1
|
Newman RJ, Roose-Girma M, Warming S. Efficient conditional knockout targeting vector construction using co-selection BAC recombineering (CoSBR). Nucleic Acids Res 2015; 43:e124. [PMID: 26089387 PMCID: PMC4627060 DOI: 10.1093/nar/gkv600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 11/13/2022] Open
Abstract
A simple and efficient strategy for Bacterial Artificial Chromosome (BAC) recombineering based on co-selection is described. We show that it is possible to efficiently modify two positions of a BAC simultaneously by co-transformation of a single-stranded DNA oligo and a double-stranded selection cassette. The use of co-selection BAC recombineering reduces the DNA manipulation needed to make a conditional knockout gene targeting vector to only two steps: a single round of BAC modification followed by a retrieval step.
Collapse
Affiliation(s)
- Robert J Newman
- Genentech, Inc., Department of Molecular Biology, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Merone Roose-Girma
- Genentech, Inc., Department of Molecular Biology, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Søren Warming
- Genentech, Inc., Department of Molecular Biology, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Tanaka T, Mizukoshi T, Taniyama C, Kohda D, Arai KI, Masai H. DNA binding of PriA protein requires cooperation of the N-terminal D-loop/arrested-fork binding and C-terminal helicase domains. J Biol Chem 2002; 277:38062-71. [PMID: 12151393 DOI: 10.1074/jbc.m204397200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PriA protein is essential for RecA-dependent DNA replication induced by stalled replication forks in Escherichia coli. PriA is a DEXH-type DNA helicase, ATPase activity of which depends on its binding to structured DNA including a D-loop-like structure. Here, we show that the N-terminal 181-amino acid polypeptide can form a complex with D-loop in gel shift assays and have identified a unique motif present in the N-terminal segment of PriA that plays a role in its DNA binding. We have also identified residues in the C terminus proximal helicase domain essential for D-loop binding. PriA proteins mutated in this domain do not bind to D-loop, despite the presence of the N-terminal DNA-binding motif. Those mutants that cannot bind to D-loop in vitro do not support a recombination-dependent mode of DNA replication in vivo, indicating that binding to a D-loop-like structure is essential for the ability of PriA to initiate DNA replication and repair from stalled replication forks. We propose that binding of the PriA protein to stalled replication forks requires proper configuration of the N-terminal fork-recognition and C-terminal helicase domains and that the latter may stabilize binding and increase binding specificity.
Collapse
Affiliation(s)
- Taku Tanaka
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Marians KJ. PriA: at the crossroads of DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:39-67. [PMID: 10506828 DOI: 10.1016/s0079-6603(08)60719-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PriA is a single-stranded DNA-dependent ATPase, DNA translocase, and DNA helicase that was discovered originally because of its requirement in vitro for the conversion of bacteriophage phi X174 viral DNA to the duplex replicative form. Studies demonstrated that PriA catalyzes the assembly of a primosome, a multiprotein complex that primes DNA synthesis, on phi X174 DNA. The primosome was shown to be capable of providing both the DNA unwinding function and the Okazaki fragment priming function required for replication fork progression. However, whereas seven proteins, PriA, PriB, PriC, DnaT, DnaB, DnaC, and DnaG, were required for primosome assembly on phi X174 DNA, only DnaB, DnaC, and DnaG were required for replication from oriC, suggesting that the other proteins were not involved in chromosomal replication. Strains carrying priA null mutations, however, were constitutively induced for the SOS response, and were defective in homologous recombination, repair of UV-damaged DNA, and double-strand breaks, and both induced and constitutive stable DNA replication. The basis for this phenotype can now be explained by the ability of PriA to load replication forks at a D loop, an intermediate that forms during homologous recombination, double-strand break-repair, and stable DNA replication. Thus, a long-theorized connection between recombination and replication is demonstrated.
