1
|
Berg JM. Metal-Binding Domains in Nucleic Acid-Binding and Gene-Regulatory Proteins. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166383.ch3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Johnson JS, Osheim YN, Xue Y, Emanuel MR, Lewis PW, Bankovich A, Beyer AL, Engel DA. Adenovirus protein VII condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol 2004; 78:6459-68. [PMID: 15163739 PMCID: PMC416553 DOI: 10.1128/jvi.78.12.6459-6468.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lampbrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lampbrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were comicroinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lampbrush chromosomes. Binding studies with proteins produced in bacteria or human cells or by in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Takahashi T, Suwabe N, Dai P, Yamamoto M, Ishii S, Nakano T. Inhibitory interaction of c-Myb and GATA-1 via transcriptional co-activator CBP. Oncogene 2000; 19:134-40. [PMID: 10644988 DOI: 10.1038/sj.onc.1203228] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene targeting experiments have revealed that transcription factors such as c-Myb and GATA-1 play crucial roles during hematopoietic differentiation. c-Myb is necessary in the immature cells of almost every hematopoietic lineage and GATA-1 is essential for the development of the erythroid lineage. In addition, CREB-binding protein (CBP) acts as a transcriptional adapter for various transcription factors, including c-Myb and GATA-1. In this paper, we show that the transcription factors c-Myb and GATA-1 each inhibit the transcriptional activity of the other and that any possible bipartite complexes c-Myb, GATA-1, and CBP could be formed, but the tripartite complex was hardly formed. The exclusive binding of GATA-1 and c-Myb to CBP is probably the molecular basis for the mutual inhibition of their transcriptional activity. Our data suggest that cross-talk between these three factors might be important for hematopoietic differentiation and that CBP functions as a key molecule during the process.
Collapse
Affiliation(s)
- T Takahashi
- Department of Molecular Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
4
|
De Graeve F, Bahr A, Sabapathy KT, Hauss C, Wagner EF, Kedinger C, Chatton B. Role of the ATFa/JNK2 complex in Jun activation. Oncogene 1999; 18:3491-500. [PMID: 10376527 DOI: 10.1038/sj.onc.1202723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ATFa proteins, which are members of the CREB/ATF family of transcription factors, display quite versatile properties. We have previously shown that they interact with the adenovirus E1a oncoprotein, mediating part of its transcriptional activity and heterodimerize with the Jun, Fos or related transcription factors, thereby modulating their DNA-binding specificity. In the present study, we report the sequence requirement of the N-terminal activation domain of ATFa and demonstrate the importance of specific threonine residues (Thr51 and Thr53) in addition to that of the metal-binding domain, in transcriptional activation processes. We also show that the N-terminal domain of ATFa which stably binds the Jun N-terminal kinase-2 (JNK2) (Bocco et al., 1996), is not a substrate for this kinase in vivo but, instead, serves as a JNK2-docking site for ATFa-associated partners like JunD, allowing them to be phosphorylated by the bound kinase.
Collapse
Affiliation(s)
- F De Graeve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM/CNRS/ULP, Illkirch, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee BH, Mathews MB. Transcriptional coactivator cAMP response element binding protein mediates induction of the human proliferating cell nuclear antigen promoter by the adenovirus E1A oncoprotein. Proc Natl Acad Sci U S A 1997; 94:4481-6. [PMID: 9114015 PMCID: PMC20748 DOI: 10.1073/pnas.94.9.4481] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1996] [Accepted: 02/28/1997] [Indexed: 02/04/2023] Open
Abstract
The proliferating cell nuclear antigen (PCNA), a crucial component of eukaryotic cell cycle and DNA replication complexes, is induced by the adenovirus E1A 243R oncoprotein through a cis-acting element termed the PERE (PCNA-E1A responsive element). The PERE contains a sequence homologous to an activating transcription factor (ATF) motif, and ATF-1 is a major component of PERE-protein complexes. We have identified a second PERE-binding protein, the cAMP response element binding protein (CREB) transcription factor, which forms heterodimers with ATF-1 at this site. CREB, but not ATF-1, is able to mediate transactivation of a minimal PCNA-chloramphenicol acetyltransferase reporter by E1A 243R. Further analysis revealed that the transcriptional coactivator, the CREB-binding protein (CBP), associates with PERE-related complexes, and that CBP is able to mediate a strong transactivation response to E1A 243R at the PCNA promoter. Experiments conducted with mutants in the E1A or CREB components support a model whereby E1A 243R transactivates the PCNA promoter via a CBP-CREB-PERE pathway. These findings delineate a paradigm by which E1A 243R can target and transactivate specific DNA promoter sequences.
Collapse
Affiliation(s)
- B H Lee
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11790, USA
| | | |
Collapse
|
6
|
Deryckere F, Burgert HG. Tumor necrosis factor alpha induces the adenovirus early 3 promoter by activation of NF-kappaB. J Biol Chem 1996; 271:30249-55. [PMID: 8939978 DOI: 10.1074/jbc.271.47.30249] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The early transcription unit 3 (E3) of human adenoviruses encodes proteins which appear to subvert host defense mechanisms. For example, the E3/19K protein inhibits the transport of major histocompatibility complex (MHC) class I molecules to the cell surface and thereby prevents cell lysis by cytotoxic T cells. Tumor necrosis factor alpha (TNF) stimulates expression of MHC molecules on the cell surface of normal cells but not of E3(+) cells, rather, a further reduction of MHC expression is evident. This was attributed to the increased expression of E3/19K upon TNF treatment, an effect also observed for other E3 proteins. We investigated the mechanism of the TNF-mediated up-regulation of E3 products. We show that TNF stimulates expression of a luciferase reporter gene driven by the E3 promoter. Mutation of individual transcription factor binding sites within the E3 promoter reveals the importance of the NF-kappaB binding site kappa2 for TNF inducibility. Electrophoretic mobility shift assays using antibodies directed against various members of the NF-kappaB family demonstrate that stimulation by TNF is mediated by the p50-p65 NF-kappaB complex. TNF inducibility does not depend on coexpression of E1A and can be observed during infection. Interestingly, the E3 promoter seems to be the only early promoter responsive to TNF and the only adenovirus promoter containing an NF-kappaB site. The implications of this regulatory mechanism for the adenovirus life cycle and its pathogenesis are discussed.
Collapse
Affiliation(s)
- F Deryckere
- Hans-Spemann-Laboratorium, Max-Planck-Institut für Immunbiologie, Stübeweg 51, D-79108 Freiburg, Germany
| | | |
Collapse
|
7
|
Lee JS, Zhang X, Shi Y. Differential Interactions of the CREB/ATF Family of Transcription Factors with p300 and Adenovirus E1A. J Biol Chem 1996. [DOI: 10.1074/jbc.271.30.17666] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Yang UC, Huang W, Flint SJ. mRNA export correlates with activation of transcription in human subgroup C adenovirus-infected cells. J Virol 1996; 70:4071-80. [PMID: 8648745 PMCID: PMC190288 DOI: 10.1128/jvi.70.6.4071-4080.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To investigate the mechanisms by which viral mRNA species are distinguished from their cellular counterparts for export to the cytoplasm during the late phase of subgroup C adenovirus infection, we have examined the metabolism of several cellular and viral mRNAs in human cells productively infected by adenovirus type 5 (Ad5). Several cellular mRNAs that were refractory to, or could escape from, adenovirus-induced inhibition of export of mRNA from the nucleus have been identified. This group includes Hsp70 mRNAs synthesized upon heat shock of Ad5-infected 293 or HeLa cells during the late phase of infection. However, successful export in Ad5-infected cells is not a specific response to heat shock, for beta-tubulin and interferon-inducible mRNAs were also refractory to virus-induced export inhibition. The export of these cellular mRNAs, like that of viral late mRNAs, required the E1B 55-kDa protein. Export to the cytoplasm during the late phase of Ad5 infection of several cellular mRNAs, including members of the Hsp70 family whose export was inhibited under some, but not other, conditions, indicates that viral mRNA species cannot be selectively exported by virtue of specific sequence or structural features. Cellular and viral late mRNAs that can be exported from the nucleus to the cytoplasm were expressed from genes whose transcription was induced or activated during the late phase of Ad5 infection. Consistent with the possibility that successful export is governed by transcriptional activation in the late phase of adenovirus infection, newly synthesized viral early E1A mRNA was subject to export inhibition during the late phase of infection.
