 activation of HO. We propose that H2S could largely affect O2 sensing by mammalian HO, which is supposed to relay hypoxic signals by decreasing CO output to regulate cellular functions. Moreover, the novel H2S-induced reaction identified here helps sustain HO's heme-degrading and antioxidant-generating capacity under highly hypoxic conditions.
Collapse
Affiliation(s)
- Toshitaka Matsui
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan,
| | - Ryota Sugiyama
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Kenta Sakanashi
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Yoko Tamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masaki Iida
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Yukari Nambu
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho, Nagoya 467-8603, Japan, and
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinano-machi, Shinjyuku, Tokyo 160-8582, Japan
| | - Masao Ikeda-Saito
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan,
| |
Collapse
|
4
|
Li R, Zeller M, Brückner C. Oxidative ring-openings of octaethyl-2-oxochlorin: Regioisomeric β-oxobiliverdins. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe the oxidative ring opening of octaethyl-2-oxochlorin using two different oxidation methods, both providing a mixture of all possible regioisomeric products (8-[Formula: see text] through 8-[Formula: see text]. While isomers 8-[Formula: see text], 8-[Formula: see text], and 8-[Formula: see text] formed in isolable yields and relative ratios that varied with the oxidation method used, isomer 8-[Formula: see text] was invariably formed in trace amounts only. The three major products were spectroscopically characterized (IR, MS, 1D- and 2D NMR spectroscopy) and their configurations were deduced by NMR spectroscopy. The spectroscopic findings correlated well with the single crystal X-ray structure of the novel cleavage product 8-[Formula: see text] and the known compound of 8-[Formula: see text]. The work broadens the number of octaethylporphyrin-derived biliverdin derivatives available and presents a methodology of controlling the biliverdin backbone configuration by introduction of a [Formula: see text]-ketone functionality into select positions.
Collapse
Affiliation(s)
- Ruoshi Li
- Department of Chemistry, University of Connecticut, Storrs, CT 06369-3060, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Storrs, CT 06369-3060, USA
| |
Collapse
|
5
|
Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MD, Jubinville É, Jia Z, Ivancich A, Couture M. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: Release of hematinic acid, tripyrrole and Fe(III). J Inorg Biochem 2016; 154:103-13. [DOI: 10.1016/j.jinorgbio.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/08/2015] [Accepted: 11/01/2015] [Indexed: 11/24/2022]
|
6
|
Wilks A, Ikeda-Saito M. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc Chem Res 2014; 47:2291-8. [PMID: 24873177 PMCID: PMC4139177 DOI: 10.1021/ar500028n] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme
to biliverdin, iron, and carbon monoxide (CO) in three successive
oxygenation steps. Pathogenic bacteria require iron for survival and
infection. Extracellular heme uptake from the host plays a critical
role in iron acquisition and virulence. In the past decade, several
HOs required for the release of iron from extracellular heme have
been identified in pathogenic bacteria, including Corynebacterium
diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The
bacterial enzymes were shown to be structurally and mechanistically
similar to those of the canonical eukaryotic HO enzymes. However,
the recent discovery of the structurally and mechanistically distinct
noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has
expanded the reaction manifold of heme degradation. The distinct ferredoxin-like
structural fold and extreme heme ruffling are proposed to give rise
to the alternate heme degradation products in the S.
aureus and M. tuberculosis enzymes. In addition, several “heme-degrading factors”
with no structural homology to either class of HOs have recently been
reported. The identification of these “heme-degrading proteins”
has largely been determined on the basis of in vitro heme degradation
assays. Many of these proteins were reported to produce biliverdin,
although no extensive characterization of the products was performed.
Prior to the characterization of the canonical HO enzymes, the nonenzymatic
degradation of heme and heme proteins in the presence of a reductant
such as ascorbate or hydrazine, a reaction termed “coupled
oxidation”, served as a model for biological heme degradation.
However, it was recognized that there were important mechanistic differences
between the so-called coupled oxidation of heme proteins and enzymatic
heme oxygenation. In the coupled oxidation reaction, the final product,
verdoheme, can readily be converted to biliverdin under hydrolytic
conditions. The differences between heme oxygenation by the canonical
and noncanonical HOs and coupled oxidation will be discussed in the
context of the stabilization of the reactive FeIII–OOH
intermediate and regioselective heme hydroxylation. Thus, in the determination
of heme oxygenase activity in vitro, it is important to ensure that
the reaction proceeds through successive oxygenation steps. We further
suggest that when bacterial heme degradation is being characterized,
a systems biology approach combining genetics, mechanistic enzymology,
and metabolite profiling should be undertaken.
Collapse
Affiliation(s)
- Angela Wilks
- Department
of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201-1140, United States
| | - Masao Ikeda-Saito
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Sandell JP, Kakeya K, Mizutani T. Ring-opening with one dioxygen molecule in the coupled oxidation of iron tetraarylporphyrins. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 2013; 544:87-95. [PMID: 24161941 DOI: 10.1016/j.abb.2013.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Heme degradation through the action of heme oxygenase (HO) is unusual in that it utilizes heme as both a substrate and cofactor for its own degradation. HO catalyzes the oxygen-dependent degradation of heme to biliverdin with the release of CO and "free" iron. The characterization of HO enzymes from humans to bacteria reveals a similar overall structural fold that contributes to the unique reaction manifold. The heme oxygenases share a similar heme-dependent activation of O2 to the ferric hydroperoxide as that of the cytochrome P450s and peroxidases. However, whereas the P450s promote cleavage of the ferric hydroperoxide OO bond to the oxoferryl species the HOs stabilize the ferric hydroperoxide promoting hydroxylation at the heme edge. The alternate reaction pathway in HO is achieved through the conformational flexibility and extensive hydrogen bond network within the heme binding site priming the heme for hydroxylation. Until recently it was believed that all heme degrading enzymes converted heme to biliverdin and iron, with the release of carbon monoxide (CO). However, the recent discovery of the bacterial IsdG-like heme degrading proteins of Staphylococcus aureus, Bacillus anthracis and Mycobacterium tuberculosis has expanded the reaction manifold of heme oxidation. Characterization of the heme degradation products in the IsdG-like reaction suggests a mechanism distinct from the classical HOs. In the following review we will discuss the structure-function of the canonical HOs as it relates to the emerging alternate reaction manifold of the IsdG-like proteins.