Collapse
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
4
|
Abstract
The role of PriA, required for the assembly of the phiX174-type primosome on DNA, in cellular DNA replication has been unclear since its discovery. Recent evidence, based on the phenotypes of strains carrying priA null mutations, has led to proposals that the primosome assembly activity of PriA was required to load replication forks at intermediates such as D loops during homologous recombination. McGlynn et al. (McGlynn, P., Al-Deib, A. A., Liu, J., Marians, K. J., and Lloyd, R. G. (1997) J. Mol. Biol. 270, 212-221) demonstrated that PriA could, in fact, bind D loops. We show here that there are two modes of stable binding of PriA to DNA. One mode, in which the enzyme binds 3'-single-stranded extensions from duplex DNAs, presumably reflects the 3' --> 5' DNA helicase activity of PriA. The D loop DNA binding activity of PriA can be accounted for by the second mode, where the enzyme binds bent DNA at three strand junctions.
Collapse
Affiliation(s)
- P Nurse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | |
Collapse
|
5
|
Jeong JY, Yoon GM, Seo HS, Cho MJ, Sakai H, Komano T, Bahk JD. Functional features of an ssi signal of plasmid pGKV21 in Escherichia coli. J Bacteriol 1997; 179:5795-801. [PMID: 9294437 PMCID: PMC179469 DOI: 10.1128/jb.179.18.5795-5801.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13 delta lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.
Collapse
Affiliation(s)
- J Y Jeong
- Department of Biochemistry, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Tanaka K, Rogi T, Hiasa H, Miao DM, Honda Y, Nomura N, Sakai H, Komano T. Comparative analysis of functional and structural features in the primase-dependent priming signals, G sites, from phages and plasmids. J Bacteriol 1994; 176:3606-13. [PMID: 8206839 PMCID: PMC205550 DOI: 10.1128/jb.176.12.3606-3613.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The primase-dependent priming signals, G sites, are directly recognized by the Escherichia coli primase (dnaG gene product) and conduct the synthesis of primer RNAs. In nucleotide sequence and secondary structure, there is no striking resemblance between the phage- and plasmid-derived G sites, except for the limited sequence homology near the start position of primer RNA synthesis. In this study, we analyzed the structure and function of a G site of plasmid R100, G site (R100), and discovered the necessity of the coexistence of two domains (domains I and III), which contains blocks A, B, and C, which are nucleotide sequences highly conserved among the plasmid-derived G sites. However, neither the internal region, domain II, between domains I and III nor the potential secondary structure proposed by Bahk et al. (J. D. Bahk, N. Kioka, H. Sakai, and T. Komano, Plasmid 20:266-270, 1988) is essential for single-stranded DNA initiation activity. Furthermore, chimeric G sites constructed between a G site of phage G4, G site(G4), and G site(R100) maintained significant single-stranded DNA initiation activities. These results strongly suggest that phage- and plasmid-derived G sites have functionally equivalent domains. The primase-dependent priming mechanisms of phage- and plasmid-derived G sites are discussed.
Collapse
Affiliation(s)
- K Tanaka
- Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
da Silva-Tatley FM, Steyn LM. Characterization of a replicon of the moderately promiscuous plasmid, pGSH5000, with features of both the mini-replicon of pCU1 and the ori-2 of F. Mol Microbiol 1993; 7:805-23. [PMID: 8469120 DOI: 10.1111/j.1365-2958.1993.tb01171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dominant, polA1-independent replicon of pGSH500, rep beta (1.8 kb), consists of a cis-acting oriV region of 245 bp; a repB gene that is essential for autonomous replication and 18, 30 to 36 bp iterons which constitute the inc/cop region. The molecular organization of rep beta resembles that of mini-pCU1 (IncN). Furthermore, there is a 58% identity between the Rep proteins of these replicons. RepB also shows a 31% identity with RepE of mini-F. In addition, an 80% identity over 200 bp was identified between the cis-acting beta oriV region and the equivalent region of ori-2 (mini-F). Replicons with deletions of repB could be complemented by Rep (pCU1) and RepE (mini-F) in trans, supporting the hypothesis that rep beta is a natural hybrid between a pCU1-like and F-like replicon.
