1
|
Nawrotzki R, Fischman DA, Mikawa T. Antisense suppression of skeletal muscle myosin light chain-1 biosynthesis impairs myofibrillogenesis in cultured myotubes. J Muscle Res Cell Motil 1995; 16:45-56. [PMID: 7751404 DOI: 10.1007/bf00125309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the alkali or essential light chains of skeletal muscle myosin are not required for actin-activated myosin ATPase activity, these myosin subunits are necessary for force transmission with in vitro actin motility assays and are believed to stabilize the alpha-helical neck region of myosin subfragment-1. To probe the functions of the essential light chains during myofibril assembly, we used recombinant DNA procedures to deplete this light chain in cultured muscle. Retroviral expression vectors were constructed which encoded the exon-1 sequence of the myosin light chain-1 gene in antisense orientation. These vectors were applied to myogenic cells from embryonic chick and quail pectoralis muscle. Colonies expressing antisense RNA were selected in growth medium containing the neomycin analogue G-418, plus 5-bromo-2'-deoxyuridine (BrdU) and triggered to differentiate by removal of the latter. Expression of antisense myosin light chain-1 mRNA impaired muscle development. In the antisense cultures there were more mononucleated cells, fewer and smaller myotubes which had poorly developed myofibrils and high levels of diffusely staining myosin heavy chain, not apparent in control myotubes. Protein synthesis in the myotube cultures was analyzed by 35S-methionine labelling and two-dimensional gel electrophoresis. Except for a suppression of approximately 80% of myosin light chain-1f synthesis, the overall pattern of protein synthesis was not altered significantly. These studies suggest that retardation of myosin light chain-1f accumulation inhibits or delays myofibrillogenesis.
Collapse
Affiliation(s)
- R Nawrotzki
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
2
|
Flickinger RA. Cell differentiation: an evolutionary perspective. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 148:81-118. [PMID: 7509780 DOI: 10.1016/s0074-7696(08)62406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R A Flickinger
- Department of Biological Sciences, State University of New York at Buffalo 14260
| |
Collapse
|
3
|
Cornillon B, Cathiard AM, Eldin P, Anoal M, Cardinaud R, Liautard JP, Le Cunff M, Mornet D, Pons F, Leger J. Probing myosin light chain 1 structure with monoclonal antibodies. J Muscle Res Cell Motil 1992; 13:329-40. [PMID: 1527220 DOI: 10.1007/bf01766461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five monoclonal antibodies that react with different regions of myosin light chain 1 from human ventricular myocardial muscle were used to obtain information on interactions between the light chain 1 and heavy chains and generally on the tertiary structure of the light chain 1 within the myosin head. We performed Western blot assays of the five antibodies with myosins from different cardiac and skeletal muscles, with different proteolytic fragments of bovine ventricular myosin light chain 1 (LC1) and to different recombinant fragments of human ventricular LC1 and rat fast skeletal light chain LC1/LC3. The five antibodies were mapped in three different regions of the light chain 1: two antibodies mapped within the first eight amino-terminal residues, two between residues 71 and 74, and one between residues 129 and 134. The apparent dissociation constants of the last three antibodies, determined by antibody-antigen equilibria in solution, were lower than when isolated light chains were used as antigens. It is probable that the corresponding amino acids involved in the antibody epitopes were either involved in interactions between the light and heavy myosin subunits, or somehow hindered by the myosin heavy chain bulk. In contrast, the apparent dissociation constants measured for both other antibodies were higher when myosin, rather than isolated light chains, was used as antigen. Thus LC1 fixation to heavy chains within the myosin molecule induced conformation changes at the amino-terminal end of the light chain 1. No difference in the accessibility of this mobile LC1 segment was detected in the presence of actin. Finally, observed differences in epitope accessibility on the light chain LC1 in myosin, as compared with chymotryptic subfragment 1 (SF1), indicated conformational differences between native myosin and extensively studied SF1 molecules.