Collapse
Affiliation(s)
- U C Yang
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
9
|
Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C, Takahashi T, Ishii S. CBP as a transcriptional coactivator of c-Myb. Genes Dev 1996; 10:528-40. [PMID: 8598284 DOI: 10.1101/gad.10.5.528] [Citation(s) in RCA: 286] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CBP (CREB-binding protein) is a transcriptional coactivator of CREB (cAMP response element-binding) protein, which is directly phosphorylated by PKA (cAMP-dependent protein kinase A). CBP interacts with the activated phosphorylated form of CREB but not with the nonphosphorylated form. We report here that CBP is also a coactivator of the c-myb proto-oncogene product (c-Myb), which is a sequence-specific transcriptional activator. CBP directly binds to the region containing the transcriptional activation domain of c-Myb in a phosphorylation-independent manner in vitro. The domain of CBP that touches c-Myb is also required for binding to CREB. A c-Myb/CBP complex in vivo was demonstrated by a yeast two-hybrid assay. CBP stimulates the c-Myb-dependent transcriptional activation. Conversely, the expression of antisense RNA of CBP represses c-Myb-induced transcriptional activation. In addition, adenovirus EIA, which binds to CBP, inhibits c-Myb-induced transcriptional activation. Our data thus identify CBP as a coactivator of c-Myb. These results suggest that CBP functions as a coactivator for more transcriptional activators than were thought previously.
Collapse
Affiliation(s)
- P Dai
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Popielarz M, Cavaloc Y, Mattei MG, Gattoni R, Stévenin J. The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts. J Biol Chem 1995; 270:17830-5. [PMID: 7629084 DOI: 10.1074/jbc.270.30.17830] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 9G8 factor is a 30-kDa member of the SR splicing factor family. We report here the isolation and characterization of the human 9G8 gene. This gene spans 7745 nucleotides and consists of 8 exons and 7 introns within the coding sequence, thus contrasting with the organization of the SC35/PR264 or RBP1 SR genes. We have located the human 9G8 gene in the p22-21 region of chromosome 2. The 5'-flanking region is GC-rich and contains basal promoter sequences and potential regulatory elements. Transfection experiments show that the 400-base pair flanking sequence has a promoter activity. Northern blot analysis of poly(A)+ RNA isolated from human fetal tissues has allowed us to identify five different species, generated by alternative splicing of intron 3, which may be retained or excised as a shorter version, as well as the use of two polyadenylation sites. We also show that the different isoforms are differentially expressed in the fetal tissues. The persistence of sequences between exon 3 and 4 results in the synthesis of a 9G8 protein lacking the SR domain which is expected to be inactive in constitutive splicing. Thus, our results raise the possibility that alternative splicing of intron 3 provides a mechanism for modulation of the 9G8 function.
Collapse
Affiliation(s)
- M Popielarz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | |
Collapse
|
11
|
Zieler HA, Walberg M, Berg P. Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein. Mol Cell Biol 1995; 15:3227-37. [PMID: 7760818 PMCID: PMC230555 DOI: 10.1128/mcb.15.6.3227] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The protein products of the adenoviral E1A gene are implicated in a variety of transcriptional and cell cycle events, involving interactions with several proteins present in human cells, including parts of the transcriptional machinery and negative regulators of cell division such as the Rb gene product and p107. To determine if there are functional homologs of E1A in Saccharomyces cerevisiae, we have developed a genetic screen for mutants that depend on E1A for growth. The screen is based on a colony color sectoring assay which allows the identification of mutants dependent on the maintenance and expression of an E1A-containing plasmid. Using this screen, we have isolated five mutants that depend on expression of the 12S or 13S cDNA of E1A for growth. A plasmid shuffle assay confirms that the plasmid-dependent phenotype is due to the presence of either the 12S or the 13S E1A cDNA and that both forms of E1A rescue growth of all mutants equally well. The five mutants fall into two classes that were named web1 and web2 (for "wants E1A badly"). Plasmid shuffle assays with mutant forms of E1A show that conserved region 1 (CR1) is required for rescue of the growth of the web1 and web2 E1A-dependent yeast mutants, while the N-terminal 22 amino acids are only partially required; conserved region 2 (CR2) and the C terminus are dispensable. The phenotypes of mutants in both the web1 and the web2 groups are due to a single gene defect, and the yeast genes that fully complement the mutant phenotypes of both groups were cloned. The WEB1 gene sequence encodes a 1,273-amino-acid protein that is identical to SEC31, a protein involved in the budding of transport vesicles from the endoplasmic reticulum. The WEB2 gene encodes a 1,522-amino-acid protein with homology to nucleic acid-dependent ATPases. Deletion of either WEB1 or WEB2 is lethal. Expression of E1A is not able to rescue the lethality of either the web1 or the web2 null allele, implying allele-specific mutations that lead to E1A dependence.
Collapse
Affiliation(s)
- H A Zieler
- Department of Biochemistry, Stanford University School of Medicine, California, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- N Jones
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| |
Collapse
|
13
|
Yoshida K, Higashino F, Fujinaga K. Transcriptional regulation of the adenovirus E1A gene. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):113-30. [PMID: 7555073 DOI: 10.1007/978-3-642-79586-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K Yoshida
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Japan
| | | | | |
Collapse
|
14
|
Sester M, Burgert HG. Conserved cysteine residues within the E3/19K protein of adenovirus type 2 are essential for binding to major histocompatibility complex antigens. J Virol 1994; 68:5423-32. [PMID: 8057424 PMCID: PMC236942 DOI: 10.1128/jvi.68.9.5423-5432.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The E3/19K protein of human adenovirus type 2 is a resident transmembrane glycoprotein of the endoplasmic reticulum. Its capacity to associate with class I histocompatibility (MHC) antigens abrogates cell surface expression and the antigen presentation function of MHC antigens. At present, it is unclear exactly which structure of the E3/19K protein mediates binding to MHC molecules. Apart from a stretch of approximately 20 conserved amino acids in front of the transmembrane segment, E3/19K molecules from different adenovirus subgroups (B and C) share little homology. Remarkably, the majority of cysteines are conserved. In this report, we examined the importance of cysteine residues for the structure and function of E3/19K. We show that E3/19K contains intramolecular disulfide bonds. By using site-directed mutagenesis, individual cysteines were replaced by serines and mutant proteins were stably expressed in 293 cells. On the basis of the differential binding of monoclonal antibody Tw1.3 and cyanogen bromide cleavage experiments, a structural model of E3/19K is proposed, in which Cys-11 and Cys-28 as well as Cys-22 and Cys-83 are linked by disulfide bonds. Both disulfide bonds (all four cysteines) are absolutely critical for the interaction with human MHC antigens. This was demonstrated by three criteria: loss of E3/19K coprecipitation, lack of transport inhibition, and normal cell surface expression of MHC molecules. Mutation of the three other cysteines had no effect. This indicates that a conformational determinant based on two disulfide bonds is crucial for the function of the E3/19K molecule, namely, to bind and to inhibit transport of MHC antigens.