Collapse
Affiliation(s)
- F M da Silva-Tatley
- Department of Medical Microbiology, Medical School, University of Cape Town, Observatory, South Africa
| | | |
Collapse
|
8
|
Zavitz KH, Marians KJ. Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication. Mol Microbiol 1991; 5:2869-73. [PMID: 1667219 DOI: 10.1111/j.1365-2958.1991.tb01846.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multi-functional PriA protein of Escherichia coli (formerly replication factor Y or protein n') serves to guide the ordered assembly of the primosome, a mobile multiprotein replication priming/helicase complex. Primosome assembly is essential for bacteriophage OX174 complementary DNA strand synthesis and ColE1-type plasmid replication reconstituted in vitro with purified proteins. The biochemical activities of the primosome suggest that it can fulfill the primase/helicase requirement on the lagging-strand DNA template during cellular DNA replication. However, reconstruction in vitro of DNA replication of small plasmids containing the E. coli origin of DNA replication (oriC) does not require the complete complement of primosomal proteins. Thus, the extent to which PriA-catalysed primosome assembly participates in chromosomal replication has remained unclear. The recent isolation of the genes encoding PriA, PriB (protein n), PriC (protein n"), and DnaT (protein i) has provided the necessary tools for addressing this issue. The phenotype of mutations in these genes, and other results described in this review, suggest that assembly of the primosome catalysed by PriA does in fact contribute at some stage to normal cellular DNA replication. A model for primososme-catalysed reactivation of a dysfunctional replication fork is discussed.
Collapse
Affiliation(s)
- K H Zavitz
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
9
|
Lee EH, Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n' protein. Proc Natl Acad Sci U S A 1991; 88:3029-32. [PMID: 1826559 PMCID: PMC51377 DOI: 10.1073/pnas.88.8.3029] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The priA gene of Escherichia coli encodes the protein that initiates assembly of the promosome, the entity essential for the replication of phage phi X174 and ColE1-like plasmids in vitro. We have prepared a null priA mutant to assess its role in vivo in replication of phages, plasmids, and the host chromosome. Extracts of this mutant are inert in the initial conversion of the phi X174 viral strand to the duplex form, confirming the absence of the PriA activity. In vivo, the priA mutant fails to produce phi X174 phage and, remarkably, is unable to maintain plasmids that depend on the E. coli chromosome origin as well as those of ColE1. Deficiencies in cell growth and cell division are also manifest.
Collapse
Affiliation(s)
- E H Lee
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307
| | | |
Collapse
|
10
|
Functional division and reconstruction of a plasmid replication origin: molecular dissection of the oriV of the broad-host-range plasmid RSF1010. Proc Natl Acad Sci U S A 1991; 88:179-83. [PMID: 1986363 PMCID: PMC50773 DOI: 10.1073/pnas.88.1.179] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two single-stranded DNA initiation signals (designated ssi) present in the origin of vegetative DNA replication (oriV) of the broad-host-range plasmid RSF1010 are essential for the priming of replication of each complementary DNA strand of this plasmid in Escherichia coli. Each of the RSF1010 ssi signals, ssiA and ssiB, could be replaced by a primosome assembly site from plasmid pACY184 or from bacteriophage phi X174. In these chimeric origins, replication of the strand complementary to that containing the primosome assembly site was no longer dependent on the RSF1010 primase, protein RepB', but required the E. coli primase, DnaG. If both ssiA and ssiB sites of RSF1010 were replaced by primosome assembly sites, protein RepB' was no longer essential for the replication at this origin, whereas proteins RepA and RepC of RSF1010 were still required. These results strongly suggest that the two ssi sites and the RepB' protein actually direct the priming of DNA synthesis in the replication of RSF1010, and the proteins RepA and RepC are involved in the prepriming events--i.e., the opening of the DNA duplex at oriV. It is evident that the origin of RSF1010 can be separated into three functional domains and reconstructed by replacing the ssi sites with heterologous elements.
Collapse
|
11
|
Abstract
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.