Collapse
Affiliation(s)
- B Cornillon
- Institut National de la Santé et de la Recherche Médicale U.300, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Müller B, Maeda K, Wittinghofer A. Sequence of the myosin light chain 1/3 isolated from a rabbit fast skeletal muscle lambda library. Nucleic Acids Res 1990; 18:6688. [PMID: 2147476 PMCID: PMC332634 DOI: 10.1093/nar/18.22.6688] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- B Müller
- Max-Planck-Institut für medizinische Forschung, Abteilung Biophysik, Heidelberg, FRG
| | | | | |
Collapse
|
5
|
Upstream regulatory region for inducible expression of the chicken skeletal myosin alkali light-chain gene. Mol Cell Biol 1988. [PMID: 3405213 DOI: 10.1128/mcb.8.6.2581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the fast type of myosin alkali light chain 1 is induced during the differentiation of muscle cells. To study the mechanism of its gene regulation, we joined the sequence of the 5'-flanking and upstream region of the chicken myosin alkali light-chain gene to the structural gene for chloramphenicol acetyltransferase (CAT). The fusion gene was introduced either into quail myoblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus (tsNY68) or into chicken myoblasts, and the transiently expressed CAT activity was assayed after the differentiation of the myoblasts. From the experiments with the external and internal deletion mutants of the fusion gene, the cis-acting regulatory region responsible for the enhanced expression of the CAT activity in response to the cell differentiation was found to be localized at 2 kilobases upstream of the transcription initiation site. This region of 160 nucleotides contained two pairs of short sequences worthy of note, a direct repeat of 12 nucleotides, and an inverted repeat of 8 nucleotides. The nucleotide sequences of the 5'-flanking sequence up to nucleotide -3381 were determined and compared with those of the upstream activating elements of actin genes.
Collapse
|
6
|
Shirakata M, Nabeshima Y, Konishi K, Fujii-Kuriyama Y. Upstream regulatory region for inducible expression of the chicken skeletal myosin alkali light-chain gene. Mol Cell Biol 1988; 8:2581-8. [PMID: 3405213 PMCID: PMC363459 DOI: 10.1128/mcb.8.6.2581-2588.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The expression of the fast type of myosin alkali light chain 1 is induced during the differentiation of muscle cells. To study the mechanism of its gene regulation, we joined the sequence of the 5'-flanking and upstream region of the chicken myosin alkali light-chain gene to the structural gene for chloramphenicol acetyltransferase (CAT). The fusion gene was introduced either into quail myoblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus (tsNY68) or into chicken myoblasts, and the transiently expressed CAT activity was assayed after the differentiation of the myoblasts. From the experiments with the external and internal deletion mutants of the fusion gene, the cis-acting regulatory region responsible for the enhanced expression of the CAT activity in response to the cell differentiation was found to be localized at 2 kilobases upstream of the transcription initiation site. This region of 160 nucleotides contained two pairs of short sequences worthy of note, a direct repeat of 12 nucleotides, and an inverted repeat of 8 nucleotides. The nucleotide sequences of the 5'-flanking sequence up to nucleotide -3381 were determined and compared with those of the upstream activating elements of actin genes.
