1
|
Ganetzky B. A tribute to Bill Pak, unsung hero of neurogenetics. J Neurogenet 2024:1-5. [PMID: 39039773 DOI: 10.1080/01677063.2024.2380297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Huang HW, Ryoo HD. Drosophila fabp is required for light-dependent Rhodopsin-1 clearance and photoreceptor survival. PLoS Genet 2021; 17:e1009551. [PMID: 34714826 PMCID: PMC8580249 DOI: 10.1371/journal.pgen.1009551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/10/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022] Open
Abstract
Rhodopsins are light-detecting proteins coupled with retinal chromophores essential for visual function. Coincidentally, dysfunctional Rhodopsin homeostasis underlies retinal degeneration in humans and model organisms. Drosophila ninaEG69D mutant is one such example, where the encoded Rh1 protein imposes endoplasmic reticulum (ER) stress and causes light-dependent retinal degeneration. The underlying reason for such light-dependency remains unknown. Here, we report that Drosophila fatty acid binding protein (fabp) is a gene induced in ninaEG69D/+ photoreceptors, and regulates light-dependent Rhodopsin-1 (Rh1) protein clearance and photoreceptor survival. Specifically, our photoreceptor-specific gene expression profiling study in ninaEG69D/+ flies revealed increased expression of fabp together with other genes that control light-dependent Rh1 protein degradation. fabp induction in ninaEG69D photoreceptors required vitamin A and its transporter genes. In flies reared under light, loss of fabp caused an accumulation of Rh1 proteins in cytoplasmic vesicles. The increase in Rh1 levels under these conditions was dependent on Arrestin2 that mediates feedback inhibition of light-activated Rh1. fabp mutants exhibited light-dependent retinal degeneration, a phenotype also found in other mutants that block light-induced Rh1 degradation. These observations reveal a previously unrecognized link between light-dependent Rh1 proteostasis and the ER-stress imposing ninaEG69D mutant that cause retinal degeneration.
Collapse
Affiliation(s)
- Huai-Wei Huang
- Department of Cell Biology NYU Grossman School of Medicine New York, New York, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology NYU Grossman School of Medicine New York, New York, United States of America
| |
Collapse
|
4
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
6
|
Huang HW, Brown B, Chung J, Domingos PM, Ryoo HD. highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models. Cell Rep 2019; 22:1384-1391. [PMID: 29425495 PMCID: PMC5832065 DOI: 10.1016/j.celrep.2018.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 11/02/2022] Open
Abstract
Rhodopsins require retinoid chromophores for their function. In vertebrates, retinoids also serve as signaling molecules, but whether these molecules similarly regulate gene expression in Drosophila remains unclear. Here, we report the identification of a retinoid-inducible gene in Drosophila, highroad, which is required for photoreceptors to clear folding-defective mutant Rhodopsin-1 proteins. Specifically, knockdown or genetic deletion of highroad blocks the degradation of folding-defective Rhodopsin-1 mutant, ninaEG69D. Moreover, loss of highroad accelerates the age-related retinal degeneration phenotype of ninaEG69D mutants. Elevated highroad transcript levels are detected in ninaEG69D flies, and interestingly, deprivation of retinoids in the fly diet blocks this effect. Consistently, mutations in the retinoid transporter, santa maria, impairs the induction of highroad in ninaEG69D flies. In cultured S2 cells, highroad expression is induced by retinoic acid treatment. These results indicate that cellular quality-control mechanisms against misfolded Rhodopsin-1 involve regulation of gene expression by retinoids.
Collapse
Affiliation(s)
- Huai-Wei Huang
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Jaehoon Chung
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
7
|
Ribeiro IMA, Drews M, Bahl A, Machacek C, Borst A, Dickson BJ. Visual Projection Neurons Mediating Directed Courtship in Drosophila. Cell 2018; 174:607-621.e18. [PMID: 30033367 DOI: 10.1016/j.cell.2018.06.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/07/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
Abstract
Many animals rely on vision to detect, locate, and track moving objects. In Drosophila courtship, males primarily use visual cues to orient toward and follow females and to select the ipsilateral wing for courtship song. Here, we show that the LC10 visual projection neurons convey essential visual information during courtship. Males with LC10 neurons silenced are unable to orient toward or maintain proximity to the female and do not predominantly use the ipsilateral wing when singing. LC10 neurons preferentially respond to small moving objects using an antagonistic motion-based center-surround mechanism. Unilateral activation of LC10 neurons recapitulates the orienting and ipsilateral wing extension normally elicited by females, and the potency with which LC10 induces wing extension is enhanced in a state of courtship arousal controlled by male-specific P1 neurons. These data suggest that LC10 is a major pathway relaying visual input to the courtship circuits in the male brain.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Max Plank Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Michael Drews
- Max Plank Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Armin Bahl
- Max Plank Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Machacek
- Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Borst
- Max Plank Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Chen X, Leon-Salas WD, Zigon T, Ready DF, Weake VM. A Programmable Optical Stimulator for the Drosophila Eye. HARDWAREX 2017; 2:13-33. [PMID: 29230438 PMCID: PMC5722245 DOI: 10.1016/j.ohx.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red) and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm2. The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17°C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 hours of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 hours and 7994 lux) do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental ocular stress using blue light.