Collapse
Affiliation(s)
- R R Meyer
- Department of Biological Sciences, University of Cincinnati, Ohio 45221
| | | |
Collapse
|
12
|
Masai H, Nomura N, Kubota Y, Arai K. Roles of phi X174 type primosome- and G4 type primase-dependent primings in initiation of lagging and leading strand syntheses of DNA replication. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77232-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Saul D, Spiers AJ, McAnulty J, Gibbs MG, Bergquist PL, Hill DF. Nucleotide sequence and replication characteristics of RepFIB, a basic replicon of IncF plasmids. J Bacteriol 1989; 171:2697-707. [PMID: 2651415 PMCID: PMC209954 DOI: 10.1128/jb.171.5.2697-2707.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A second autonomous replicon of P307, RepFIB, has been isolated that has significant homology with other replicons in IncFI group plasmids. Eleven homologous repeats of 21 base pairs are present on the sequence and flank an open reading frame capable of coding for a protein of about Mr = 40,000. This protein was identified by maxicell analysis of cloned RepFIB. A series of deletion mutations of RepFIB were inserted into a DNA polymerase I-dependent vector and examined for their replication proficiency in a polA1 strain. These experiments defined a minimal replication region of 1.6 kilobases which includes the three repeats immediately upstream and downstream of the open reading frame. Deletion of a second set of repeats further downstream doubled the copy number of a chimeric plasmid replicating under RepFIB control. It was concluded that these repeats control the copy number of the replicon. Incompatibility tests showed that all three sets of repeats could express incompatibility with a resident RepFIB plasmid.
Collapse
Affiliation(s)
- D Saul
- Department of Cellular and Molecular Biology, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Hiasa H, Sakai H, Komano T. Identification of single-strand initiation signals in the terC region of the Escherichia coli chromosome. FEBS Lett 1989; 246:21-4. [PMID: 2540037 DOI: 10.1016/0014-5793(89)80245-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
On the basis of clear-plaque formation, we detected initiation signals in the terC region of the Escherichia coli chromosome. At least two single-strand initiation signals were identified from the terC region. The nucleotide sequences of these two signals were determined. Sequence homologies, variations of the consensus of n' protein recognition sites, 5'-GAAGCGG-3', were found within these signals. A novel conserved sequence was also found within these signals. Their initiation activities were measured both by the infection growth assay and by the ability to convert the single-stranded DNA to the duplex replicative form DNA in vivo.
Collapse
Affiliation(s)
- H Hiasa
- Laboratory of Biochemistry, Department of Agricultural Chemistry, Kyoto University, Japan
| | | | | |
Collapse
|
15
|
Initiation of lagging-strand synthesis for pBR322 plasmid DNA replication in vitro is dependent on primosomal protein i encoded by dnaT. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68140-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Abstract
The native 44-kilobase-pair plasmid pTAR, discovered in a grapevine strain of Agrobacterium tumefaciens, contains a single origin of DNA replication confined to a 1.0-kilobase-pair region of the macromolecule. This region (ori) confers functions sufficient for replication in Agrobacterium and Rhizobium species but not in Pseudomonas solanacearum, Pseudomonas glumae, Pseudomonas syringae pv. savastanoi, Xanthomonas campestris pv. campestris, and Escherichia coli. ori contains a repA gene that encodes a 28,000-dalton protein required for replication. Nucleotide sequencing of repA and its promoter region revealed four 8-base-pair palindromic repeats upstream of the repA coding region. Deletion of these repeats alters repA expression and plasmid copy number. Downstream of repA are three additional repeats in a region essential for replication. A locus responsible for plasmid partitioning (parA) and a putative second locus regulating plasmid copy number are part of the origin region and are required for stable plasmid maintenance.