Collapse
Affiliation(s)
- M Sester
- Hans-Spemann-Laboratorium, Max-Planck-Institut für Immunobiologie, Freiburg, Germany
| | | |
Collapse
|
15
|
Coussens LM, Yokoyama K, Chiu R. Transforming growth factor beta 1-mediated induction of junB is selectively inhibited by expression of Ad.12-E1A. J Cell Physiol 1994; 160:435-44. [PMID: 8077281 DOI: 10.1002/jcp.1041600306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transforming growth factor beta (TGF-beta), a multifunctional polypeptide growth factor, regulates the expression of many genes critical to cell cycle progression, such as members of the jun gene family which encode components of the transcription factor complex AP-1. The transforming proteins encoded by the early region 1A of adenovirus12 (Ad.12-E1A) abrogate some of the cellular responses to TGF-beta as well as affecting, differentially, the expression of cellular jun genes. Our data demonstrate that expression of Ad.12-E1A in rat 3Y1 fibroblast cells inhibits induction of junB by TGF-beta 1 while not altering the regulation of junB by phorbol ester or serum. Regulation of c-jun gene expression by TGF-beta 1, phorbol ester, and serum is not appreciably altered by the expression of Ad.12-E1A. Inhibition of TGF-beta induced junB expression is not due to a defect in TGF-beta/receptor interaction on Ad.12-E1A transformed cells and is not observed in other isotypic fibroblast cells transformed by SV40 or polyomavirus. These data suggest that multiple, independent, intracellular signal transduction pathways exist which mediate genomic responses to TGF-beta. Cellular expression of Ad.12-E1A-12S gene products results in selective disruption of some TGF-beta 1 signaling cascades and not those activated by phorbol ester or serum. These data further suggest that some cellular targets which mediate TGF-beta 1 action may also be unique targets of action for the E1A-12S transforming protein of adenovirus12.
Collapse
Affiliation(s)
- L M Coussens
- Department of Biological Chemistry, University of California, Los Angeles 90024-1782
| | | | | |
Collapse
|
16
|
Wong HK, Ziff EB. Complementary functions of E1a conserved region 1 cooperate with conserved region 3 to activate adenovirus serotype 5 early promoters. J Virol 1994; 68:4910-20. [PMID: 8035489 PMCID: PMC236431 DOI: 10.1128/jvi.68.8.4910-4920.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The amino-terminal region of the adenovirus type 5 E1a protein including conserved regions (CRs) 1 and 2 binds the 105-kDa retinoblastoma protein and a second, 300-kDa, cellular protein. We show that mutant viruses with deletions of CR1 which release the binding of either p105 or p300 still activate early promoters and infect cells productively. However, mutations which disrupt binding of both proteins disrupt early promoter activity and block the viral life cycle. Ela CR3, which has an established role in early promoter activation, can act in trans to the amino-terminal functions. This suggests that the amino terminus provides distinct, redundant functions related to p300 and Rb binding that synergize with CR3 to transactivate early genes.
Collapse
Affiliation(s)
- H K Wong
- Howard Hughes Medical Institute, Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|
17
|
Körner H, Burgert HG. Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J Virol 1994; 68:1442-8. [PMID: 8107207 PMCID: PMC236599 DOI: 10.1128/jvi.68.3.1442-1448.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adenoviruses of subgroup C can establish persistent infections in human beings. The exact site of persistence has not been established, but lymphoid tissues are certainly one reservoir. Experimental evidence suggests that early transcription unit 3 (E3) of the virus is involved in this phenomenon. In particular, the most abundant protein of this region, the E3/19K protein, seems to fulfill an important role in viral escape from the immune response. We previously demonstrated that in nonlymphoid cells E3/19K interferes with the antigen presentation function of class I major histocompatibility complex (MHC) antigens by inhibiting their transport to the cell surface. However, the function of the E3 products in lymphoid cells was not investigated. To examine this, the T-lymphoma cell line Jurkat was transfected with a DNA fragment comprising the entire E3 region of adenovirus type 2. We show here that E3/19K is expressed in the absence of the viral transactivator E1A with a rate of biosynthesis similar to that in nonlymphoid 293 cells. Furthermore, inhibition of transport and down-regulation of MHC antigens was comparable in both cell lines. In contrast, various T-cell molecules containing immunoglobulin-like domains showed a normal expression pattern in the transfected cells. A detailed analysis of the interaction between E3/19K and the MHC class I antigens of Jurkat (HLA-A3 and HLA-B35) revealed a differential sensitivity for down-regulation by E3/19K. The data demonstrate that E3/19K exerts its function also in lymphoid cells without affecting other lymphoid cell surface molecules. The implications for persistence of adenovirus in lymphoid cells in vivo are discussed.
Collapse
Affiliation(s)
- H Körner
- Spermann Laboratories, Max-Planck-Institut für Immunobiologie, Freiburg, Germany
| | | |
Collapse
|
18
|
Modulation of transcriptional activation of the proliferating cell nuclear antigen promoter by the adenovirus E1A 243-residue oncoprotein depends on proximal activators. Mol Cell Biol 1994. [PMID: 7903420 DOI: 10.1128/mcb.14.1.543] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous analyses defined a proliferating cell nuclear antigen (PCNA) E1A-responsive element (PERE) in the PCNA promoter that is essential for transactivation by the 243-residue product of the adenovirus type 2 E1A 12S mRNA (E1A 243R). In this report, we show that the PERE activates a heterologous basal promoter and confers susceptibility to transactivation by E1A 243R, indicating that the PERE is both necessary and sufficient for the response of the PCNA promoter to this oncoprotein. Insertion of linker sequences between the PERE and the site of transcription initiation in the PCNA promoter severely impairs the promoter's response to E1A 243R transactivation. GAL4 sites can replace the function of the PERE in the E1A 243R response of the PCNA basal promoter if transcriptional activators of suitable strength are supplied as GAL4 fusion proteins. Weak transcriptional activators render the PCNA basal promoter subject to transactivation by E1A 243R but do not endow the adenovirus E1B basal promoter with a similar response. Strong transcriptional activators do not support transactivation by E1A 243R, however; instead, E1A reduces the ability of the strong activators to activate both the PCNA and E1B basal promoters. Although other mechanistic differences might determine the response, the data imply a relationship between the activation strength of promoter-proximal effectors and the response of the PCNA basal promoter to E1A 243R. These experiments indicate that the PERE can function autonomously in mediating transactivation by E1A 243R and that the PCNA basal promoter is configured in a manner that permits modulation by E1A 243R of transcriptional activation by promoter-proximal effectors.
