1
|
Jiang Y, Song L, Lin Y, Nowialis P, Gao Q, Li T, Li B, Mao X, Song Q, Xing C, Zheng G, Huang S, Jin L. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023; 42:1672-1684. [PMID: 37020040 PMCID: PMC10231978 DOI: 10.1038/s41388-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yunhan Jiang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lina Song
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yizhu Lin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Pawel Nowialis
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qiongmei Gao
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Bin Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lingtao Jin
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Pan C, Kang J, Hwang JS, Li J, Boese AC, Wang X, Yang L, Boggon TJ, Chen GZ, Saba NF, Shin DM, Magliocca KR, Jin L, Kang S. Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nat Commun 2021; 12:4960. [PMID: 34400618 PMCID: PMC8368102 DOI: 10.1038/s41467-021-24845-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling. GR nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected after platinum treatment, and align with patient treatment resistance. Co-treatment with dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of the MAST1 inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory effect of dexamethasone on inflammation in vivo. These findings not only provide insights into the underlying mechanism of GR in cisplatin resistance but also offer an effective alternative therapeutic strategy to improve the clinical outcome of patients receiving platinum-based chemotherapy with GR agonists.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jung Seok Hwang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Likun Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Pan C, Chun J, Li D, Boese AC, Li J, Kang J, Umano A, Jiang Y, Song L, Magliocca KR, Chen ZG, Saba NF, Shin DM, Owonikoko TK, Lonial S, Jin L, Kang S. Hsp90B enhances MAST1-mediated cisplatin resistance by protecting MAST1 from proteosomal degradation. J Clin Invest 2020; 129:4110-4123. [PMID: 31449053 DOI: 10.1172/jci125963] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Microtubule-associated serine/threonine kinase 1 (MAST1) is a central driver of cisplatin resistance in human cancers. However, the molecular mechanism regulating MAST1 levels in cisplatin-resistant tumors is unknown. Through a proteomics screen, we identified the heat shock protein 90 B (hsp90B) chaperone as a direct MAST1 binding partner essential for its stabilization. Targeting hsp90B sensitized cancer cells to cisplatin predominantly through MAST1 destabilization. Mechanistically, interaction of hsp90B with MAST1 blocked ubiquitination of MAST1 at lysines 317 and 545 by the E3 ubiquitin ligase CHIP and prevented proteasomal degradation. The hsp90B-MAST1-CHIP signaling axis and its relationship with cisplatin response were clinically validated in cancer patients. Furthermore, combined treatment with a hsp90 inhibitor and the MAST1 inhibitor lestaurtinib further abrogated MAST1 activity and consequently enhanced cisplatin-induced tumor growth arrest in a patient-derived xenograft model. Our study not only uncovers the regulatory mechanism of MAST1 in tumors but also suggests a promising combinatorial therapy to overcome cisplatin resistance in human cancers.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jaemoo Chun
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dan Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Umano
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Lina Song
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Padhariya KN, Athavale M, Srivastava S, Kharkar PS. Substituted chloroacetamides as potential cancer stem cell inhibitors: Synthesis and biological evaluation. Drug Dev Res 2019; 81:356-365. [PMID: 31800121 DOI: 10.1002/ddr.21628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Komal N. Padhariya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMS Mumbai India
| | - Maithili Athavale
- Department of Cancer BiologyGodavari Biorefineries Ltd. Mumbai India
| | | | - Prashant S. Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMS Mumbai India
| |
Collapse
|
5
|
Jin L, Chun J, Pan C, Li D, Lin R, Alesi GN, Wang X, Kang HB, Song L, Wang D, Zhang G, Fan J, Boggon TJ, Zhou L, Kowalski J, Qu CK, Steuer CE, Chen GZ, Saba NF, Boise LH, Owonikoko TK, Khuri FR, Magliocca KR, Shin DM, Lonial S, Kang S. MAST1 Drives Cisplatin Resistance in Human Cancers by Rewiring cRaf-Independent MEK Activation. Cancer Cell 2018; 34:315-330.e7. [PMID: 30033091 PMCID: PMC6092215 DOI: 10.1016/j.ccell.2018.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/12/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
Abstract
Platinum-based chemotherapeutics represent a mainstay of cancer therapy, but resistance limits their curative potential. Through a kinome RNAi screen, we identified microtubule-associated serine/threonine kinase 1 (MAST1) as a main driver of cisplatin resistance in human cancers. Mechanistically, cisplatin but no other DNA-damaging agents inhibit the MAPK pathway by dissociating cRaf from MEK1, while MAST1 replaces cRaf to reactivate the MAPK pathway in a cRaf-independent manner. We show clinical evidence that expression of MAST1, both initial and cisplatin-induced, contributes to platinum resistance and worse clinical outcome. Targeting MAST1 with lestaurtinib, a recently identified MAST1 inhibitor, restores cisplatin sensitivity, leading to the synergistic attenuation of cancer cell proliferation and tumor growth in human cancer cells and patient-derived xenograft models.