Collapse
Affiliation(s)
- Xinping Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana, USA
| | - Walter D. Leon-Salas
- School of Engineering Technology, Purdue University, 401 North Grant Street, West Lafayette, Indiana, USA
| | - Taylor Zigon
- School of Engineering Technology, Purdue University, 401 North Grant Street, West Lafayette, Indiana, USA
| | - Donald F. Ready
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Vikki M. Weake
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana, USA
- Purdue Center for Cancer Research, 201 South University Street, West Lafayette, Indiana, USA
| |
Collapse
|
9
|
An automated workflow for quantifying RNA transcripts in individual cells in large data-sets. MethodsX 2017; 4:279-288. [PMID: 28932696 PMCID: PMC5596354 DOI: 10.1016/j.mex.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
Advanced molecular probing techniques such as single molecule fluorescence in situ hybridization (smFISH) or RNAscope can be used to assess the quantity and spatial location of mRNA transcripts within cells. Quantifying mRNA expression in large image sets usually involves automated counting of fluorescent spots. Though conventional spot counting algorithms may suffice, they often lack high-throughput capacity and accuracy in cases of crowded signal or excessive noise. Automatic identification of cells and processing of many images is still a challenge. We have developed a method to perform automatic cell boundary identification while providing quantitative data about mRNA transcript levels across many images. Comparisons of mRNA transcript levels identified by the method highly correlate to qPCR measurements of mRNA expression in Drosophila genotypes with different levels of Rhodopsin 1 transcript. We also introduce a graphical user interface to facilitate analysis of large data sets. We expect these methods to translate to model systems where automated image processing can be harnessed to obtain single-cell data. The described method: Provides relative intensity measurements that scale directly with the number of labeled transcript probes within individual cells. Allows quantitative assessment of single molecule data from images with crowded signal and moderate signal to noise ratios.
Collapse
|
10
|
Vilinsky I, Johnson KG. Electroretinograms in Drosophila: a robust and genetically accessible electrophysiological system for the undergraduate laboratory. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2012; 11:A149-57. [PMID: 23494679 PMCID: PMC3592731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Laboratory courses in neurophysiology fulfill a critical need for inquiry-based training in undergraduate programs in neuroscience and biology. These courses typically use classical electrophysiological preparations to explore the basic features of neuronal function. However, current neuroscience research also focuses on elucidating the molecular and genetic mechanisms of neuronal function, using model systems that include mutant and transgenic animals. To bridge laboratory training in neurophysiology with modern molecular genetics, we describe a teaching model based on electroretinography of the fruit fly Drosophila melanogaster, a long-established model system for basic neuroscience research. Drosophila are easily maintained, economical, and have hundreds of neurophysiologically relevant mutant strains and genetic tools readily available. The Drosophila electroretinogram (ERG) is a simple and accessible extracellular recording of a neural signal in the fly eye in response to flashes of light. The signal is multifaceted and the response is sensitive to stimulation parameters such as intensity, duration and wavelength, thus forming a rich source of analysis for students. Most importantly, different mutations affecting key components of intracellular signaling, synaptic transmission or neuronal function can affect the ERG waveform in characteristic ways. Recording wild type and mutant ERGs allows students to examine firsthand the connection between genetics, biochemical pathways, and electrophysiology. This neurophysiology laboratory course can facilitate and enhance an understanding of the cellular and molecular contributions to neurophysiological recordings.