Collapse
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA.
| | - Geoffrey Heinzl
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA
| |
Collapse
|
9
|
Kakeya K, Nakagawa A, Mizutani T, Hitomi Y, Kodera M. Synthesis, Reactivity, and Spectroscopic Properties of meso-Triaryl-5-oxaporphyrins. J Org Chem 2012; 77:6510-9. [DOI: 10.1021/jo3010342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Aya Nakagawa
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tadashi Mizutani
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
10
|
Niemevz F, Buldain GY. Phenyl biliverdin isomers obtained by chemical oxidation of iron(III) complex of 5-phenyl protoporphyrin IX. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxidative cleavage of synthetic 5-phenyl protohemin IX in pyridine solution in the presence of ascorbic acid (coupled oxidation), followed by esterification of the products with boron trifluoride-methanol rendered mainly three isomeric biliverdins. These were identified by MS and 1D and 2D 1 H NMR as 15-phenyl biliverdin IXβ (1), 10-phenyl biliverdin IXγ (2) and 5-phenyl biliverdin IXδ (3) dimethyl esters. The fact that biliverdin IXα dimethyl ester derivative is not obtained indicates that oxidation fails to occur in the α-meso-carbon bearing the phenyl group.
Collapse
Affiliation(s)
- Fernando Niemevz
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina
| | - Graciela Y. Buldain
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
11
|
Sato H, Higashimoto Y, Sakamoto H, Sugishima M, Shimokawa C, Harada J, Palmer G, Noguchi M. Reduction of oxaporphyrin ring of CO-bound α-verdoheme complexed with heme oxygenase-1 by NADPH-cytochrome P450 reductase. J Inorg Biochem 2010; 105:289-96. [PMID: 21194630 DOI: 10.1016/j.jinorgbio.2010.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/05/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022]
Abstract
Heme oxygenase (HO) catalyses the degradation of heme to biliverdin, carbon monoxide (CO) and ferrous iron via three successive monooxygenase reactions, using electrons provided by NADPH-cytochrome P450 reductase (CPR) and oxygen molecules. For cleavage of the oxaporphyrin ring of ferrous α-verdoheme, an intermediate in the HO reaction, involvement of a verdoheme π-neutral radical has been proposed. To explore this hypothetical mechanism, we performed electrochemical reduction of ferrous α-verdoheme-rat HO-1 complex under anaerobic conditions. Upon binding of CO, an O(2) surrogate, the midpoint potential for one-electron reduction of the oxaporphyrin ring of ferrous α-verdoheme was increased from -0.465 to -0.392 V vs the normal hydrogen electrode. Because the latter potential is close to that of the semiquinone/reduced redox couple of FAD in CPR, the one-electron reduction of the oxaporphyrin ring of CO-bound verdoheme complexed with HO-1 is considered to be a thermodynamically likely process. Indeed the one-electron reduced species, [Fe(II)(verdoheme•)], was observed spectroscopically in the presence of CO in both NADPH/wild-type and FMN-depleted CPR systems under anaerobic conditions. Under physiological conditions, therefore, it is possible that O(2) initially binds to the ferrous iron of α-verdoheme in its complex with HO-1 and an electron is subsequently transferred from CPR, probably via FAD, to the oxaporphyrin ring.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hempenius MA, Koek JH, Lugtenburg J, Fokkens R. Spectroscopy and reactivity of zinc 20-oxaporphyrin-IX dimethyl ester. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19871060401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Lai W, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S. Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study. J Am Chem Soc 2010; 132:12960-70. [DOI: 10.1021/ja104674q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenzhen Lai
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Hui Chen
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Kohei Omori
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Masaki Unno
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Masao Ikeda-Saito
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
14
|
Matsui T, Iwasaki M, Sugiyama R, Unno M, Ikeda-Saito M. Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase. Inorg Chem 2010; 49:3602-9. [PMID: 20380462 DOI: 10.1021/ic901869t] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heme oxygenase (HO) catalyzes the regiospecific conversion of heme to biliverdin, CO, and free iron through three successive oxygenation reactions. HO catalysis is unique in that all three O(2) activations are performed by the substrate itself. This Forum Article overviews our current understanding on the structural and biochemical properties of HO catalysis, especially its first and third oxygenation steps. The HO first step, regiospecific hydroxylation of the porphyrin alpha-meso-carbon atom, is of particular interest because of its sharp contrast to O(2) activation by cytochrome P450. HO was proposed to utilize the FeOOH species but not conventional ferryl hemes as a reactive intermediate for self-hydroxylation. We have succeeded in preparing and characterizing the FeOOH species of HO at low temperature, and our analyses of its reaction, together with mutational and crystallographic studies, reveal that protonation of FeOOH by a distal water molecule is critical in promoting the unique self-hydroxylation. The second oxygenation is a rapid, spontaneous autooxidation of the reactive alpha-meso-hydroxyheme in which the HO enzyme does not play a critical role. Further O(2) activation by verdoheme cleaves its porphyrin macrocycle to form biliverdin and free ferrous iron. This third step has been considered to be a major rate-determining step of HO catalysis to regulate the enzyme activity. Our reaction analysis strongly supports the FeOOH verdoheme as the key intermediate of the ring-opening reaction. This mechanism is very similar to that of the first meso-hydroxylation, and the distal water is suggested to enhance the third step as expected from the similarity. The HO mechanistic studies highlight the catalytic importance of the distal hydrogen-bonding network, and this manuscript also involves our attempts to develop HO inhibitors targeting the unique distal structure.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan.