Collapse
|
19
|
Morris GF, Labrie C, Mathews MB. Modulation of transcriptional activation of the proliferating cell nuclear antigen promoter by the adenovirus E1A 243-residue oncoprotein depends on proximal activators. Mol Cell Biol 1994; 14:543-53. [PMID: 7903420 PMCID: PMC358404 DOI: 10.1128/mcb.14.1.543-553.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous analyses defined a proliferating cell nuclear antigen (PCNA) E1A-responsive element (PERE) in the PCNA promoter that is essential for transactivation by the 243-residue product of the adenovirus type 2 E1A 12S mRNA (E1A 243R). In this report, we show that the PERE activates a heterologous basal promoter and confers susceptibility to transactivation by E1A 243R, indicating that the PERE is both necessary and sufficient for the response of the PCNA promoter to this oncoprotein. Insertion of linker sequences between the PERE and the site of transcription initiation in the PCNA promoter severely impairs the promoter's response to E1A 243R transactivation. GAL4 sites can replace the function of the PERE in the E1A 243R response of the PCNA basal promoter if transcriptional activators of suitable strength are supplied as GAL4 fusion proteins. Weak transcriptional activators render the PCNA basal promoter subject to transactivation by E1A 243R but do not endow the adenovirus E1B basal promoter with a similar response. Strong transcriptional activators do not support transactivation by E1A 243R, however; instead, E1A reduces the ability of the strong activators to activate both the PCNA and E1B basal promoters. Although other mechanistic differences might determine the response, the data imply a relationship between the activation strength of promoter-proximal effectors and the response of the PCNA basal promoter to E1A 243R. These experiments indicate that the PERE can function autonomously in mediating transactivation by E1A 243R and that the PCNA basal promoter is configured in a manner that permits modulation by E1A 243R of transcriptional activation by promoter-proximal effectors.
Collapse
Affiliation(s)
- G F Morris
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
20
|
Nomura N, Zu Y, Maekawa T, Tabata S, Akiyama T, Ishii S. Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53604-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a. Mol Cell Biol 1993. [PMID: 8417352 DOI: 10.1128/mcb.13.1.561] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently isolated three cDNA clones encoding closely related proteins (ATFa1, ATFa2, and ATFa3) that belong to the activating transcription factor-cyclic AMP-responsive element family of cellular transcription factors. Using cotransfection experiments, we showed that these proteins mediate the transcriptional activation induced by the adenovirus E1a 13S mRNA gene product and that the zinc-binding domains present in both E1a conserved region 3 and the most N-terminal portion of the ATFa proteins play crucial roles in this activity. Reciprocal coimmunoprecipitation experiments demonstrated direct interactions between these proteins. Neither the conserved region 3 domain of E1a nor the N-terminal metal-binding element of ATFa is essential for these interactions. The simultaneous alteration of both the N-terminal and the C-terminal domains of ATFa abolished E1a binding, while either mutation alone failed to impair these interactions.
Collapse
|
22
|
Chatton B, Bocco JL, Gaire M, Hauss C, Reimund B, Goetz J, Kedinger C. Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a. Mol Cell Biol 1993; 13:561-70. [PMID: 8417352 PMCID: PMC358935 DOI: 10.1128/mcb.13.1.561-570.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We recently isolated three cDNA clones encoding closely related proteins (ATFa1, ATFa2, and ATFa3) that belong to the activating transcription factor-cyclic AMP-responsive element family of cellular transcription factors. Using cotransfection experiments, we showed that these proteins mediate the transcriptional activation induced by the adenovirus E1a 13S mRNA gene product and that the zinc-binding domains present in both E1a conserved region 3 and the most N-terminal portion of the ATFa proteins play crucial roles in this activity. Reciprocal coimmunoprecipitation experiments demonstrated direct interactions between these proteins. Neither the conserved region 3 domain of E1a nor the N-terminal metal-binding element of ATFa is essential for these interactions. The simultaneous alteration of both the N-terminal and the C-terminal domains of ATFa abolished E1a binding, while either mutation alone failed to impair these interactions.
Collapse
Affiliation(s)
- B Chatton
- Laboratoire de Génétique Moléculaire des Eucaryotes, Unité 184 de Biologie Moléculaire et de Génie Génétique, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Körner H, Fritzsche U, Burgert HG. Tumor necrosis factor alpha stimulates expression of adenovirus early region 3 proteins: implications for viral persistence. Proc Natl Acad Sci U S A 1992; 89:11857-61. [PMID: 1334549 PMCID: PMC50656 DOI: 10.1073/pnas.89.24.11857] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human adenovirus (Ad) can cause persistent infections in humans. Early region 3 (E3) of the virus appears to be implicated in this phenomenon. This transcription unit encodes proteins that interfere in various ways with host cell functions, including (i) cell-surface expression of histocompatibility class I antigens (HLA), (ii) cell-surface expression of the epidermal growth factor receptor (EGF-R), and (iii) the biological activity of tumor necrosis factor alpha (TNF-alpha). We transfected the human cell line 293 with the entire E3 region of Ad2 and investigated the influence of the cytokines TNF-alpha and interferon gamma (IFN-gamma) on cell-surface expression of HLA class I and the EGF-R. Whereas IFN-gamma treatment induced expression of HLA to some extent but not that of the EGF-R, TNF-alpha treatment augmented the reduction of these cell-surface molecules. Subsequent studies on the mechanism of this effect showed a TNF-alpha-dependent upregulation of E3 protein (E3/19K) and mRNA. The significance of this phenomenon was confirmed in infection experiments. A dramatic increase in the amount of E3/19K, even after short induction with low doses of TNF-alpha could be demonstrated. The study provides evidence for an interaction between the immune system and Ad in which the virus takes advantage of an immune mediator to escape immunosurveillance of the host.
Collapse
Affiliation(s)
- H Körner
- Max-Planck-Institut für Immunobiologie, Spemann Laboratories, Freiburg, Germany
| | | | | |
Collapse
|
24
|
Chen ST, Su H, Yee JK. Repression of liver-specific hepatitis B virus enhancer 2 activity by adenovirus E1A proteins. J Virol 1992; 66:7452-60. [PMID: 1331530 PMCID: PMC240453 DOI: 10.1128/jvi.66.12.7452-7460.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two regions of the hepatitis B virus (HBV) genome have been shown to display properties of a transcriptional enhancer. Enhancer 1 is active in most hepatoma lines examined as well as in some non-hepatocyte-derived cell lines. In contrast, enhancer 2 activity is strictly liver specific. In this study, we show that adenovirus E1A expression in the highly differentiated human hepatoma line Huh6 strongly inhibits HBV enhancer 2-stimulated transcription while having no effect on HBV enhancer 1 activity. A sequence motif in HBV enhancer 2 which is essential for its enhancer function is the target for E1A-mediated repression. The repression of HBV enhancer 2 activity is mediated through the N-terminal region of the E1A proteins known to bind a 300-kDa cellular protein. Our results suggest that HBV enhancer function may be modulated by a cellular mechanism similar to E1A-mediated transcriptional repression.
Collapse
Affiliation(s)
- S T Chen
- Department of Pediatrics, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
25
|
Fujii M, Tsuchiya H, Chuhjo T, Akizawa T, Seiki M. Interaction of HTLV-1 Tax1 with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes. Genes Dev 1992; 6:2066-76. [PMID: 1427072 DOI: 10.1101/gad.6.11.2066] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tax1 of human T-cell leukemia virus type 1 (HTLV-1) is a transcriptional activator for viral gene expression and is also a transforming protein through inducing the expression of several cellular genes under the control of mitogenic signals. We identified the CArG boxes as a Tax1-responsive cis-acting element for the cellular immediate early genes c-fos, egr-1, and egr-2. Using a chimeric protein consisting of the CArG-binding factor p67SRF and the heterologous DNA-binding domain of a yeast transcription factor GAL4, we demonstrated that Tax1 activates the transcriptional activity of p67SRF through the GAL4-binding site. The carboxy-terminal half of p67SRF, which lacks domains for DNA-binding, dimerization, and ternary complex formation with p62TCF, was sufficient for the activation by Tax1. Tax1 produced in Escherichia coli bound p67SRF in vitro. The complex formation in vivo was also indicated by the finding that the acidic activation domain of VP16, by fusion to p67SRF, can complement the transcriptional activation function of a mutant Tax1 in trans. Thus, Tax1 activates CArG-mediated transcription without mitogenic signals through interaction with a CArG-binding factor, p67SRF. This must be one of the primary steps by which Tax1 causes aberration in growth control of the infected cells.