Collapse
Affiliation(s)
- Ilya Vilinsky
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221;,Address correspondence to: Dr. Ilya Vilinsky, Biological Sciences Department, 614 Rieveschl Hall, University of Cincinnati, Cincinnati, OH 45221.
| | - Karl G. Johnson
- Neuroscience and Biology Departments, Pomona College, Claremont, CA 91711
| |
Collapse
|
11
|
Hibbard KL, O’Tousa JE. A role for the cytoplasmic DEAD box helicase Dbp21E2 in rhodopsin maturation and photoreceptor viability. J Neurogenet 2012; 26:177-88. [PMID: 22794106 PMCID: PMC3680124 DOI: 10.3109/01677063.2012.692412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Dbp21E2 (DEAD box protein 21E2) is a member of a family of DEAD box helicases active in RNA processing and stability. The authors used genetic mosaics to identify mutants in Dbp21E2 that affect rhodopsin biogenesis and the maintenance of photoreceptor structure. Analysis of a green fluorescent protein (GFP)-tagged Rh1 rhodopsin construct placed under control of a heat shock promoter showed that Dbp21E21 fails to efficiently transport Rh1 from the photoreceptor cell body to the rhabdomere. Retinal degeneration is not dependent on the Rh1 transport defects. The authors also showed that GFP- and red fluorescent protein (RFP)-tagged Dbp21E2 proteins are localized to discrete cytoplasmic structures that are not associated with organelles known to be active in rhodopsin transport. The molecular genetic analysis described here reveals an unexpected role for the Dbp21E2 helicase and provides an experimental system to further characterize its function.
Collapse
Affiliation(s)
- Karen L. Hibbard
- Dept. of Biological Sciences, Univ. of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
12
|
Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 2012; 336:925-31. [PMID: 22605779 DOI: 10.1126/science.1215317] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Color and motion information are thought to be channeled through separate neural pathways, but it remains unclear whether and how these pathways interact to improve motion perception. In insects, such as Drosophila, it has long been believed that motion information is fed exclusively by one spectral class of photoreceptor, so-called R1 to R6 cells; whereas R7 and R8 photoreceptors, which exist in multiple spectral classes, subserve color vision. Here, we report that R7 and R8 also contribute to the motion pathway. By using electrophysiological, optical, and behavioral assays, we found that R7/R8 information converge with and shape the motion pathway output, explaining flies' broadly tuned optomotor behavior by its composite responses. Our results demonstrate that inputs from photoreceptors of different spectral sensitivities improve motion discrimination, increasing robustness of perception.
Collapse
Affiliation(s)
- Trevor J Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu W, Wan D, Yu X, Cao J, Guo P, Li HS, Han J. Protein Gq modulates termination of phototransduction and prevents retinal degeneration. J Biol Chem 2012; 287:13911-8. [PMID: 22389492 DOI: 10.1074/jbc.m112.339895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate termination of the phototransduction cascade is critical for photoreceptors to achieve high temporal resolution and to prevent excessive Ca(2+)-induced cell toxicity. Using a genetic screen to identify defective photoresponse mutants in Drosophila, we isolated and identified a novel Gα(q) mutant allele, which has defects in both activation and deactivation. We revealed that G(q) modulates the termination of the light response and that metarhodopsin/G(q) interaction affects subsequent arrestin-rhodopsin (Arr2-Rh1) binding, which mediates the deactivation of metarhodopsin. We further showed that the Gα(q) mutant undergoes light-dependent retinal degeneration, which is due to the slow accumulation of stable Arr2-Rh1 complexes. Our study revealed the roles of G(q) in mediating photoresponse termination and in preventing retinal degeneration. This pathway may represent a general rapid feedback regulation of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Wen Hu
- Institute of Life Science, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Phototransduction in Drosophila. SCIENCE CHINA-LIFE SCIENCES 2012; 55:27-34. [PMID: 22314488 DOI: 10.1007/s11427-012-4272-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/12/2011] [Indexed: 10/14/2022]
Abstract
The Drosophila visual transduction is the fastest known G protein-coupled signaling cascade and has been served as a model for understanding the molecular mechanisms of other G protein-coupled signaling cascades. Numbers of components in visual transduction machinery have been identified. Based on the functional characterization of these genes, a model for Drosophila phototransduction has been outlined, including rhodopsin activation, phosphoinoside signaling, and the opening of TRP and TRPL channels. Recently, the characterization of mutants, showing slow termination, revealed the physiological significance and the mechanism of rapid termination of light response.