| | | | | | | | | |
Collapse
|
15
|
Matsui T, Unno M, Ikeda-Saito M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc Chem Res 2010; 43:240-7. [PMID: 19827796 DOI: 10.1021/ar9001685] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes the regiospecific conversion of heme to biliverdin IXalpha, CO, and free iron. In mammals, HO has a variety of physiological functions, including heme catabolism, iron homeostasis, antioxidant defense, cellular signaling, and O(2) sensing. The enzyme is also found in plants (producing light-harvesting pigments) and in some pathogenic bacteria, where it acquires iron from the host heme. The HO-catalyzed heme conversion proceeds through three successive oxygenations, a process that has attracted considerable attention because of its reaction mechanism and physiological importance. The HO reaction is unique in that all three O(2) activations are affected by the substrate itself. The first step is the regiospecific self-hydroxylation of the porphyrin alpha-meso carbon atom. The resulting alpha-meso-hydroxyheme reacts in the second step with another O(2) to yield verdoheme and CO. The third O(2) activation, by verdoheme, cleaves its porphyrin macrocycle to release biliverdin and free ferrous iron. In this Account, we provide an overview of our current understanding of the structural and biochemical properties of the complex self-oxidation reactions in HO catalysis. The first meso-hydroxylation is of particular interest because of its distinct contrast with O(2) activation by cytochrome P450. Although most heme enzymes oxidize exogenous substrates by high-valent oxo intermediates, HO was proposed to utilize the Fe-OOH intermediate for the self-hydroxylation. We have succeeded in preparing and characterizing the Fe-OOH species of HO at low temperature, and an analysis of its reaction, together with mutational and crystallographic studies, reveals that protonation of Fe-OOH by a distal water molecule is critical in promoting the unique self-hydroxylation. The second oxygenation is a rapid, spontaneous auto-oxidation of the reactive alpha-meso-hydroxyheme; its mechanism remains elusive, but the HO enzyme has been shown not to play a critical role in it. Until recently, the means of the third O(2) activation had remained unclear as well, but we have recently untangled its mechanistic outline. Reaction analysis of the verdoheme-HO complex strongly suggests the Fe-OOH species as a key intermediate of the ring-opening reaction. This mechanism is very similar to that of the first meso-hydroxylation, including the critical roles of the distal water molecule. A comprehensive study of the three oxygenations of HO highlights the rational design of the enzyme architecture and its catalytic mechanism. Elucidation of the last oxygenation step has enabled a kinetic analysis of the rate-determining step, making it possible to discuss the HO reaction mechanism in relation to its physiological functions.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masaki Unno
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masao Ikeda-Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| |
Collapse
|
16
|
Crystal structure of rat haem oxygenase-1 in complex with ferrous verdohaem: presence of a hydrogen-bond network on the distal side. Biochem J 2009; 419:339-45. [PMID: 19154182 DOI: 10.1042/bj20082279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HO (haem oxygenase) catalyses the degradation of haem to biliverdin, CO and ferrous iron via three successive oxygenation reactions, i.e. haem to alpha-hydroxyhaem, alpha-hydroxyhaem to alpha-verdohaem and alpha-verdohaem to ferric biliverdin-iron chelate. In the present study, we determined the crystal structure of ferrous alpha-verdohaem-rat HO-1 complex at 2.2 A (1 A=0.1 nm) resolution. The overall structure of the verdohaem complex was similar to that of the haem complex. Water or OH- was co-ordinated to the verdohaem iron as a distal ligand. A hydrogen-bond network consisting of water molecules and several amino acid residues was observed at the distal side of verdohaem. Such a hydrogen-bond network was conserved in the structures of rat HO-1 complexes with haem and with the ferric biliverdin-iron chelate. This hydrogen-bond network may act as a proton donor to form an activated oxygen intermediate, probably a ferric hydroperoxide species, in the degradation of alpha-verdohaem to ferric biliverdin-iron chelate similar to that seen in the first oxygenation step.