Collapse
Affiliation(s)
- M Shirakata
- Department of Biochemistry, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo
| | | | | | | |
Collapse
|
7
|
Molecular-genetic mechanisms for the functionally determined isogene selections in muscle. Protein J 1986. [DOI: 10.1007/bf01025421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Alonso S, Minty A, Bourlet Y, Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol 1986; 23:11-22. [PMID: 3084797 DOI: 10.1007/bf02100994] [Citation(s) in RCA: 515] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have determined the sequences of three recombinant cDNAs complementary to different mouse actin mRNAs that contain more than 90% of the coding sequences and complete or partial 3' untranslated regions (3'UTRs): pAM 91, complementary to the actin mRNA expressed in adult skeletal muscle (alpha sk actin); pAF 81, complementary to an actin mRNA that is accumulated in fetal skeletal muscle and is the major transcript in adult cardiac muscle (alpha c actin); and pAL 41, identified as complementary to a beta nonmuscle actin mRNA on the basis of its 3'UTR sequence. As in other species, the protein sequences of these isoforms are highly (greater than 93%) conserved, but the three mRNAs show significant divergence (13.8-16.5%) at silent nucleotide positions in their coding regions. A nucleotide region located toward the 5' end shows significantly less divergence (5.6-8.7%) among the three mouse actin mRNAs; a second region, near the 3' end, also shows less divergence (6.9%), in this case between the mouse beta and alpha sk actin mRNAs. We propose that recombinational events between actin sequences may have homogenized these regions. Such events distort the calculated evolutionary distances between sequences within a species. Codon usage in the three actin mRNAs is clearly different, and indicates that there is no strict relation between the tissue type, and hence the tRNA precursor pool, and codon usage in these and other muscle mRNAs examined. Analysis of codon usage in these coding sequences in different vertebrate species indicates two tendencies: increases in bias toward the use of G and C in the third codon position in paralogous comparisons (in the order alpha c less than beta less than alpha sk), and in orthologous comparisons (in the order chicken less than rodent less than man). Comparison of actin-coding sequences between species was carried out using the Perler method of analysis. As one moves backward in time, changes at silent sites first accumulate rapidly, then begin to saturate after -(30-40) million years (MY), and actually decrease between -400 and -500 MY. Replacements or silent substitutions therefore cannot be used as evolutionary clocks for these sequences over long periods. Other phenomena, such as gene conversion or isochore compartmentalization, probably distort the estimated divergence time.
Collapse
|
9
|
Czosnek H, Barker PE, Ruddle FH, Robert B. Chromosomal distribution of genes coding for fast twitch skeletal muscle myosin light chains. SOMATIC CELL AND MOLECULAR GENETICS 1985; 11:533-40. [PMID: 3865381 DOI: 10.1007/bf01534719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mouse fast twitch skeletal muscle myosin light chains are encoded by a multigene family which comprises the gene coding for the myosin light chain 2 (Myl2f), and the gene coding for both myosin light chains 1 and 3 (Myl1f/Myl3f). In addition, a Myl1f/Myl3f-related pseudogene is present in the domestic mouse Mus musculus. The members of this gene family were assigned to chromosomes by molecular hybridization, using DNA extracted from a panel of cloned mouse-Chinese hamster somatic hybrid cells and specific DNA probes. The genes coding for the light chains of the myosin molecule are dispersed on several chromosomes, while genes coding for the heavy chain of myosin are located on a single, different chromosome.
Collapse
|
10
|
Weydert A, Daubas P, Lazaridis I, Barton P, Garner I, Leader DP, Bonhomme F, Catalan J, Simon D, Guénet JL. Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc Natl Acad Sci U S A 1985; 82:7183-7. [PMID: 3864153 PMCID: PMC390813 DOI: 10.1073/pnas.82.21.7183] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myosin heavy chain (MHC) genes are expressed as several distinct isoforms in a tissue- and stage-specific manner; three skeletal muscle MHC isoforms appear sequentially during development. We have isolated cDNA clones, identified by RNA blot hybridization and by nucleotide sequence determination as coding for portions of the embryonic (pMHC2.2), perinatal (pMHC16.2A), and alpha(V1) cardiac (pMHC141 and pMHC101) MHC isoforms. These four probes and the adult skeletal MHC probe (pMHC32) have been used on Southern blots of genomic DNA to detect restriction fragment length polymorphisms defining the alleles for these genes in mouse species Mus musculus and Mus spretus. In this way, we followed the segregation of skeletal and cardiac MHC genes in 42 offspring resulting from an interspecies backcross. We found that the embryonic, perinatal, and adult skeletal MHC genes are clustered on chromosome 11 near the locus nude, the skeletal and cardiac MHC genes do not cosegregate, and the alpha(V1) cardiac MHC gene is located on chromosome 14 close to Np-1. This result is in contrast to that for other contractile protein genes such as the alkali myosin light chain and the actin multigene families, which are dispersed in the genome.