Collapse
Affiliation(s)
- M Fujii
- Department of Molecular Virology and Oncology, Kanazawa University, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
26
|
Promoter-specific trans-activation by the adenovirus E1A12S product involves separate E1A domains. Mol Cell Biol 1992. [PMID: 1406628 DOI: 10.1128/mcb.12.10.4391] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that the adenovirus E1A12S product can trans-activate transcription by activating the transcription factor E2F. However, E2F cannot be the only target for the E1A12S product, since several cellular promoters have been found to be activated by the E1A12S protein even though they lack E2F sites. Indeed, we now show that activation of the hsp70 promoter by the E1A12S product requires the TATAA sequence. Moreover, activation of the hsp70 promoter requires the N-terminal domain of the E1A protein and does not require the conserved region 2 sequences which are required for the E2F-dependent activation of transcription. We conclude that the targeting of distinct transcription factors, leading to trans-activation of transcription of multiple promoters, involves distinct domains of the E1A proteins that are also required for oncogenic activity.
Collapse
|
27
|
Transcriptional regulation by a point mutant of adenovirus-2 E1a product lacking DNA binding activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88684-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Gedrich RW, Bayley ST, Engel DA. Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. J Virol 1992; 66:5849-59. [PMID: 1326646 PMCID: PMC241461 DOI: 10.1128/jvi.66.10.5849-5859.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 243R E1A protein can act in synergy with cyclic AMP to induce AP-1 DNA-binding activity and c-fos mRNA in mouse S49 cells. A series of deletion mutants was used to identify two domains of the 243R protein that were required for these effects. Interestingly, these domains correlated precisely with regions known to be necessary for E1A-mediated transformation. One domain was located at the N terminus of E1A. The other domain spanned residues 36 to 81, corresponding to conserved region 1 of E1A. S49 cellular proteins that associate with E1A were coimmunoprecipitated with anti-E1A antibody. These included the previously identified proteins p300, p130, p107, p105Rb, and cyclin A. In addition, proteins of 90 kDa and a series of proteins in the 120- to 170-kDa range were identified. Binding of p300, p90, and the 120- to 170-kDa proteins was abolished in cells expressing mutants of E1A that were unable to induce AP-1 DNA-binding activity and c-fos mRNA. These data strongly suggest that specific cellular E1A-binding proteins are involved in the induction of AP-1 DNA-binding activity and c-fos mRNA by the synergistic action of the 243R E1A protein and cyclic AMP and that these transcriptional events are related to the transformation process.
Collapse
Affiliation(s)
- R W Gedrich
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
29
|
Kraus VB, Moran E, Nevins JR. Promoter-specific trans-activation by the adenovirus E1A12S product involves separate E1A domains. Mol Cell Biol 1992; 12:4391-9. [PMID: 1406628 PMCID: PMC360363 DOI: 10.1128/mcb.12.10.4391-4399.1992] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies have shown that the adenovirus E1A12S product can trans-activate transcription by activating the transcription factor E2F. However, E2F cannot be the only target for the E1A12S product, since several cellular promoters have been found to be activated by the E1A12S protein even though they lack E2F sites. Indeed, we now show that activation of the hsp70 promoter by the E1A12S product requires the TATAA sequence. Moreover, activation of the hsp70 promoter requires the N-terminal domain of the E1A protein and does not require the conserved region 2 sequences which are required for the E2F-dependent activation of transcription. We conclude that the targeting of distinct transcription factors, leading to trans-activation of transcription of multiple promoters, involves distinct domains of the E1A proteins that are also required for oncogenic activity.
Collapse
Affiliation(s)
- V B Kraus
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
30
|
Yamazaki Y, Shimada Y, Shibata-Sakurai H, Masamune Y, Nakanishi Y. Multiple cis-acting DNA elements that regulate transcription of the adenovirus 12 E1A gene. Virus Genes 1992; 6:261-71. [PMID: 1413541 DOI: 10.1007/bf01702564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To delineate cis-acting elements for adenovirus (Ad) 12 E1A gene transcription, we transfected HeLa and NIH3T3 cells with DNAs having various deletions in the 5'-upstream region linked to the chloramphenicol acetyltransferase gene. Deletions in the regions between nucleotide (nt) positions 54 and 166, and 167 and 200, with respect to the left end of the viral genome at nt position 1, caused a two- to three-fold reduction in transcription. Transcription decreased to an almost undetectable level with loss of the region between nt positions 201 and 282. The effect of these mutations was almost consistent between both cell lines. The region between nt positions 77 and 94 stimulated transcription when situated upstream of the simian virus 40 early promoter in either orientation. Transcription was stimulated about ninefold in the presence of the DNA that encodes the product of the 13S, but not the 12S mRNA of the Ad12 E1A gene. These results indicate that transcription of the Ad12 E1A gene is regulated by multiple cis-acting elements and is stimulated by its own gene product.
Collapse
Affiliation(s)
- Y Yamazaki
- Faculty of Pharmaceutical Sciences, Kanazawa University, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
31
|
Phelps WC, Bagchi S, Barnes JA, Raychaudhuri P, Kraus V, Münger K, Howley PM, Nevins JR. Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J Virol 1991; 65:6922-30. [PMID: 1834862 PMCID: PMC250797 DOI: 10.1128/jvi.65.12.6922-6930.1991] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human papillomavirus E7 gene product is an oncoprotein with properties similar to those of the adenovirus E1A proteins. The human papillomavirus E7 proteins possess substantial amino acid sequence similarity to portions of conserved regions 1 and 2 of E1A, and the human papillomavirus type 16 E7 protein trans-activates the adenovirus E2 early promoter. Analysis of point mutations in the E2 promoter indicated that the E2F recognition sites were critical to E7 stimulation. In contrast to the activation of the E2 promoter, E7 could not trans-activate various other E1A-inducible promoters. Although the promoter specificity for E7 differs from that of 13S E1A trans activation, it is very similar to activation by the E1A 12S product. Moreover, analysis of the E7 protein has suggested that amino acid sequences critical for trans activation include those shared with E1A within conserved region 2. Biochemical studies demonstrate that the E7 protein, like the 12S E1A product, can alter the interaction of cellular factors with the E2F transcription factor. We therefore conclude that E7 trans activation is functionally related to that mediated by the 12S E1A product.
Collapse
Affiliation(s)
- W C Phelps
- Division of Virology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zu Y, Maekawa T, Matsuda S, Ishii S. Complete putative metal finger and leucine zipper structures of CRE-BP1 are required for the E1A-induced trans-activation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54404-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Abstract
Using a transient expression assay in Vero cells, we have shown that the protein product from gene 61 of varicella-zoster virus (VZV) can repress the function of the VZV encoded trans-activators on putative viral immediate-early, early, and late gene promoters. The repression is exerted at the transcriptional level and requires functional gene 61 protein. This trans-repressor is the herpes simplex type 1 ICP0 (a trans-activator) homolog, as defined by gene location, the sharing of a cysteine-rich putative zinc-binding finger in the amino-terminal region, and limited amino acid homology. Open reading frame 61 (ORF61)-mediated trans-repression appears to be specific for VZV-encoded trans-activators in that it has no effect on simian virus 40 and Rous sarcoma virus promoters. Moreover, it does not inhibit trans-activation of the human T-lymphotropic virus type I and human immunodeficiency virus long terminal repeats by tax and tat genes, respectively. We constructed plasmids with mutations in ORF61 and tested them for their ability to inhibit trans-activator (VZV genes 4 and 62)-mediated activation of the viral thymidine kinase promoter-chloramphenicol acetyltransferase construct. Mutants containing interruptions in ORF61 lost their trans-repressing ability, as demonstrated at both the protein and steady-state RNA levels. These results suggest that the ORF61 protein product can mediate down-regulation of VZV gene expression.