Collapse
|
15
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
16
|
Mitra A, Chinchore Y, Kinser R, Dolph PJ. Characterization of two dominant alleles of the major rhodopsin-encoding gene ninaE in Drosophila. Mol Vis 2011; 17:3224-33. [PMID: 22194648 PMCID: PMC3244490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 12/10/2011] [Indexed: 10/26/2022] Open
Abstract
PURPOSE In this study we investigated the biochemical and cell biologic characteristics of flies expressing two novel dominant alleles of the major rhodopsin encoding gene neither inactivation nor afterpotential E (ninaE) in a heterozygous background. METHODS Presence of the deep pseudopupil in flies was assayed 5 days post eclosion. For structural analysis, 1-μm-retinal cross sections were obtained from fixed and resin-embedded Drosophila heads. Confocal microscopy was performed on dissected retinas stained with antibodies specific for rhodopsin, NinaA, and F-actin. Rhodopsin levels were determined by western and slot blot analysis. RESULTS Dominant rhodopsin mutants showed progressive age-dependent and light-independent loss of the deep pseudopupil, without any apparent retinal degeneration at the morphological level. Expression of mutant rhodopsin caused rhodopsin to mislocalize to the cell body and the endoplasmic reticulum compartment. Mutant rhodopsin also caused loss of solubility of wild-type rhodopsin and its accumulation presumably as a high molecular mass complex in the photoreceptor cell body. CONCLUSIONS In heterozygous mutant flies, there is loss of wild-type rhodopsin immunoreactivity on a western assay but less reduction using slot blot analysis. This suggests that mutant rhodopsin is likely inducing the misfolding and insolubility of wild-type rhodopsin. Localization of rhodopsin revealed that in mutant flies, wild-type rhodopsin is mislocalized to the cell body and the endoplasmic reticulum.
Collapse
|
17
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Abstract
This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the "prolonged depolarizing afterpotential." This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| |
Collapse
|
19
|
Tanimura T, Isono K, Yamamoto MT. Taste sensitivity to trehalose and its alteration by gene dosage in Drosophila melanogaster. Genetics 2010; 119:399-406. [PMID: 17246428 PMCID: PMC1203422 DOI: 10.1093/genetics/119.2.399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The taste sensitivity to the disaccharide trehalose of Drosophila melanogaster is under the genetic control by the Tre gene on the X chromosome. The gene is genetically dimorphic for high and low sensitivity and is likely to be functioning in the primary step of chemoreception. We have determined the cytological localization of the Tre gene to be between 5A10 and 5B1-3 by analyzing the sensitivity to trehalose in flies which are segmentally aneuploid bearing either deficiencies or duplicated fragments of T(X;Y) translocations. We also constructed flies which are aneuploidy and thus carry different dosage of Tre and/or Tre(+) alleles in order to examine the gene dosage effect on trehalose sensitivity and to deduce the nature of the gene's action. Trehalose sensitivity decreased in females carrying half the normal dosage of a given Tre allele, but a proportional increase in sensitivity was not observed in flies bearing a duplication of the Tre alleles. The changes in sensitivity in various aneuploid flies suggest that there is an upper limit to the number of molecules that can be incorporated into the receptor membrane. Genetic evidence strongly suggests that Tre is the structural gene for the trehalose receptor. We present a model to account for the mechanism of genetical control on the sensitivity to trehalose.
Collapse
Affiliation(s)
- T Tanimura
- Division of Behavior and Neurobiology, National Institute for Basic Biology, Okazaki 444, Japan Present address: Department of Biology, Faculty of Science, Fukuoka University, Fukuoka 814-01, Japan
| | | | | |
Collapse
|
20
|
Stark WS, Sapp R. Ultrastructure of the retina ofDrosophila melanogaster: The mutantora(outer rhabdomeres absent) and its inhibition of degeneration inrdgB(retinal degeneration-B). J Neurogenet 2009. [DOI: 10.3109/01677068709167183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Stark WS, Sapp R. Ultrastructure of the retina of Drosophila melanogaster. the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). J Neurogenet 2009. [DOI: 10.3109/01677068709102343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Bell ML, Earl JB, Britt SG. Two types of Drosophila R7 photoreceptor cells are arranged randomly: a model for stochastic cell-fate determination. J Comp Neurol 2007; 502:75-85. [PMID: 17335038 DOI: 10.1002/cne.21298] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The R7 photoreceptor cells of the Drosophila retina are ultraviolet sensitive and are thought to mediate color discrimination and polarized light detection. In addition, there is growing evidence that the color sensitivity of the R8 cell within an individual ommatidium is regulated by a genetic switch that depends on the type of R7 cell adjacent to it. Here we examine the organization of the two major types of R7 cells by three different rigorous statistical methods and present evidence that they are arranged randomly and independently. First, we performed L-function analyses to test whether the organization of R7 cells (and the relationship between them) is regular, clustered, or completely spatially random. Next, we used generalized linear mixed models to test whether the proportion of R7 cell neighbors differs from their prevalence within the eye as a whole. Finally, we conducted a series of simulations to test whether the proportion of R7 cell neighbors differs from that in a random simulation. In each case, we found evidence that the organization of the two types of R7 cells is random and independent, suggesting that R7 cells in neighboring ommatidia are unlikely to interact and influence each other's identity and may be determined stochastically in a cell-autonomous manner. Compared with traditional lineage or inductive mechanisms, this may represent a novel mechanism of cell fate determination based on noisy or stochastic gene expression in which the differentiation of an individual R7 cell is a random event but the proportions of R7 cell subtypes are regulated.