Collapse
|
17
|
Sato H, Higashimoto Y, Sakamoto H, Sugishima M, Takahashi K, Palmer G, Noguchi M. Electrochemical reduction of ferrous alpha-verdoheme in complex with heme oxygenase-1. J Inorg Biochem 2007; 101:1394-9. [PMID: 17644182 PMCID: PMC2965166 DOI: 10.1016/j.jinorgbio.2007.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/28/2007] [Accepted: 05/29/2007] [Indexed: 11/19/2022]
Abstract
The heme oxygenase (HO) reaction consists of three successive oxygenation reactions, i.e. heme to alpha-hydroxyheme, alpha-hydroxyheme to verdoheme, and verdoheme to biliverdin-iron chelate. Of these, the least understood step is the conversion of verdoheme to biliverdin-iron chelate. For the cleavage of the oxaporphyrin ring of ferrous verdoheme, involvement of a verdoheme pi-neutral radical has been proposed. To probe this hypothetical mechanism in the HO reaction, we performed electrochemical reduction of ferrous verdoheme complexed with rat HO-1 under anaerobic conditions. On the basis of the electrochemical spectral changes, the midpoint potential for the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme was found to be -0.47+/-0.01 V vs the normal hydrogen electrode (NHE). Because this potential is far lower than those of both flavins of NADPH-cytochrome P450 reductase, and of NADPH, it is concluded that the one-electron reduction of the oxaporphyrin ring of ferrous verdoheme is unlikely to occur and that the formation of the pi-neutral radical cannot be the initial step in the degradation of verdoheme by HO. Rather, it appears more reasonable to consider an alternative mechanism in which binding of O(2) to the ferrous iron of verdoheme is the first step in the degradation of verdoheme.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroshi Sakamoto
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kenichi Takahashi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Graham Palmer
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main, Houston, Texas 77005-1892, USA
| | - Masato Noguchi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Correspondence should be addressed to: Prof. Masato Noguchi Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan Tel.: +81-942-31-7544; fax: +81-942-31-4377. (M. Noguchi)
| |
Collapse
|
18
|
Matsui T, Nakajima A, Fujii H, Matera KM, Migita CT, Yoshida T, Ikeda-Saito M. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation. J Biol Chem 2005; 280:36833-40. [PMID: 16115896 DOI: 10.1074/jbc.m503529200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Lad L, Ortiz de Montellano PR, Poulos TL. Crystal structures of ferrous and ferrous–NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage. J Inorg Biochem 2004; 98:1686-95. [PMID: 15522396 DOI: 10.1016/j.jinorgbio.2004.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/07/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Heme oxygenase oxidatively degrades heme to biliverdin resulting in the release of iron and CO through a process in which the heme participates both as a cofactor and substrate. One of the least understood steps in the heme degradation pathway is the conversion of verdoheme to biliverdin. In order to obtain a better understanding of this step we report the crystal structures of ferrous-verdoheme and, as a mimic for the oxy-verdoheme complex, ferrous-NO verdoheme in a complex with human HO-1 at 2.20 and 2.10 A, respectively. In both structures the verdoheme occupies the same binding location as heme in heme-HO-1, but rather than being ruffled verdoheme in both sets of structures is flat. Both structures are similar to their heme counterparts except for the distal helix and heme pocket solvent structure. In the ferrous-verdoheme structure the distal helix moves closer to the verdoheme, thus tightening the active site. NO binds to verdoheme in a similar bent conformation to that found in heme-HO-1. The bend angle in the verodoheme-NO structure places the terminal NO oxygen 1 A closer to the alpha-meso oxygen of verdoheme compared to the alpha-meso carbon on the heme-NO structure. A network of water molecules, which provide the required protons to activate the iron-oxy complex of heme-HO-1, is absent in both ferrous-verdoheme and the verdoheme-NO structure.
Collapse
Affiliation(s)
- Latesh Lad
- Department of Molecular Biology and Biochemistry, University of California, 2206 Natural Sciences 1, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
20
|
Nguyen KT, Rath SP, Latos-Grazyński L, Olmstead MM, Balch AL. Formation of a Highly Oxidized Iron Biliverdin Complex upon Treatment of a Five-Coordinate Verdoheme with Dioxygen. J Am Chem Soc 2004; 126:6210-1. [PMID: 15149200 DOI: 10.1021/ja049222d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of a green solution of the five-coordinate octaethylverdoheme, XFeII(OEOP) 1 (X = Cl or Br), with dioxygen results in the formation of a new iron complex of octaethylbiliverdin, 2, within a matter of minutes. The reaction has been monitored by 1H NMR spectroscopy, and the product 2 (X = Cl) has been isolated and examined by X-ray crystallography. The structure of 2 (X = Cl) shows that the iron is five-coordinate with bonds to the four nitrogen atoms of the helical tetrapyrrole ligand and to an axial chloride. Treatment of 2 (X = Cl or Br) with zinc amalgam produces the known iron(III) complex of biliverdin, {FeIII(OEB)}2. The unusual pattern of resonances in the 1H NMR spectrum of 2 and its facile reduction to {FeIII(OEB)}2 indicate that 2 is an oxidized complex that can be formulated by resonance structures involving either an Fe(IV) ion bound to a bilindione trianion or an Fe(III) ion bound to an oxidized, dianionic, radical form of the ligand.