Collapse
Affiliation(s)
- S Nagpal
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
34
|
Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR. Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev 1991; 5:1200-11. [PMID: 1829698 DOI: 10.1101/gad.5.7.1200] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent experiments have shown that the cellular E2F transcription factor is found in complexes with cellular proteins and that one such complex contains the cyclin-A protein. Isolation of a cellular activity, which we term E2F-BF, can reconstitute the E2F-cyclin-A complex and has permitted a more detailed analysis of the mechanism of E1A dissociation. Through the analysis of a series of E1A mutants, we find that sequences in conserved region 1 (CR1) and conserved region 2 (CR2) are important for dissociation of the E2F complex, whereas amino-terminal sequences are not required. In contrast to the requirements for dissociation, only the CR1 sequences are required to block formation of the complex if E1A is added when the components are combined. We have also identified an activity, termed E2F-I, that inhibits E2F binding to DNA, again apparently through the formation of a complex with E2F. This inhibitory activity is also blocked by E1A, dependent on the same elements of the E1A protein that disrupt the interaction with E2F-BF. Because the E1A sequences that are important for releasing E2F from these interactions are also sequences necessary for oncogenesis, we suggest that this activity may be a critical component of the transforming activity of E1A.
Collapse
Affiliation(s)
- P Raychaudhuri
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
35
|
Heasley LE, Benedict S, Gleavy J, Johnson GL. Requirement of the adenovirus E1A transformation domain 1 for inhibition of PC12 cell neuronal differentiation. CELL REGULATION 1991; 2:479-89. [PMID: 1832020 PMCID: PMC361834 DOI: 10.1091/mbc.2.6.479] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Expression of the adenovirus early gene E1A inhibits the nerve growth factor (NGF)-induced differentiation of PC12 pheochromocytoma cells. Expression of the 12S form of E1A, which lacks the transcription activation region, also inhibited PC12 cell differentiation in a manner similar to the wild-type gene. Three cellular proteins--the retinoblastoma susceptibility gene product referred to as 105(Rb)-, 107-, and 300-kDa proteins--stably interacted with the different E1A polypeptides. Analysis of the association of these cellular proteins with mutant E1A polypeptides demonstrated that a functional domain 1, which is minimally involved in the association of the 300-kDa protein with E1A, was sufficient to inhibit neuronal differentiation. Deletion of transformation domain 2, which encodes sequences necessary for the binding of the 105(Rb)- and 107-kDa proteins, did not influence the ability of the mutant E1A polypeptide to inhibit PC12 cell differentiation. E1A was also shown to alter the expression of mRNAs for the early response genes c-fos, c-myc, egr-1, and c-jun and their regulation in response to NGF. In clones expressing either 12S or 13S E1A, NGF stimulation of c-fos and c-myc was repressed. In contrast, basal mRNA levels for c-jun and egr-1 were constitutively elevated and not significantly affected further by challenge with NGF. Simply expressing c-jun by gene transfer, however, did not mimic the action of E1A because constitutively expressing c-jun clones differentiated in response to NGF. Thus, expression of the E1A polypeptide disrupts NGF control of early transcription events that have been shown to be critical for PC12 cell neuronal differentiation.
Collapse
Affiliation(s)
- L E Heasley
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado
| | | | | | | |
Collapse
|
36
|
Engel DA, Muller U, Gedrich RW, Eubanks JS, Shenk T. Induction of c-fos mRNA and AP-1 DNA-binding activity by cAMP in cooperation with either the adenovirus 243- or the adenovirus 289-amino acid E1A protein. Proc Natl Acad Sci U S A 1991; 88:3957-61. [PMID: 1850843 PMCID: PMC51572 DOI: 10.1073/pnas.88.9.3957] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Products of the adenovirus E1A gene can act synergistically with cAMP to activate transcription of several viral early genes and the cellular genes c-fos and jun-B. Transcription factor AP-1-binding activity is also induced by the combined action of E1A and cAMP. Mouse S49 cells were infected with adenovirus variants expressing either the 243- or 289-amino acid E1A protein and treated with the cAMP analog dibutyryl-cAMP. Significant E1A-dependent induction of c-fos mRNA and AP-1-binding activity was observed in cells expressing either E1A protein. These effects absolutely required the presence of cAMP. In contrast, the 243-amino acid protein was a poor activator of the viral early genes E2 and E4 compared with the 289-amino acid protein. These data suggest that the 243- and 289-amino acid E1A proteins both interact functionally with the cAMP signaling system to activate transcription of a cellular gene and AP-1-binding activity. The mechanism involved in this process is probably different from the mechanism of transcriptional activation of viral genes.
Collapse
Affiliation(s)
- D A Engel
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, NJ 08544
| | | | | | | | | |
Collapse
|
37
|
Abstract
Proteins encoded by the adenovirus E1A oncogene are capable of positive and negative transcriptional regulation of both viral and cellular genes. E1A regulatory function is commonly thought to involve modifications of specific cellular factors that interact with responsive promoters. In this report we present evidence that E1A induces the activity of the jun/AP-1 transcription factor in three different cell types: P19, JEG-3, and HeLa. AP-1 binds to 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs); therefore, E1A might modulate a specific signal transduction pathway normally induced by activation of the protein kinase C. Binding of jun/AP-1 to a TRE is induced in all cell types studied when E1A is expressed. We observe that the expression of endogenous c-jun and jun B genes is induced by E1A, which directly transactivates the promoters of c-fos, c-jun, and jun B. Similar inducibility is obtained by treatment with retinoic acid and differentiation of P19-embryonal carcinoma cells. The E1A 13S product transactivates TRE sequences and cooperates with c-jun in the transcriptional stimulation. The 12S E1A product does not activate a TRE sequence, but cotransfection with c-jun circumvents this lack of stimulation. Coexpression of c-fos and E1A 12S, however, blocks the transactivation by c-jun, suggesting an important role for fos in determining the dominance of the 12S or 13S protein.
Collapse
|
38
|
de Groot R, Foulkes N, Mulder M, Kruijer W, Sassone-Corsi P. Positive regulation of jun/AP-1 by E1A. Mol Cell Biol 1991; 11:192-201. [PMID: 1824713 PMCID: PMC359609 DOI: 10.1128/mcb.11.1.192-201.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proteins encoded by the adenovirus E1A oncogene are capable of positive and negative transcriptional regulation of both viral and cellular genes. E1A regulatory function is commonly thought to involve modifications of specific cellular factors that interact with responsive promoters. In this report we present evidence that E1A induces the activity of the jun/AP-1 transcription factor in three different cell types: P19, JEG-3, and HeLa. AP-1 binds to 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs); therefore, E1A might modulate a specific signal transduction pathway normally induced by activation of the protein kinase C. Binding of jun/AP-1 to a TRE is induced in all cell types studied when E1A is expressed. We observe that the expression of endogenous c-jun and jun B genes is induced by E1A, which directly transactivates the promoters of c-fos, c-jun, and jun B. Similar inducibility is obtained by treatment with retinoic acid and differentiation of P19-embryonal carcinoma cells. The E1A 13S product transactivates TRE sequences and cooperates with c-jun in the transcriptional stimulation. The 12S E1A product does not activate a TRE sequence, but cotransfection with c-jun circumvents this lack of stimulation. Coexpression of c-fos and E1A 12S, however, blocks the transactivation by c-jun, suggesting an important role for fos in determining the dominance of the 12S or 13S protein.