Collapse
Affiliation(s)
- Melanie L Bell
- Department of Preventive and Social Medicine, University of Otago, Dunedin 9001, New Zealand
| | | | | |
Collapse
|
23
|
Earl JB, Britt SG. Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment. Gene Expr Patterns 2006; 6:687-94. [PMID: 16495161 DOI: 10.1016/j.modgep.2006.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/29/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development.
Collapse
Affiliation(s)
- James B Earl
- Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, School of Medicine, RC1 South, Aurora, 80045, USA
| | | |
Collapse
|
24
|
Engels A, Reichert H, Gehring WJ, Gärtner W. Functional expression of a locust visual pigment in transgenic Drosophila melanogaster. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1917-22. [PMID: 10727930 DOI: 10.1046/j.1432-1327.2000.01186.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cDNA encoding a visual pigment of the locust Schistocerca gregaria has been inserted into the germline of the ninaE mutant of Drosophila melanogaster by P-element-mediated transformation. Functional expression has been documented by recording light-regulated electroretinograms in transgenic flies. The spectral properties of the expressed visual pigment were determined with detergent-solubilized material, prepared from the eyecups of the transgenic D. melanogaster. The recombinant locust pigment, as well as the genuine pigment of the fruitfly (Rh1) that served as a control for transformation/expression, showed photoreversibility between the pigment and metapigment forms. The absorptions of the difference spectra identify the locust visual pigment as a short wavelength-absorbing, blue-light-sensitive photoreceptor. The absorption maxima are similar to those recorded on living locust animals. These results show that, although locust visual pigments contain 11-cis retinal as chromophore, the expressed protein is able to adopt 3-hydroxyretinal that is provided by the transgenic fruitflies. The electrophysiological recordings reveal that the locust visual pigment is able to induce phototransduction in the fruitfly. The reported results have two important consequences: On the one hand, the binding site of the locust opsin is apparently able to interact with the 3-hydroxyretinal from Drosophila in a way that the biological signal generated by the photoisomerization of the chromophore can be used by the protein to adopt a physiologically active conformation. On the other hand, despite the relatively large phylogenetic distance between both insect species, the extent of conservation between the protein domains thought to be involved in G-protein activation is striking.
Collapse
Affiliation(s)
- A Engels
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
The Drosophila phototransduction cascade has emerged as an attractive paradigm for understanding the molecular mechanisms underlying visual transduction, as well as other G protein-coupled signaling cascades that are activated and terminated with great rapidity. A large collection of mutants affecting the fly visual cascade have been isolated, and the nature and function of many of the affected gene products have been identified. Virtually all of the proteins, including those that were initially classified as novel, are highly related to vertebrate homologs. Recently, it has become apparent that most of the proteins central to Drosophila phototransduction are coupled into a supramolecular signaling complex, signalplex, through association with a PDZ-containing scaffold protein. The characterization of this complex has led to a re-evaluation of the mechanisms underlying the activation and deactivation of the phototransduction cascade.