Collapse
Affiliation(s)
- Lingtao Jin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jaemoo Chun
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chaoyun Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dan Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gina N Alesi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lina Song
- Department of Neuroscience, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jun Fan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jeanne Kowalski
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Cheng-Kui Qu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Zhitnyak IY, Bychkov IN, Sukhorukova IV, Kovalskii AM, Firestein KL, Golberg D, Gloushankova NA, Shtansky DV. Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32498-32508. [PMID: 28857548 DOI: 10.1021/acsami.7b08713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein we study the effect of doxorubicin-loaded BN nanoparticles (DOX-BNNPs) on cell lines that differ in the multidrug resistance (MDR), namely KB-3-1 and MDR KB-8-5 cervical carcinoma lines, and K562 and MDR i-S9 leukemia lines. We aim at revealing the possible differences in the cytotoxic effect of free DOX and DOX-BNNP nanoconjugates on these types of cells. The spectrophotometric measurements have demonstrated that the maximum amount of DOX in the DOX-BNNPs is obtained after saturation in alkaline solution (pH 8.4), indicating the high efficiency of BNNPs saturation with DOX. DOX release from DOX-BNNPs is a pH-dependent and DOX is more effectively released in acid medium (pH 4.0-5.0). Confocal laser scanning microscopy has shown that the DOX-BNNPs are internalized by neoplastic cells using endocytic pathway and distributed in cell cytoplasm near the nucleus. The cytotoxic studies have demonstrated a higher sensitivity of the leukemia lines to DOX-BNNPs compared with the carcinoma lines: IC50(DOX-BNNPs) is 1.13, 4.68, 0.025, and 0.14 μg/mL for the KB-3-1, MDR KB-8-5, K562, and MDR i-S9 cell lines, respectively. To uncover the mechanism of cytotoxic effect of nanocarriers on MDR cells, DOX distribution in both the nucleus and cytoplasm has been studied. The results indicate that the DOX-BNNP nanoconjugates significantly change the dynamics of DOX accumulation in the nuclei of both KB-3-1 and KB-8-5 cells. Unlike free DOX, the utilization of DOX-BNNPs nanoconjugates allows for maintaining a high and stable level of DOX in the nucleus of MDR KB-8-5 cells.
Collapse
Affiliation(s)
- Irina Y Zhitnyak
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Igor N Bychkov
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Irina V Sukhorukova
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| | - Konstantin L Firestein
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
| | - Dmitri Golberg
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , Second George Street, Brisbane, Queensland 4000, Australia
- Intrenational Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
| | - Natalya A Gloushankova
- N.N. Blokhin Russian Cancer Research Center , Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS″ , Leninsky Prospect 4, Moscow, 119049, Russia
| |
Collapse
|
7
|
Lawlor D, Martin P, Busschots S, Thery J, O'Leary JJ, Hennessy BT, Stordal B. PARP Inhibitors as P-glyoprotein Substrates. J Pharm Sci 2014; 103:1913-20. [PMID: 24700236 DOI: 10.1002/jps.23952] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/23/2023]
Abstract
The cytotoxicity of PARP inhibitors olaparib, veliparib, and CEP-8983 were investigated in two P-glycoprotein (P-gp) overexpressing drug-resistant cell models (IGROVCDDP and KB-8-5-11). IGROVCDDP and KB-8-5-11 were both resistant to olaparib and resistance was reversible with the P-gp inhibitors elacridar, zosuquidar, and valspodar. In contrast, the P-gp overexpressing models were not resistant to veliparib or CEP-8983. Olaparib and veliparib did not induce protein expression of P-gp in IGROVCDDP or KB-8-5-11 at doses that successfully inhibit PARP. Olaparib therefore appears to be a P-gp substrate. Veliparib and CEP-8983 do not appear to be substrates. Veliparib and CEP-8983 may therefore be more useful in combined chemotherapy regimens with P-gp substrates and may be active in platinum and taxane-resistant ovarian cancer.