Collapse
Affiliation(s)
- D R Gallie
- Department of Plant Pathology, University of California, Davis 95616
| | | |
Collapse
|
17
|
|
18
|
|
19
|
Lambert PF, Waring DA, Wells RD, Reznikoff WS. DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis. J Virol 1986; 58:450-8. [PMID: 3754589 PMCID: PMC252931 DOI: 10.1128/jvi.58.2.450-458.1986] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An in vivo assay was used to define the DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis (G4 origin). This assay made use of an origin-cloning vector, mRZ1000, a defective M13 recombinant phage deleted for its natural origin of complementary-strand DNA synthesis. The minimal DNA sequence of the G4 genome sufficient for the restoration of normal M13 growth parameters was determined to be 139 bases long, located between positions 3868 and 4007. This G4-M13 construct was also found to give rise to proper initiation of complementary-strand synthesis in vitro. The cloned DNA sequence contains all the regions of potential secondary structure which have been implicated in primase-dependent replication initiation as well as additional sequence information. To address the role of one region which potentially forms a DNA secondary structure, the DNA sequence internal to the G4 origin was altered by site-directed mutagenesis. A 3-base insertion at the AvaII site as well as a 17-base deletion between the AvaI and AvaII sites both resulted in loss of origin function. The 17-base deletion was also generated within the G4 genome and found to dramatically reduce the infectious growth rate of the resulting phage. These results are discussed with respect to the role of the G4 origin as the recognition site for primase-dependent replication initiation and its possible role in stage II replication.
Collapse
|
20
|
Masai H, Bond MW, Arai K. Cloning of the Escherichia coli gene for primosomal protein i: the relationship to dnaT, essential for chromosomal DNA replication. Proc Natl Acad Sci U S A 1986; 83:1256-60. [PMID: 3006041 PMCID: PMC323054 DOI: 10.1073/pnas.83.5.1256] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli gene encoding one of the primosomal proteins, protein i, was cloned by the use of synthetic oligonucleotide probes. Nucleotide sequence analysis revealed a coding region for protein i of 537 base pairs preceded by a possible promoter sequence. The gene is located adjacent to the dnaC locus, probably both being in a single operon. The protein i gene was shown to be closely related to the dnaT locus based on the following observations. (i) A multicopy plasmid carrying only the protein i gene suppresses the temperature-sensitive phenotype of a dnaT strain and restores the ability of the strain to carry out stable DNA replication in the absence of protein synthesis. (ii) An extract from a dnaT strain does not support replication of the plasmid pBR322 in vitro; addition of purified protein i restores its activity. These results indicate that protein i is encoded by dnaT and that it is essential for chromosomal DNA replication and is involved in the induction of stable DNA replication during the SOS response.
Collapse
|
21
|
Greenbaum JH, Marians KJ. Mutational analysis of primosome assembly sites. Evidence for alternative DNA structures. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39020-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Chattoraj DK, Abeles AL, Yarmolinsky MB. P1 plasmid maintenance: a paradigm of precise control. BASIC LIFE SCIENCES 1985; 30:355-81. [PMID: 2990417 DOI: 10.1007/978-1-4613-2447-8_27] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Wilkins BM, Chatfield LK, Wymbs CC, Merryweather A. Plasmid DNA primases and their role in bacterial conjugation. BASIC LIFE SCIENCES 1985; 30:585-603. [PMID: 3893412 DOI: 10.1007/978-1-4613-2447-8_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Soeller W, Abarzúa P, Marians KJ. Mutational analysis of primosome assembly sites. II. Role of secondary structure in the formation of active sites. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)89892-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
LeBowitz JH, McMacken R. The bacteriophage lambda O and P protein initiators promote the replication of single-stranded DNA. Nucleic Acids Res 1984; 12:3069-88. [PMID: 6326050 PMCID: PMC318730 DOI: 10.1093/nar/12.7.3069] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.
Collapse
|
26
|
Marians KJ. Enzymology of DNA in replication in prokaryotes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 17:153-215. [PMID: 6097404 DOI: 10.3109/10409238409113604] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review stresses recent developments in the in vitro study of DNA replication in prokaryotes. New insights into the enzymological mechanisms of initiation and elongation of leading and lagging strand DNA synthesis in ongoing studies are emphasized. Data from newly developed systems, such as those replicating oriC containing DNA or which are dependent on the lambda, O, and P proteins, are presented and the information compared to existing mechanisms. Evidence bearing on the coupling of DNA synthesis on both parental strands through protein-protein interactions and on the turnover of the elongation systems are analyzed. The structure of replication origins, and how their tertiary structure affects recognition and interaction with the various replication proteins is discussed.
Collapse
|