Collapse
Affiliation(s)
- Khoi T Nguyen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
21
|
Pendrak ML, Chao MP, Yan SS, Roberts DD. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem 2003; 279:3426-33. [PMID: 14615478 DOI: 10.1074/jbc.m311550200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that has adapted uniquely to life in mammalian hosts. One of the host factors recognized by this yeast is hemoglobin, which binds to a specific cell surface receptor. In addition to its regulating the expression of adhesion receptors on the yeast, we have found that hemoglobin induces the expression of a C. albicans heme oxygenase (CaHmx1p). Hemoglobin transcriptionally induces the CaHMX1 gene independent of the presence of inorganic iron in the medium. A Renilla luciferase reporter driven by the CaHMX1 promoter demonstrated rapid activation of transcription by hemoglobin and (cobalt protoporphyrin IX) globin but not by apoglobin or other proteins. In contrast, iron deficiency or exogenous hemin did not activate the reporter until after 3 h, suggesting that induction of the promoter by hemoglobin is mediated by receptor signaling rather than heme or iron flux into the cell. As observed following disruption of the Saccharomyces cerevisiae ortholog, HMX1, a CaHMX1 null mutant was unable to grow under iron restriction. This suggests a role for CaHmx1p in inorganic iron acquisition. CaHMX1 encodes a functional heme oxygenase. Exogenous heme or hemoglobin is exclusively metabolized to alpha-biliverdin. CaHMX1 is required for utilization of these exogenous substrates, indicating that C. albicans heme oxygenase confers a nutritional advantage for growth in mammalian hosts.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1500, USA
| | | | | | | |
Collapse
|
22
|
Szterenberg L, Latos-Grazyński L, Wojaczyński J. Metallobiliverdin radicals--DFT studies. Chemphyschem 2003; 4:691-8. [PMID: 12901300 DOI: 10.1002/cphc.200200611] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several aspects of the molecular and electronic structure of biliverdin derivatives have been studied using density functional theory (DFT). The calculations have been performed for complexes of trianion (BvO2)3- and dianion [BvO(OH)]2-, derived from two tautomeric forms of biliverdin, BvO2H3 and [BvO(OH)]H2, with redox innocent metal ions: lithium(I), zinc(II), and gallium(III). One-electron-oxidized and reduced forms of each complex (cation and anion radicals) have been also considered. The molecular structures of all species investigated are characterized by a helical arrangement of tetrapyrrolic ligands with the metal ion lying in the plane formed by the two central pyrrole rings. The spin density distribution in four types of metallobiliverdin radicals--[(BvO2.)Mn+]n-2,[[BvO(OH).]Mn+]n-1 (cation radicals),[(BvO2.)Mn+]n-4,[[BvO(OH).]Mn+]n-3 (anion radicals)--has been investigated. In general, the absolute values of spin density on meso carbon atoms were larger than for the beta-carbon atoms. Sign alteration of spin density has been found for meso positions, and also for the beta-carbon atoms of at least two pyrrole rings. The calculated spin density maps accounted for the essential NMR spectroscopic features of iron biliverdin derivatives, including the considerable isotropic shifts detected for the meso resonances and shift alteration at the meso and beta-positions.
Collapse
Affiliation(s)
- Ludmiła Szterenberg
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | | | | |
Collapse
|
23
|
Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions in physiological prosthetic heme modification. Chem Rev 2003; 103:2305-32. [PMID: 12797831 DOI: 10.1021/cr0204303] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christophe Colas
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
24
|
Abstract
Heme oxygenase has evolved to carry out the oxidative cleavage of heme, a reaction essential in physiological processes as diverse as iron reutilization and cellular signaling in mammals, synthesis of essential light-harvesting pigments in cyanobacteria and higher plants, and the acquisition of iron by bacterial pathogens. In all of these processes, heme oxygenase has evolved a similar structural and mechanistic scaffold to function within seemingly diverse physiological pathways. The heme oxygenase reaction is catalytically distinct from that of other hemoproteins such as the cytochromes P450, peroxidases, and catalases, but shares a hemoprotein scaffold that has evolved to generate a distinct activated oxygen species. In the following review we discuss the evolution of the structural and functional properties of heme oxygenase in light of the recent crystal structures of the mammalian and bacterial enzymes.
Collapse
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201-1180, USA.
| |
Collapse
|
25
|
Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 2001; 183:6394-403. [PMID: 11591684 PMCID: PMC100135 DOI: 10.1128/jb.183.21.6394-6403.2001] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The oxidative cleavage of heme to release iron is a mechanism by which some bacterial pathogens can utilize heme as an iron source. The pigA gene of Pseudomonas aeruginosa is shown to encode a heme oxygenase protein, which was identified in the genome sequence by its significant homology (37%) with HemO of Neisseria meningitidis. When the gene encoding the neisserial heme oxygenase, hemO, was replaced with pigA, we demonstrated that pigA could functionally replace hemO and allow for heme utilization by neisseriae. Furthermore, when pigA was disrupted by cassette mutagenesis in P. aeruginosa, heme utilization was defective in iron-poor media supplemented with heme. This defect could be restored both by the addition of exogenous FeSO4, indicating that the mutant did not have a defect in iron metabolism, and by in trans complementation with pigA from a plasmid with an inducible promoter. The PigA protein was purified by ion-exchange chromotography. The UV-visible spectrum of PigA reconstituted with heme showed characteristics previously reported for other bacterial and mammalian heme oxygenases. The heme-PigA complex could be converted to ferric biliverdin in the presence of ascorbate, demonstrating the need for an exogenous reductant. Acidification and high-performance liquid chromatography analysis of the ascorbate reduction products identified a major product of biliverdin IX-beta. This differs from the previously characterized heme oxygenases in which biliverdin IX-alpha is the typical product. We conclude that PigA is a heme oxygenase and may represent a class of these enzymes with novel regiospecificity.
Collapse
Affiliation(s)
- M Ratliff
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Latos-Grazyński L, Wojaczyński J, Koerner R, Johnson JJ, Balch AL. Verdoheme reactivity. Remarkable paramagnetically shifted (1)H NMR spectra of intermediates from the addition of hydroxide or methoxide with Fe(II) and Fe(III) verdohemes. Inorg Chem 2001; 40:4971-7. [PMID: 11531446 DOI: 10.1021/ic010227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the reaction of 5-oxaporphyrin iron complexes (verdohemes) with methoxide ion or hydroxide ion have been undertaken to understand the initial step of ring opening of verdohemes. High-spin [ClFe(III)(OEOP)] undergoes a complex series of reactions upon treatment with hydroxide ion in chloroform, and similar species are also detected in dichloromethane, acetonitrile, and dimethyl sulfoxide. Three distinct paramagnetic intermediates have been identified by (1)H NMR spectroscopy. These reactive species are formed by addition of hydroxide to the macrocycle and to the iron as an axial ligand. Treatment of low-spin [(py)(2)Fe(II)(OEOP)]Cl (OEOP is the monoanion of octaethyl-5-oxaporphyrin) with excess methoxide ion in pyridine solution produces [(py)(n)()Fe(II)(OEBOMe)] (n = 1 or 2) ((OEBOMe), dianion of octaethylmethoxybiliverdin), whose (1)H NMR spectrum undergoes marked alteration upon addition of further amounts of methoxide ion. An identical (1)H NMR spectrum, which is characterized by methylene resonances with both upfield and downfield paramagnetic shifts, is formed upon treatment of [Fe(II)(OEBOMe)](2) with methoxide in pyridine solution and results from the formation of [(MeO)Fe(II)(OEBOMe)](-).