Collapse
Affiliation(s)
- C Montell
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
26
|
Abstract
Many invertebrates have supplementary extraocular photoreceptors that often are implicated in circadian rhythms. An extraretinal group of candidate photoreceptors in the fruit fly, Drosophila melanogaster, has been revealed previously at the posterior margin of the compound eye by using a photoreceptor-specific monoclonal antibody (Hofbauer and Buchner [1989] Naturwissen 76:335-336), but it never has been characterized. Here, we report the fine structure of this cell cluster reported by Hofbauer and Buchner, which is called "eyelet," as well as the further candidacy of their visual pigment and neurotransmitter. Eyelet forms a specialized, pigmented organ with cells that have numerous microvilli arranged into coherent rhabdomeres. The presence of rhabdomeric microvilli is a defining feature of a photoreceptor, reported here for the first time in eyelet. The rhabdomeres exhibit Rh6 opsin-like immunoreactivity, which provides evidence that the photoreceptors are functional: they fail to immunostain with antibodies against NINAE (Rh1), Rh4, or Rh5. The photoreceptors have been shown previously to exhibit histamine-like immunoreactivity, but they also stain with a monoclonal antiserum raised against Drosophila choline acetyltransferase (ChAT), suggesting that the photoreceptors not only may contain histamine but also can synthesize acetylcholine. A ChAT-immunoreactive axon bundle originating from eyelet terminates in the cortex of the anterior medulla. This bundle also is seen with reduced silver stains. Electron microscopic examination revealed four axon profiles of similar size in this bundle, indicating that eyelet contains at least four photoreceptors. The pathway of eyelet's axon bundle coincides with the precocious pathway of Bolwig's nerve that arises from the larval organ of sight. The origin and possible function of eyelet are discussed.
Collapse
Affiliation(s)
- K Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki City, Okayama 701-0192, Japan.
| | | |
Collapse
|
27
|
|
28
|
Chou WH, Huber A, Bentrop J, Schulz S, Schwab K, Chadwell LV, Paulsen R, Britt SG. Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. Development 1999; 126:607-16. [PMID: 9895309 DOI: 10.1242/dev.126.4.607] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Opsin gene expression in the R7 and R8 photoreceptor cells of the Drosophila compound eye is highly coordinated. We have found that the R8 cell specific Rh5 and Rh6 opsins are expressed in non-overlapping sets of R8 cells, in a precise pairwise fashion with Rh3 and Rh4 in the R7 cells of individual ommatidia. Removal of the R7 cells in sevenless, boss or sina mutants, disrupts Rh5 expression and dramatically increases the number of Rh6-expressing R8 cells. This suggests that the expression of Rh5 may be induced by an Rh3-expressing R7 cell, whereas Rh6 expression is most likely a default state of the R8 cell. We found that the paired expression of opsin genes in the R7 and R8 cells occurs in a sevenless and boss independent manner. Furthermore, we found that the generation of both Rh3- and Rh4-expressing R7 cells can occur in the absence of an R8 cell. These results suggest that the specification of opsin expression in the R7 cells may occur autonomously, whereas the R7 photoreceptor cell may be responsible for regulating a binary developmental switch between induced and default cell-fates in the R8 cell.
Collapse
Affiliation(s)
- W H Chou
- Institute of Biotechnology and Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bentrop J, Schwab K, Pak WL, Paulsen R. Site-directed mutagenesis of highly conserved amino acids in the first cytoplasmic loop of Drosophila Rh1 opsin blocks rhodopsin synthesis in the nascent state. EMBO J 1997; 16:1600-9. [PMID: 9130705 PMCID: PMC1169764 DOI: 10.1093/emboj/16.7.1600] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytoplasmic surface of Drosophila melanogaster Rh1 rhodopsin (ninaE) harbours amino acids which are highly conserved among G-protein-coupled receptors. Site-directed mutations which cause Leu81Gln or Asn86Ile amino acid substitutions in the first cytoplasmic loop of the Rh1 opsin protein, are shown to block rhodopsin synthesis in the nascent, glycosylated state from which the mutant opsin is degraded rapidly. In mutants Leu81Gln and Asn86Ile, only 20-30% and <2% respectively, of functional rhodopsins are synthesized and transported to the photoreceptive membrane. Thus, conserved amino acids in opsin's cytoplasmic surface are a critical factor in the interaction of opsin with proteins of the rhodopsin processing machinery. Photoreceptor cells expressing mutant rhodopsins undergo age-dependent degeneration in a recessive manner.
Collapse
Affiliation(s)
- J Bentrop
- Zoologisches Institut, Lehrstuhl 1, Universität Karlsruhe (T.H), Germany
| | | | | | | |
Collapse
|
30
|
Chou WH, Hall KJ, Wilson DB, Wideman CL, Townson SM, Chadwell LV, Britt SG. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 1996; 17:1101-15. [PMID: 8982159 DOI: 10.1016/s0896-6273(00)80243-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The function of the compound eye is dependent upon a developmental program that specifies different cell fates and directs the expression of spectrally distinct opsins in different photoreceptor cells. Rh5 is a novel Drosophila opsin gene that encodes a biologically active visual pigment that is expressed in a subset of R8 photoreceptor cells. Rh5 expression in the R8 cell of an individual ommatidium is strictly coordinated with the expression of Rh3, in the overlying R7 cell. In sevenless mutant files, which lack R7 photoreceptor cells, the expression of the Rh5 protein in R8 cells is disrupted, providing evidence for a specific developmental signal between the R7 and R8 cells that is responsible for the paired expression of opsin genes.