Collapse
Affiliation(s)
- Denise Lawlor
- Department of Histopathology, St James' Hospital and Trinity College, Dublin, Dublin 8, Ireland
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Molinari A, Calcabrini A, Meschini S, Marra M, Stringaro A, Toccacieli L, Cianfriglia M, Arancia G. What is the relationship between P-glycoprotein and adhesion molecule expression in melanoma cells? Melanoma Res 2002; 12:109-14. [PMID: 11930106 DOI: 10.1097/00008390-200204000-00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A number of studies have reported that increased P-glycoprotein expression in drug-resistant tumour cells may be associated with decreased expression of a family of surface glycoproteins. However, despite its potential biological and clinical relevance, this phenomenon has not been extensively studied. In this study the phenotypic alterations that are associated with the acquisition of the multidrug-resistant phenotype in tumour cells, together with drug transporter overexpression, were investigated in human melanoma cells. The expression of cell adhesion molecules was analysed in a panel of multidrug-resistant melanoma cell lines (M14Dx) showing different degrees of resistance to doxorubicin and different levels of the expression of the drug transporter P-glycoprotein. In particular, expression of intercellular adhesion molecule-1 (ICAM-1), CD44, very late activation antigen (VLA)-5 and VLA-2 was determined by flow cytometry in the different resistant cell lines. A progressive downregulation of all the adhesion molecules examined was revealed in M14Dx cells, in parallel with an increasing level of expression of the drug transporter P-glycoprotein. The results obtained raise the question of the role of P-glycoprotein in the invasive and metastatic behaviour of tumour cells.
Collapse
Affiliation(s)
- A Molinari
- Laboratorio di Ultrastrutture , Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Berlaimont V, Bogaerts P, Dubois J, Hanus R, Hanocq M. Multidrug resistance modifies polyamines uptake in P388 murine lymphoma cells: experimental and modeling approach. Biophys Chem 1999; 77:161-71. [PMID: 10326249 DOI: 10.1016/s0301-4622(99)00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are ubiquitous compounds, essential for cell growth. This paper compares the polyamine transport between sensitive P388 murine lymphoma cells and two multidrug resistant P388 sublines with the assistance of an experimental model. This new model allows the characterisation of the whole polyamines uptake and efflux. Three parameters are identified by the model: two rate constants (K+ for the uptake and K- for the efflux) which are considered as physical constants specific to the transport of one polyamine in one cell type, and Ci(o) which represents the initial intracellular concentration. This model well describes our experimental results of polyamine transport across the P388 cell plasma membrane. Multidrug resistant P388 cells exhibit spermine uptake significantly higher than that of sensitive cells when on the opposite, putrescine enters more rapidly into the sensitive P388 cells. In conclusion, comparison of polyamine transport between sensitive and multidrug resistant P388 phenotypes shows large and significant differences.
Collapse
Affiliation(s)
- V Berlaimont
- Department of Bioanalytical Chemistry, Toxicology and Applied Physical Chemistry, Université Libre de Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
11
|
Chapter 7 The P-glycoprotein family and multidrug resistance: An overview. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
12
|
Abstract
The refractory nature of many human cancers to multi-agent chemotherapy is termed multidrug resistance (MDR). In the past several decades, a major focus of clinical and basic research has been to characterize the genetic and biochemical mechanisms mediating this phenomenon. To provide model systems in which to study mechanisms of multidrug resistance, in vitro studies have established MDR cultured cell lines expressing resistance to a broad spectrum of unrelated drugs. In many of these cell lines, the expression of high levels of multidrug resistance developed in parallel to the appearance of cytogenetically-detectable chromosomal anomalies resulting from gene amplification. This review describes cytogenetic and molecular-based studies that have characterized DNA amplification structures in MDR cell lines and describes the important role gene amplification played in the cloning and characterization of the mammalian multidrug resistance genes (mdr). In addition, this review discusses the genetic selection generally used to establish the MDR cell lines, and how drug selections performed in transformed cell lines generally favor the genetic process of gene amplification, which is still exploited to identify drug resistance genes that may play an important role in clinical MDR.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912
| |
Collapse
|
13
|
Abstract
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. As P-glycoprotein is the key molecule in MDR, many investigators have constructed anti-P-glycoprotein monoclonal antibodies (MAbs). Those antibodies, including MRK16 and C219, were used for elucidation of the mechanism of MDR and for overcoming of MDR. This article describes the characterization of the antibodies against the P-glycoprotein and other proteins of multidrug-resistant tumor cells, and discusses the therapeutic implication of the antibodies.