Collapse
Affiliation(s)
- L Latos-Grazyński
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Zhu W, Wilks A, Stojiljkovic I. Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 2000; 182:6783-90. [PMID: 11073924 PMCID: PMC111422 DOI: 10.1128/jb.182.23.6783-6790.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A full-length heme oxygenase gene from the gram-negative pathogen Neisseria meningitidis was cloned and expressed in Escherichia coli. Expression of the enzyme yielded soluble catalytically active protein and caused accumulation of biliverdin within the E. coli cells. The purified HemO forms a 1:1 complex with heme and has a heme protein spectrum similar to that previously reported for the purified heme oxygenase (HmuO) from the gram-positive pathogen Corynebacterium diphtheriae and for eukaryotic heme oxygenases. The overall sequence identity between HemO and these heme oxygenases is, however, low. In the presence of ascorbate or the human NADPH cytochrome P450 reductase system, the heme-HemO complex is converted to ferric-biliverdin IXalpha and carbon monoxide as the final products. Homologs of the hemO gene were identified and characterized in six commensal Neisseria isolates, Neisseria lactamica, Neisseria subflava, Neisseria flava, Neisseria polysacchareae, Neisseria kochii, and Neisseria cinerea. All HemO orthologs shared between 95 and 98% identity in amino acid sequences with functionally important residues being completely conserved. This is the first heme oxygenase identified in a gram-negative pathogen. The identification of HemO as a heme oxygenase provides further evidence that oxidative cleavage of the heme is the mechanism by which some bacteria acquire iron for further use.
Collapse
Affiliation(s)
- W Zhu
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
28
|
Sakamoto H, Omata Y, Adachi Y, Palmer G, Noguchi M. Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase. J Inorg Biochem 2000; 82:113-21. [PMID: 11132617 DOI: 10.1016/s0162-0134(00)00149-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report an HPLC method for separating the four regioisomers of verdoheme formed in the coupled oxidation of hemin with oxygen and ascorbate in aqueous pyridine. The reversed-phase ion-pair system uses hexafluoroacetone and pyridine as ion-pair agents. The regiochemistry of the separated isomers was established both by HPLC of the corresponding biliverdin IX derivatives and by 1H NMR of each isomer. Optical spectra of the pyridine verdohemochrome isomers were similar to each other, but showed differences in the absorption maxima in the red region, which appear at 680, 663, 648 and 660 nm for the alpha, beta, gamma, and delta-isomers, respectively. Each of the four isomers was incorporated anaerobically into heme oxygenase-1, yielding the corresponding verdoheme-enzyme complex. The ferrous forms had absorption maxima at 690, 667, 655, and 663 nm, and their CO-bound forms had maxima at 638, 624, 616, and 626 nm for alpha, beta, gamma, and delta-isomer, respectively. Addition of ferricyanide to the alpha-verdoheme-heme oxygenase complex brought about a ferric low-spin heme-like signal, which is identical with the ferric alpha-verdoheme complexed with the heme oxygenase that was observed in the heme oxygenase reaction.
Collapse
Affiliation(s)
- H Sakamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
29
|
Wilks A, Moënne-Loccoz P. Identification of the proximal ligand His-20 in heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Oxidative cleavage of the heme macrocycle does not require the proximal histidine. J Biol Chem 2000; 275:11686-92. [PMID: 10766788 DOI: 10.1074/jbc.275.16.11686] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coordination and spin-state of the Corynebacterium diphtheriae heme oxygenase (Hmu O) and the proximal Hmu O H20A mutant have been characterized by UV-visible and resonance Raman (RR) spectrophotometry. At neutral pH the ferric heme-Hmu O complex is a mixture of six-coordinate high spin and six-coordinate low spin species. Changes in the UV-visible and high frequency RR spectra are observed as a function of pH and temperature, with the six-coordinate high spin species being converted to six-coordinate low spin. The low frequency region of the ferrous RR spectrum identified the proximal ligand to the heme as a neutral imidazole with a Fe-His stretching mode at 222 cm(-1). The RR characterization of the heme-CO complex in wt-Hmu O confirms that the proximal imidazole is neither ionized or strongly hydrogen-bonded. Based on sequence identity with the mammalian enzymes the proximal ligand in HO-1 (His-25) and HO-2 (His-45) is conserved (His-20) in the bacterial enzyme. Site-specific mutagenesis identified His-20 as the proximal mutant based on electronic and resonance Raman spectrophotometric analysis. Titration of the heme-Hmu O complex with imidazole restored full catalytic activity to the enzyme, and the coordination of imidazole to the heme was confirmed by RR. However, in the absence of imidazole, the H20A Hmu O mutant was found to catalyze the initial alpha-meso-hydroxylation of the heme. The product of the aerobic reaction was determined to be ferrous verdoheme. Hydrolytic conversion of the verdoheme product to biliverdin concluded that oxidative cleavage of the porphyrin macrocycle was specific for the alpha-meso-carbon. The present data show that, in marked contrast to the human HO-1, the proximal ligand is not essential for the initial alpha-meso-hydroxylation of heme in the C. diphtheriae heme oxygenase-catalyzed reaction.