Collapse
|
11
|
|
12
|
Barton PJ, Robert B, Fiszman MY, Leader DP, Buckingham ME. The same myosin alkali light chain gene is expressed in adult cardiac atria and in fetal skeletal muscle. J Muscle Res Cell Motil 1985; 6:461-75. [PMID: 3840808 DOI: 10.1007/bf00712583] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have isolated from a cDNA library constructed using mouse cardiac mRNA sequences, a clone (pC6) homologous to part of the mRNA encoding the myosin alkali light chain MLC1A from adult mouse atria. This sequence also hybridizes to mRNA encoding the fetal light chain form MLC1emb expressed in both fused myotubes in culture and in 18 day fetal skeletal muscle. These mRNA sequences are indistinguishable from the MLC1A messenger both on the basis of size and of their thermal stability of hybridization. In vitro translation of mRNA selected by hybridization with pC6 results in a protein that comigrates with the fetal MLC1emb isoform, and two-dimensional gel electrophoresis of adult atrial and fetal skeletal muscle proteins shows MLC1A and MLC1emb to be indistinguishable in the mouse. Southern blot hybridization of clone pC6 to mouse genomic DNA and the analysis of restriction fragment length polymorphisms between different mouse species demonstrates the presence of a single hybridizing locus in the mouse genome. These data provide strong evidence that the atrial MLC1A and fetal skeletal MLC1emb isoform are encoded by the same gene and by the same mRNA and are thus identical proteins.
Collapse
|
13
|
The myosin alkali light chains of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39512-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Rushbrook JI, Somes RG. Myosin light chain-1: genetic analysis of three variants found in fast white chicken muscle and investigation of linkage with the muscular dystrophy gene. Biochem Genet 1985; 23:17-27. [PMID: 3994657 DOI: 10.1007/bf00499109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Backcross and F2 analyses have been carried out to determine the genetic basis of inheritance of three myosin light chain-1 variants present in the fast white muscle fibers of the domestic chicken. Two of the variants (types I and II) were described previously [Rushbrook, J. I., Yuan, A. I., and Stracher, A. (1982). Muscle Nerve 5:505], while the existence of the third (type III) is reported here. The results are consistent with an autosomal and allelic origin for the variants. A test linkage backcross to the muscular dystrophy gene am was found to be negative. This is the twelfth negative linkage result for the am gene.
Collapse
|
15
|
Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90735-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Wilkinson JM, Moir AJ, Waterfield MD. The expression of multiple forms of troponin T in chicken-fast-skeletal muscle may result from differential splicing of a single gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 143:47-56. [PMID: 6468390 DOI: 10.1111/j.1432-1033.1984.tb08337.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Troponin T isolated from chicken fast skeletal muscle has been shown to be present in three different molecular forms, one in breast and two in leg muscle. The three forms differ in both size and charge. Troponin T from breast muscle has a molecular mass of 33.5 kDa and a pI of about 7. Of the two leg muscle forms the larger has a molecular mass of 30.5 kDa and a pI of about 8.5 and the smaller a molecular mass of 29.8 kDa and a pI of about 10. Considerably more heterogeneity has been found in the leg than in the breast muscle proteins although this is not reflected in their N-terminal sequences. The reason for this is not clear. Troponin T from breast or leg muscle can be phosphorylated with troponin T kinase at the single serine residue at the N-terminus. No difference in the rate or extent of phosphorylation could be found between proteins from breast or leg muscle. The three proteins have been shown to differ only in the amino acid sequence of their N-terminal tryptic peptides. These peptides are of different length, that from breast troponin T being 58 residues and those from leg troponin T being 36 and 42 residues, these differences account for the difference in molecular mass of the parent proteins. Despite this difference the sequence of the first 12 and last 14 residues is identical in all three N-terminal peptides. The remainder of the sequence of the smallest peptide is also repeated in the other two but they each contain an extra piece of unique sequence. On the basis of these sequences it is proposed that chicken troponin T is coded for by a single gene containing, at the 5' end, a number of small exons and that three different mRNA molecules may be produced by alternative pathways of RNA splicing. The possible significance of these N-terminal sequence variations is discussed.