Collapse
Affiliation(s)
- R de Groot
- Hubrecht Laboratorium, Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- T Shenk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
40
|
Gabathuler R, Kvist S. The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type 2 consists of three separate amino acid segments at the carboxy terminus. J Cell Biol 1990; 111:1803-10. [PMID: 2146274 PMCID: PMC2116308 DOI: 10.1083/jcb.111.5.1803] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The E3/19K protein of adenovirus type 2 is a resident of the ER. Immediately after synthesis it binds to human major histocompatibility complex class I antigens and prevents their departure from the ER compartment. The ER retention signal of the E3/19K protein is contained within the 15 amino acids that protrude on the cytoplasmic side at the carboxy terminus of the protein. To define the ER retention sequence in more detail, we have generated 10 mutants of the E3/19K protein that differ only within this segment. Analysis of the rate of intracellular transport and cell surface expression of HLA antigens associated to these mutants, show that the sequences Ser-Phe-Ile, located in the middle of the 15-residue segment and Met-Pro, at the extreme carboxy terminus, are crucial for retention. Four charged residues, Asp-Glu-Lys-Lys, are located between these two retention elements but are of little or no importance. The basic cluster of amino acids close to the membrane also has some effect on retention. Thus, the retention signal of the E3/19K protein is not a contiguous sequence of amino acids but has a complex spatial arrangement.
Collapse
Affiliation(s)
- R Gabathuler
- Ludwig Institute for Cancer Research, Stockholm, Sweden
| | | |
Collapse
|
41
|
Weigel RJ, Nevins JR. Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression. Nucleic Acids Res 1990; 18:6107-12. [PMID: 2235492 PMCID: PMC332413 DOI: 10.1093/nar/18.20.6107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous experiments have demonstrated a link between transcriptional regulatory mechanisms acting during F9 cell differentiation and transcription control by the adenovirus E1A gene. We have isolated a number of differentiation-specific genes by cDNA cloning to determine if E1A exerts a coordinated control over differentiation specific gene expression. The mRNAs encoded by these cDNAs were undetectable or only barely detectable in undifferentiated cells but then rose in concentration upon differentiation. Analysis of transcription rates in isolated nuclei revealed that all but one of the genes was transcriptionally regulated during differentiation. Interestingly, alpha 2-type IV collagen expression was activated by a post-transcriptional mechanism since the gene was transcribed in both undifferentiated and differentiated cells whereas the cytoplasmic mRNA was undetectable in undifferentiated cells but rose in abundance in parallel with other regulated transcripts. Adenovirus infection of differentiated F9 cells reduced the cytoplasmic mRNA levels of each of the differentiation specific genes to near that found in the undifferentiated cell. Of those genes that were transcriptionally activated by differentiation, adenovirus infection specifically inhibited transcription. In contrast, although the alpha 2 collagen mRNA levels were reduced by adenovirus infection similar to the other mRNAs, the control was post-transcriptional since transcription of the gene was unaffected. Thus, the mechanism for loss of gene expression mediated by E1A reflects the mechanism by which the gene was activated during differentiation. Based on these results we suggest that E1A controls the expression of the F9 cell phenotype by targeting a regulatory activity acting early in the differentiation program.
Collapse
Affiliation(s)
- R J Weigel
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
42
|
Lamberti C, Williams J. Differential requirement for adenovirus type 12 E1A gene products in oncogenic transformation. J Virol 1990; 64:4997-5007. [PMID: 2144595 PMCID: PMC247991 DOI: 10.1128/jvi.64.10.4997-5007.1990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the early period of infection, adenovirus type 12 E1A gene is expressed as overlapping, spliced mRNAs of 12 and 13S, which encode in-frame proteins of 235 and 266 amino acid residues (235R and 266R), respectively. To define the functions of these related products in the infection of human cells and transformation of rodent cells, we created single T-to-C transitions at the second base of each mRNA intron which specifically prevent splicing of the respective mRNAs. Mutant pm712 expresses only the 13S mRNA and 266R protein, while pm713 expresses only the 12S mRNA and 235R protein. By using these mutants, we showed that only the larger product is required for growth in human cells, including growth-arrested W138 cells, that the capacity to activate other viral genes (in human cells, at least) lies primarily with that protein, and that the 266R product is not required for autoregulation of its own transcription. In the presence of the 266R protein the 235R product was not required for complete and efficient transformation of a variety of rodent cells or for direct induction of tumors in rats, whereas in its absence the smaller product was insufficient for transformation or tumor induction. Finally, we showed that transformants resulting from infection of rodent cells with pm712 possess a fully-transformed phenotype and are tumorigenic. Previous studies with group C adenoviruses led to the conclusion that both E1A products are required for complete transformation; we conclude that with oncogenic serotype 12, only the 266R product is required for this process.
Collapse
Affiliation(s)
- C Lamberti
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890
| | | |
Collapse
|
43
|
Gabathuler R, Lévy F, Kvist S. Requirements for the association of adenovirus type 2 E3/19K wild-type and mutant proteins with HLA antigens. J Virol 1990; 64:3679-85. [PMID: 2142509 PMCID: PMC249661 DOI: 10.1128/jvi.64.8.3679-3685.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The E3/19K protein of human adenovirus type 2 is a resident of the endoplasmic reticulum (ER). Immediately after synthesis, it associates with major histocompatibility complex class I antigens and prevents their intracellular transport and cell surface expression. We have generated several C-terminal deletion mutants of the E3/19K protein that are preterminated at various positions on both sides of the membrane-spanning segment of the protein. One of these mutants is terminated at the luminal side of the membrane (M310), and two are terminated in the hydrophobic segment (M374 and M392), whereas mutant M621 is terminated on the cytoplasmic side of the ER membrane. The M310, M374, and M392 mutants are soluble proteins. They do not associate with HLA antigens in transfected 293 cells, and they are, to some extent, secreted into the medium. The M621 mutant protein is integrated in the ER membrane, associates immediately after its synthesis with HLA antigens, and exits from the ER. By using either an in vitro translation system supplemented with microsomes or overexpression in insect cells, we showed that M374 and E3/19K are able to associate with HLA antigens. These results indicate that the conformation of the luminal part of the E3/19K protein is not grossly altered by the mutations. Rapid transport of the M374 mutant out of the ER and partial degradation of this protein may prevent the interaction with HLA class I antigens in transfected 293 cells.
Collapse
Affiliation(s)
- R Gabathuler
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | |
Collapse
|
44
|
Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a. Mol Cell Biol 1990. [PMID: 2138706 DOI: 10.1128/mcb.10.4.1476] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain creatine kinase is a major enzyme of cellular energy metabolism. It is overexpressed in a wide range of tumor cell lines and is used as a tumor marker. We reported recently that the promoter of the human gene has a strong sequence similarity to the adenovirus E2E promoter. This similarity suggested that the brain creatine kinase gene may be regulated by the viral activator E1a. Experiments reported here showed that both enzyme activity and mRNA levels were induced by the oncogenic products of the E1a region of adenovirus type 5, but unlike the viral E2E promoter, which is induced predominantly by E1a domain 3, brain creatine kinase induction required domains 1 and 2. These domains are important for transformation and for the association of E1a with the retinoblastoma gene product and other cellular proteins. The induction by an oncogene of a cellular gene for energy metabolism may be of significance for the metabolic events that take place after oncogenic activation.