Collapse
Affiliation(s)
- A Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA.
| | | |
Collapse
|
30
|
Iyanagi T, Emi Y, Ikushiro S. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:173-84. [PMID: 9748558 DOI: 10.1016/s0925-4439(98)00044-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bilirubin, the oxidative product of heme in mammals, is excreted into the bile after its esterification with glucuronic acid to polar mono- and diconjugated derivatives. The accumulation of unconjugated and conjugated bilirubin in the serum is caused by several types of hereditary disorder. The Crigler-Najjar syndrome is caused by a defect in the gene which encodes bilirubin UDP-glucuronosyltransferase (UGT), whereas the Dubin-Johnson syndrome is characterized by a defect in the gene which encodes the canalicular bilirubin conjugate export pump of hepatocytes. Animal models such as the unconjugated hyperbilirubinemic Gunn rat, the conjugated hyperbilirubinemic GY/TR-, and the Eisai hyperbilirubinemic rat, have contributed to the understanding of the molecular basis of hyperbilirubinemia in humans. Elucidation of both the structure of the UGT1 gene complex, and the Mrp2 (cMoat) gene which encodes the canalicular conjugate export pump, has led to a greater understanding of the genetic basis of hyperbilirubinemia.
Collapse
Affiliation(s)
- T Iyanagi
- Department of Life Science, Himeji Institute of Technology, Hyogo, Japan.
| | | | | |
Collapse
|
31
|
Koerner R, Latos-Grażyński L, Balch AL. Models for Verdoheme Hydrolysis. Paramagnetic Products from the Ring Opening of Verdohemes, 5-Oxaporphyrin Complexes of Iron(II), with Methoxide Ion. J Am Chem Soc 1998. [DOI: 10.1021/ja980558v] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard Koerner
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and the Department of Chemistry, University of Wrocław, Wrocław, Poland
| | - Lechosoław Latos-Grażyński
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and the Department of Chemistry, University of Wrocław, Wrocław, Poland
| | - Alan L. Balch
- Contribution from the Department of Chemistry, University of California, Davis, California 95616, and the Department of Chemistry, University of Wrocław, Wrocław, Poland
| |
Collapse
|
32
|
Ortiz de Montellano PR. Heme Oxygenase Mechanism: Evidence for an Electrophilic, Ferric Peroxide Species. Acc Chem Res 1998. [DOI: 10.1021/ar960207q] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446
| |
Collapse
|
33
|
Rodríguez JC, Desilva T, Rivera M. Efficient Coupled Oxidation of Heme Performed by the H63M Variant of Outer Mitochondrial Membrane Cytochrome b5. CHEM LETT 1998. [DOI: 10.1246/cl.1998.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Torpey J, Ortiz de Montellano PR. Oxidation of alpha-meso-formylmesoheme by heme oxygenase. Electronic control of the reaction regiospecificity. J Biol Chem 1997; 272:22008-14. [PMID: 9268339 DOI: 10.1074/jbc.272.35.22008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oxidation of heme to biliverdin IXalpha by heme oxygenase involves regiospecific alpha-meso-hydroxylation followed by extrusion of the alpha-meso-carbon as CO. In an earlier study, enzymatic oxidation of the four meso-methylmesoheme isomers suggested that the reaction regiospecificity is sensitive to the electronic properties of the meso-methyl group (Torpey, J. W., and Ortiz de Montellano, P. R. (1996) J. Biol. Chem. 271, 26067-26073), although we could not exclude the possibility that the altered reaction regiochemistry was due to perturbation of the porphyrin structure by the meso-substituent. To examine this possibility, we have synthesized the four meso-formylmesoporphyrin isomers and have examined their oxidation by heme oxygenase. The meso-formyl and meso-methyl substituents differ in that the former is electron withdrawing and the latter is electron donating. In contrast to alpha-meso-methylmesoheme, which is exclusively oxidized at the methyl-substituted position, alpha-meso-formylmesoheme is exclusively oxidized at a non-formyl-substituted meso-carbon. The finding that the methyl and formyl groups channel the reaction regiospecificity in opposite directions establishes that the regiochemistry of the heme oxygenase reaction is primarily under electronic rather than steric control. It also confirms that the oxidation involves electrophilic addition of the oxygen to the porphyrin ring.
Collapse
Affiliation(s)
- J Torpey
- Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
35
|
Torpey J, Ortiz de Montellano PR. Oxidation of the meso-methylmesoheme regioisomers by heme oxygenase. Electronic control of the reaction regiospecificity. J Biol Chem 1996; 271:26067-73. [PMID: 8824248 DOI: 10.1074/jbc.271.42.26067] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The oxidation of heme by heme oxygenase (HO-1) results in highly regiospecific extrusion of the alpha-meso-carbon as CO and the formation of biliverdin IXalpha. The first step in the accepted mechanism for this process is alpha-meso-hydroxylation of the heme. To define further the reaction mechanism, the oxidations of the four isomers of meso-methylmesoheme by human truncated HO-1 supported by NADPH-cytochrome P450 reductase, H2O2, or ascorbate have been examined. Surprisingly, the results establish that (a) HO-1 can oxidize an alpha-meso-methyl-substituted heme to biliverdin IXalpha without proceeding via the alpha-meso-hydroxy intermediate; (b) the normal HO-1 alpha-regiospecificity is inverted in favor of the substituted gamma-position by introduction of a gamma-meso methyl group; and (c) the beta- and delta-meso-methylmesohemes are oxidized less regiospecifically to mixtures of methyl-substituted and -unsubstituted mesobiliverdins. The results indicate that electronic rather than steric effects primarily control the regiospecificity of heme cleavage by HO-1.