Collapse
|
17
|
Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K. Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature 1984; 308:333-8. [PMID: 6709041 DOI: 10.1038/308333a0] [Citation(s) in RCA: 336] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chicken skeletal muscle myosin alkali light chains are encoded by a single gene of size 18 kilobases (kb). This gene has two transcription initiation sites from which 17.5- and 8-kb precursor RNAs are transcribed. These RNAs are processed by different modes of splicing to form mRNAs encoding distinct light-chain (LC1 and LC3) proteins.
Collapse
|
18
|
Matsuda R, Spector D, Strohman RC. Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins. Proc Natl Acad Sci U S A 1984; 81:1122-5. [PMID: 6583699 PMCID: PMC344777 DOI: 10.1073/pnas.81.4.1122] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synthesis patterns of myosin heavy- and light-chain isoforms, tropomyosin and troponin, have been studied in chicken fast muscle denervated at both neonatal and adult stages. Denervated neonatal muscle does not synthesize the adult myosin heavy-chain isoform at the time of denervation, but it does synthesize the adult isoform several months after denervation. Thus, innervation does not appear to be necessary for the normal sequential replacement of embryonic and neonatal myosin heavy chain by the adult variant. Nerve is required, however, for the regulation of tropomyosin and troponin expression. Normally the pectoralis major muscle represses synthesis of both beta-tropomyosin and leg-type troponin T during late embryonic development. After denervation, however, the muscle relaxes its ongoing repression of these proteins and significant amounts of both beta-tropomyosin and leg-type troponin T are synthesized by the muscle. Denervation also results in an altered pattern of myosin light-chain synthesis so that the ratio of fast light-chain 3/fast light-chain 1 decreases. Similar results are found in muscle denervated at the adult stage. In denervated muscle, therefore, synthesis of these myofibrillar proteins is not coordinated: ongoing isoform shifts proceed to express an adult pattern of myosin heavy chain while tropomyosin, troponin, and myosin light-chain patterns appear to revert to embryonic configurations.
Collapse
|
19
|
Weydert A, Daubas P, Caravatti M, Minty A, Bugaisky G, Cohen A, Robert B, Buckingham M. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43998-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
|
21
|
Nabeshima Y, Fujii-Kuriyama Y, Muramatsu M, Ogata K. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs. Nucleic Acids Res 1982; 10:6099-110. [PMID: 6128725 PMCID: PMC320953 DOI: 10.1093/nar/10.19.6099] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report here the molecular cloning and sequence analysis of DNAs complementary to mRNAs for myosin alkali light chain of chicken embryo and adult leg skeletal muscle. pSMA2-1 contained an 818 base-pair insert that includes the entire coding region and 5' and 3' untranslated regions of A2 mRNA. pSMA1-1 contained a 848 base-pair insert that included the 3' untranslated region and almost all of the coding region except for the N-terminal 13 amino acid residues of the A1 light chain. The 741 nucleotide sequences of A1 and A2 mRNAs corresponding to C-terminal 141 amino acid residues and 3' untranslated regions were identical. The 5' terminal nucleotide sequences corresponding to N-terminal 35 amino acid residues of A1 chain were quite different from the sequences corresponding to N-terminal 8 amino acid residues and of the 5' untranslated region of A2 mRNA. These findings are discussed in relation to the structures of the genes for A1 and A2 mRNA.
Collapse
|