Collapse
|
45
|
Kaddurah-Daouk R, Lillie JW, Daouk GH, Green MR, Kingston R, Schimmel P. Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a. Mol Cell Biol 1990; 10:1476-83. [PMID: 2138706 PMCID: PMC362250 DOI: 10.1128/mcb.10.4.1476-1483.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain creatine kinase is a major enzyme of cellular energy metabolism. It is overexpressed in a wide range of tumor cell lines and is used as a tumor marker. We reported recently that the promoter of the human gene has a strong sequence similarity to the adenovirus E2E promoter. This similarity suggested that the brain creatine kinase gene may be regulated by the viral activator E1a. Experiments reported here showed that both enzyme activity and mRNA levels were induced by the oncogenic products of the E1a region of adenovirus type 5, but unlike the viral E2E promoter, which is induced predominantly by E1a domain 3, brain creatine kinase induction required domains 1 and 2. These domains are important for transformation and for the association of E1a with the retinoblastoma gene product and other cellular proteins. The induction by an oncogene of a cellular gene for energy metabolism may be of significance for the metabolic events that take place after oncogenic activation.
Collapse
Affiliation(s)
- R Kaddurah-Daouk
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | |
Collapse
|
46
|
Rochette-Egly C, Fromental C, Chambon P. General repression of enhanson activity by the adenovirus-2 E1A proteins. Genes Dev 1990; 4:137-50. [PMID: 2155159 DOI: 10.1101/gad.4.1.137] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been shown previously that the adenovirus 2 (Ad2) E1A proteins repress activation of transcription by the SV40, polyomavirus and immunoglobulin gene enhancers. Here, we demonstrate that the repression of the SV40 enhancer is not specifically mediated by one of its constituent enhansons and/or proto-enhancers, but that each is subject to repression individually. This inhibitory effect of the E1A proteins is also observed with the AP-1 factor-binding enhansons from the polyomavirus and human metallothionein enhancers, and the MHC class I gene H-2Kb enhanson, which binds the KBF1/H2TF1/TC-IIB protein. Repression by the E1A gene products may, in fact, extend to all enhancer trans-activators, because the transcriptional activities of nuclear receptors (e.g., the estrogen and glucocorticoid receptors), of the yeast enhancer factor GAL4 expressed in HeLa cells, and of chimeric trans-activators (such as GAL-VP16) are all similarly inhibited. The E1A protein domains 2 and 3, including the acidic amino acid stretch that has been shown previously to be necessary for E1A-mediated trans-activation, are not required for repression. These results indicate that the amino-terminal region of the protein, which contains domain 1, plays a crucial role in repression, possibly by interfering in the transcriptional activation process at a step common to all trans-acting enhancer factors.
Collapse
Affiliation(s)
- C Rochette-Egly
- Laboratoire de Génétique Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Faculté de Médećine, Strasbourg, France
| | | | | |
Collapse
|
47
|
Knust B, Brüggemann U, Doerfler W. Reactivation of a methylation-silenced gene in adenovirus-transformed cells by 5-azacytidine or by E1A trans activation. J Virol 1989; 63:3519-24. [PMID: 2473219 PMCID: PMC250931 DOI: 10.1128/jvi.63.8.3519-3524.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the adenovirus type 2 (Ad2)-transformed hamster cell line HE3, the integrated late E2A promoter of Ad2 DNA is inactive, is methylated at all three 5'-CCGG-3' sequences, and can be reactivated by growing the cells in the presence of 50 microM 5-azacytidine (5-azaC). The three 5'-CCGG-3' sequences then become demethylated. Demethylation and reactivation are stable over 30 passages even after the removal of 5-azaC. The dormant late E2A promoter in cell line HE3 can also be reactivated by transfecting the cells with recombinant plasmids that carry the left terminal E1A and part of the E1B region of Ad2 DNA or the E1A 13S cDNA, but not with plasmids containing the E1A 12S cDNA. The E1A 13S cDNA encodes the 289-amino-acid trans-activating protein of Ad2. The E1A-mediated reactivation of the late E2A promoter is not accompanied by its demethylation in both DNA complements. Cell line HE3 produces constitutively E1A-encoded mRNAs and reactivates the methylated late E2A promoter-chloramphenicol acetyltransferase gene construct after transfection into HE3 cells. Constitutive levels of the endogenous E1A gene products in HE3 cells are detectable but, paradoxically, appear insufficient to reactivate the endogenous, chromosomally integrated E2A gene.
Collapse
Affiliation(s)
- B Knust
- Institute of Genetics, University of Cologne, Federal Republic of Germany
| | | | | |
Collapse
|
48
|
Smith CL, Debouck C, Rosenberg M, Culp JS. Phosphorylation of serine residue 89 of human adenovirus E1A proteins is responsible for their characteristic electrophoretic mobility shifts, and its mutation affects biological function. J Virol 1989; 63:1569-77. [PMID: 2522558 PMCID: PMC248391 DOI: 10.1128/jvi.63.4.1569-1577.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis that is characteristic of the adenovirus E1A proteins is the result of posttranslational modification. In the present study, we demonstrate that phosphorylation of bacterially produced E1A in higher cell extracts occurs on serine and is responsible for the mobility shift. E1A protein expressed in Saccharomyces cerevisiae also undergoes the mobility shift due to serine phosphorylation. Site-directed mutagenesis was used to identify the serine residue responsible for the mobility shift. Six serine residues were altered to glycine within E1A. Substitution at serine residue 89 was shown to selectively prevent the mobility shift of both the 289R and 243R E1A proteins. We conclude that phosphorylation at serine 89 is the specific modification responsible for the mobility shift of E1A. Moreover, we demonstrate that the Ser-89-to-Gly mutation has no effect on trans activation or complementation of an E1A-deficient adenovirus. In contrast, the mutant protein does significantly reduce both the repression and transformation efficiency of E1A. The five other Ser-to-Gly mutation were also examined for functional effects. None affected trans activation, whereas repression and transformation functions were affected. One mutant affected transformation without affecting repression, suggesting that these functions are to some degree also separable. The relevance of phosphorylation to structure and activity of E1A and other nuclear oncogene proteins is discussed.
Collapse
Affiliation(s)
- C L Smith
- Department of Molecular Genetics, Smith Kline & French Laboratories, King of Prussia, Pennsylvania 19406-0939
| | | | | | | |
Collapse
|
49
|
Concentration dependence of transcriptional transactivation in inducible E1A-containing human cells. Mol Cell Biol 1989. [PMID: 2974921 DOI: 10.1128/mcb.8.11.4799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1A proteins are essential for the normal temporal activation of transcription from every other adenoviral early promoter. High-level E1A expression in the absence of viral infection would facilitate biochemical studies of E1A-mediated transactivation. Toward this end, we introduced the adenovirus type 2 E1A gene under the control of the murine mammary tumor virus promoter into HeLa cells. Uninduced cells expressed little or no detectable E1A mRNA. Upon induction, mRNA levels accumulated to about 50% of the level observed in 293 cells. The level of E1A expression in these cells could be controlled by varying the concentration of the inducing glucocorticoid. Under these conditions of varying E1A concentrations, it was observed that activation of the E2, E3, and E4 promoters of H5dl312 initiated at the same E1A concentration and that transcription from each promoter increased as the E1A concentration increased. These results indicate that E1A-mediated transactivation is proportional to the concentration of E1A protein. E1A-dependent transcriptional stimulation of the E4 promoter was reproduced in an in vitro transcription system, demonstrating that expression of only the E1A proteins was sufficient to increase the transcriptional activity of nuclear extracts.
Collapse
|
50
|
Affiliation(s)
- J R Nevins
- Howard Hughes Medical Institute, Department of Microbiology-Immunology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|