Collapse
Affiliation(s)
- J Torpey
- Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco, 94143-0446, USA
| | | |
Collapse
|
36
|
Iturraspe J, Gossauer A. FORMATION OF OXONIACHLORINS ON PHOTOOXIDATION OF 20-TRIFLUOROACETOXY- AND 20-CHLORO-CHLOROPHYLL DERIVATIVES. Photochem Photobiol 1991. [DOI: 10.1111/j.1751-1097.1991.tb01983.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Yoshinaga T, Sudo Y, Sano S. Enzymic conversion of alpha-oxyprotohaem IX into biliverdin IX alpha by haem oxygenase. Biochem J 1990; 270:659-64. [PMID: 2122884 PMCID: PMC1131782 DOI: 10.1042/bj2700659] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conversion of four isomers of meso-oxyprotohaem IX into the corresponding biliverdin IX was attempted with a reconstituted haem oxygenase system in the presence of NADPH-cytochrome c reductase and NADPH. Only the alpha-isomer of meso-oxyprotohaem IX was converted effectively into biliverdin IX alpha, which was further reduced to bilirubin IX alpha by biliverdin reductase. Only trace amounts of biliverdins IX beta, IX gamma and IX delta were respectively formed from the incubation mixture of the corresponding oxyprotohaemin IX isomers with the complete haem oxygenase system under the same conditions. In a kinetic study, the Km for alpha-meso-oxyprotohaem IX was 3.6 microM, which was 2-fold higher than that for protohaem IX. The maximum velocity (Vmax.) of the conversion of alpha-meso-oxyprotohaem IX into biliverdin IX alpha was twice as fast as that of protohaem IX. These results demonstrate that alpha-meso-oxyprotohaem IX is an intermediate of haem degradation and it was converted stereospecifically into biliverdin IX alpha via verdohaem IX alpha.
Collapse
Affiliation(s)
- T Yoshinaga
- Department of Public Health, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
38
|
Saito S, Sumita S, Iwai K, Sano H. Preparation of Mesoverdohemochrome IXα Dimethyl Ester and Mössbauer Spectra of Related Porphyrins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1988. [DOI: 10.1246/bcsj.61.3539] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Saito S, Tamura N. Chemical Studies on Products Obtained from Verdohemochrome IXα Dimethyl Ester by Treatment with Ammonia under Air. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1987. [DOI: 10.1246/bcsj.60.4037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Sano S, Sano T, Morishima I, Shiro Y, Maeda Y. On the mechanism of the chemical and enzymic oxygenations of alpha-oxyprotohemin IX to Fe.biliverdin IX alpha. Proc Natl Acad Sci U S A 1986; 83:531-5. [PMID: 3456152 PMCID: PMC322897 DOI: 10.1073/pnas.83.3.531] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
alpha-Oxyprotohemin IX, an early intermediate in heme catabolism, was synthesized and its autoxidation to biliverdin IX alpha was studied. In anaerobic aqueous pyridine, alpha-oxyprotohemin (hexacoordinated) underwent autoreduction to yield an Fe(II) alpha-oxyprotoporphyrin pi-neutral radical bis(pyridine) complex, which reacted with an equimolar amount of dioxygen to give pyridine.verdohemochrome IX alpha and CO in 75-80% yield via an intermediate with an absorption maximum at 893 nm. Verdohemochrome IX alpha did not react with further dioxygen. Reconstituted apomyoglobin.alpha-oxyprotohemin IX complex (pentacoordinated) reacted with an equimolar amount of dioxygen to form an Fe(II) oxyporphyrin pi-neutral radical intermediate, which rearranged to a green compound (lambda max 660 and 704 nm) with elision of CO. The green product, which is probably an apomyoglobin.verdoheme pi-radical complex, reacted with another equimolar amount of dioxygen to give Fe(III).biliverdin IX alpha. Demetallation of this gave biliverdin IX alpha in overall yield of 70-75%. These results indicate that the sequence of oxyheme autoxidation in the presence of apomyoglobin is alpha-oxyprotoheme IX O2----CO----verdohemochrome IX alpha pi-radical O2----Fe(III).biliverdin IX alpha. A similar mechanism may prevail in vivo. The hexa- and pentacoordinated Fe(II) pi-radical form of the oxyporphyrin is crucial in triggering the autoxidation of the complex to verdohemochrome IX alpha. Further oxygenation of verdohemochrome IX alpha to Fe(III).biliverdin IX alpha occurred only in the pentacoordinated apomyoglobin.verdoheme Fe(II) complex.
Collapse
|
41
|
Abstract
Coupled oxidation of octaethylhaemin and phenylhydrazine hydrochloride with 16,16O2 and 18,18O2 produced octaethyl[16O]verdohaemochrome and octaethyl[18O]-verdohaemochrome respectively. Reactions of these products with 16,16O2 in the presence of phenylhydrazine hydrochloride yielded octaethyl[16O, 16O]biliverdin and octaethyl[18O, 16O]biliverdin. The same reactions with 18,18O2 yielded octaethyl[16O, 18O]biliverdin and octaethyl[18O, 18O]biliverdin. Accordingly, the two oxygen atoms of biliverdin are incorporated from different O2 molecules in separate reactions, namely the formation of verdohaemochrome and the conversion of verdohaemochrome into biliverdin. These reactions account for a "two-molecule mechanism' of biliverdin formation from haem with verdohaemochrome participating as an intermediate product.
Collapse
|
42
|
Docherty JC, Schacter BA, Firneisz GD, Brown SB. Mechanism of action of heme oxygenase. A study of heme degradation to bile pigment by 18O labeling. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90657-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
|
44
|
|