Collapse
Affiliation(s)
- W H Chou
- Institute of Biotechnology, University of Texas Health Science Center, San Antonio 78245
| | | | | | | | | | | | | |
Collapse
|
31
|
Kumar JP, Ready DF. Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 1995; 121:4359-70. [PMID: 8575336 DOI: 10.1242/dev.121.12.4359] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Null mutations of the Drosophila Rh1 rhodopsin gene, ninaE, result in developmental defects in the photosensitive membranes, the rhabdomeres, of compound eye photoreceptors R1-R6. In normal flies, Rh1 expression begins at about 78% of pupal life. At approximately 90% of pupal life, a specialized catacomb-like membrane architecture develops at the base of normal rhabdomeres. In ninaE null mutants, these catacombs do not form and developing rhabdomere membrane involutes into the cell as curtains of apposed plasma membrane. A filamentous cytoskeletal complex that includes F-actin and the unconventional myosin, NINAC, decorates the cytoplasmic surface of these curtains.
Collapse
Affiliation(s)
- J P Kumar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
32
|
Sawin-McCormack EP, Sokolowski MB, Campos AR. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. J Neurogenet 1995; 10:119-35. [PMID: 8592272 DOI: 10.3109/01677069509083459] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Drosophila melanogaster, during the mid third instar of development larvae cease foraging and commence a period of increased locomotor activity referred to as wandering behavior. In this study, we quantified the wild type larval response to light during the foraging (first, second, and early third instars) and wandering (late third instar) stages of development. Foraging larvae in the first, second and early third instars exhibited a robust and marked aversion to light (negative phototaxis). From the mid larval third instar larvae showed a decrease in photonegative behavior, until just before pupation when the response of wandering larvae to light became random. The photobehavior of several strains known to affect the adult visual system were also studied. All but four exhibited normal phototaxis in the foraging and wandering stages. gl mutant larvae failed to respond to light during the foraging stage likely due to lack of larval photoreceptors. Larvae carrying three different mutations in the rhodopsin RH1 gene continued to express negative phototaxis throughout both the foraging and wandering stages. These results suggest that the transition from negative phototaxis toward photoneutral behavior characteristic of the wandering third instar larva requires vision.
Collapse
|
33
|
Leonard DS, Bowman VD, Ready DF, Pak WL. Degeneration of photoreceptors in rhodopsin mutants of Drosophila. JOURNAL OF NEUROBIOLOGY 1992; 23:605-26. [PMID: 1431838 DOI: 10.1002/neu.480230602] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five different, well-characterized mutants of the R1-6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1-6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1-6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1-6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1-6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1-6 rhodopsin in the ninaE mutants.
Collapse
Affiliation(s)
- D S Leonard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
34
|
Baker NE, Moses K, Nakahara D, Ellis MC, Carthew RW, Rubin GM. Mutations on the second chromosome affecting the Drosophila eye. J Neurogenet 1992; 8:85-100. [PMID: 1634999 DOI: 10.3109/01677069209084154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the developing eye of Drosophila, cell interactions appear to be responsible for organising undifferentiated cells into unit eyes, or ommatidia. Extensive mutagenesis has been used to search for mutations affecting the development and differentiation of ommatidia. These mutations have been characterized using sections of adults and immunocytochemistry of imaginal discs. Fourteen loci on the second chromosome are described that affect the spacing of the preclusters, the differentiation of ommatidial cells, orientation of the ommatidia, or architecture of the adult retina, that cause retinal degeneration in larval or pupal eye discs, or that cause homeotic transformation of part of the head.
Collapse
Affiliation(s)
- N E Baker
- Howard Hughes Medical Institute, University of California, Berkeley 94720
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In vitro mutagenesis and germline transformation were used to create a Drosophila mutant, delta Asn20, lacking the N-linked glycosylation site near the amino terminus of the major rhodopsin (Asn20-Gly-Ser changed to Ile-Gly-Ser). Low opsin protein levels are detected in delta Asn20 photoreceptors. Electroretinogram responses of mutant flies show that the residual rhodopsin found in this mutant is capable of initiating phototransduction. The organization of rhabdomeres, the photoreceptor organelle containing nearly all of the rhodopsin, is aberrant in the delta Asn20 mutant and undergoes age-dependent deterioration. These results establish that an N-linked glycosylation site, and likely glycosylation itself, plays a critical role in the maturation of Drosophila rhodopsin.
Collapse
Affiliation(s)
- J E O'Tousa
- Department of Biological Sciences, University of Notre Dame, IN 46556
| |
Collapse
|
36
|
Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54230-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Ayer RK, Carlson J. acj6: a gene affecting olfactory physiology and behavior in Drosophila. Proc Natl Acad Sci U S A 1991; 88:5467-71. [PMID: 1905022 PMCID: PMC51894 DOI: 10.1073/pnas.88.12.5467] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations affecting olfactory behavior provide material for use in molecular studies of olfaction in Drosophila melanogaster. Using the electroantennogram (EAG), a measure of antennal physiology, we have found an adult antennal defect in the olfactory behavioral mutant abnormal chemosensory jump 6 (acj6). The acj6 EAG defect was mapped to a single locus and the same mutation was found to be responsible for both reduction in EAG amplitude and diminished behavioral response, as if reduced antennal responsiveness to odorant is responsible for abnormal chemosensory behavior in the mutant. acj6 larval olfactory behavior is also abnormal; the mutation seems to alter cellular processes necessary for olfaction at both developmental stages. The acj6 mutation exhibits specificity in that visual system function appears normal in larvae and adults. These experiments provide evidence that the acj6 gene encodes a product required for olfactory signal transduction.
Collapse
Affiliation(s)
- R K Ayer
- Department of Biology, Yale University, New Haven, CT 06511
| | | |
Collapse
|
38
|
O'Tousa JE, Leonard DS, Pak WL. Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. J Neurogenet 1989; 6:41-52. [PMID: 2528612 DOI: 10.3109/01677068909107099] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila mutant, oraJK84, lacks rhabdomeres in the major (R1-6) class of photoreceptors because these rhabdomeres rapidly degenerate in young flies. Genetic analysis reveals that oraJK84 actually contains two mutations (a ninaE and an ort allele) that affect the visual process. The mutation in ort appears to have no effect on photoreceptor structure. The other mutation occurs within the ninaE gene, which encodes the species of rhodopsin found in the R1-6 class of photoreceptors. Our analysis shows that this mutation is responsible for R1-6 rhabdomere degeneration in oraJK84 mutants. We also examined a ninaE mutant, denoted ninaEo117, that produces no ninaE transcript. The morphological phenotype observed in ninaEo117 is similar to that seen in oraJK84 mutants. We conclude that rhodopsin plays a vital role in maintaining photoreceptor structure in Drosophila.
Collapse
Affiliation(s)
- J E O'Tousa
- Department of Biological Sciences, University of Notre Dame, IN 46656
| | | | | |
Collapse
|
39
|
|
40
|
Feiler R, Harris WA, Kirschfeld K, Wehrhahn C, Zuker CS. Targeted misexpression of a Drosophila opsin gene leads to altered visual function. Nature 1988; 333:737-41. [PMID: 2455230 DOI: 10.1038/333737a0] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila mutants transformed with a chimaeric gene that expresses the ocellar visual pigment in the major class of photoreceptor cells of the retina were used to investigate the properties of this minor pigment. The photoreceptor cells in which this opsin was misexpressed showed new spectral characteristics and physiology.
Collapse
Affiliation(s)
- R Feiler
- Max-Planck Institut für Biologische Kybernetik, Tübingen, FRG
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Matsumoto H, Isono K, Pye Q, Pak WL. Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc Natl Acad Sci U S A 1987; 84:985-9. [PMID: 3103129 PMCID: PMC304346 DOI: 10.1073/pnas.84.4.985] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ninaC gene is one of eight nina (neither inactivation nor afterpotential) genes identified from mutations that drastically reduce the amount of rhodopsin in the compound eye of Drosophila melanogaster. The gene has been cytogenetically localized to the 27E-28B region of the second chromosome. NaDodSO4/PAGE analysis of eye proteins of flies carrying one, two, or three copies of the ninaC region shows that two eye-specific proteins of molecular weight 170,000 and 130,000 display a strong dependence on the dosage of the ninaC gene, although the dependence is evident only when the dosage is decreased and not when it is increased. All mutations in the ninaC gene studied to date have pronounced effects on these two polypeptides. These results suggest that the ninaC locus encodes these two polypeptides. Ultrastructural studies show that the polypeptides encoded by ninaC are very likely to be important components of the cytoskeletal structure of rhabdomeral microvilli.
Collapse
|
43
|
Abstract
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.
Collapse
|