Collapse
Affiliation(s)
- Y Heike
- Pharmacology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
14
|
Vendrik CP, Bergers JJ, De Jong WH, Steerenberg PA. Resistance to cytostatic drugs at the cellular level. Cancer Chemother Pharmacol 1992; 29:413-29. [PMID: 1568284 DOI: 10.1007/bf00684841] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C P Vendrik
- Laboratory for Pathology, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
15
|
Cianfriglia M, Yassen A, Tombesi M, Samoggia P, Barca S, Caserta M. Expression of lymphocyte homing receptor gene is lost in multi-drug-resistant variants of human T-lymphoblastoid CCRF-CEM cells. Int J Cancer 1991; 49:394-7. [PMID: 1917137 DOI: 10.1002/ijc.2910490314] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 2.2-kb human cDNA clone PBL32, encoding for the lymphocyte homing receptor (LHR) was used to study the expression of this determinant in multi-drug-resistant (MDR) variants of human T-lymphoblastoid CCRF-CEM (CEM) cells. LHR is significantly associated with the drug-sensitive phenotype, its expression being progressively and quantitatively reduced in MDR variants of CEM cells according to the extent of drug resistance.
Collapse
Affiliation(s)
- M Cianfriglia
- Laboratorio di Immunologia, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Chen YN, Mickley LA, Schwartz AM, Acton EM, Hwang JL, Fojo AT. Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38781-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Bernal SD, Speak JA, Boeheim K, Dreyfuss AI, Wright JE, Teicher BA, Rosowsky A, Tsao SW, Wong YC. Reduced membrane protein associated with resistance of human squamous carcinoma cells to methotrexate and cis-platinum. Mol Cell Biochem 1990; 95:61-70. [PMID: 2195318 DOI: 10.1007/bf00219531] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A membrane protein recognized by monoclonal antibody SQM1 was identified in human squamous carcinomas, including those originating in the head and neck (SqCHN), lung and cervix. Cell lines derived from SqCHN of previously untreated patients expressed high amounts of this protein. In contrast, many cell lines established from SqCHN of patients previously treated with chemotherapy and/or radiation showed diminished amounts of this SQM1 protein. The expression of SQM1 antigen was determined in several SqCHN cell lines made resistant by exposure to methotrexate (MTX) in vitro. The parent cell lines all exhibited strong binding to SQM1 antibody. The MTX-resistant sublines showed much lower membrane binding of SQM1. The lowest SQM1 reactivity was found in cell lines with high resistance to MTX and with diminished rate of MTX transport. Some highly MTX-resistant cell lines which had high levels of dihydrofolate reductase, but which retained a high rate of MTX transport, also retained high levels of SQM1 binding. Reduced SQM1 protein was also found in SqCHN cells which developed resistance to the alkylating drug cis-latinum (CDDP) and which showed reduced membrane transport of CDDP. Cell growth kinetics and non-specific antigenic shifts were not responsible for the differences in SQM1 binding between the parent cell lines and their drug-resistant sublines. The finding of a novel protein which is reduced in cells resistant to MTX and CDDP could contribute to our understanding of the basic mechanisms of drug resistance. By detecting SQM1 protein in clinical specimens, it may be possible to monitor the development of drug resistance in tumors.
Collapse
Affiliation(s)
- S D Bernal
- Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leppert G, McDevitt R, Falco SC, Van Dyk TK, Ficke MB, Golin J. Cloning by gene amplification of two loci conferring multiple drug resistance in Saccharomyces. Genetics 1990; 125:13-20. [PMID: 2160400 PMCID: PMC1203995 DOI: 10.1093/genetics/125.1.13] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Yeast DNA fragments that confer multiple drug resistance when amplified were isolated. Cells containing a yeast genomic library cloned in the high copy autonomously replicating vector, YEp24, were plated on medium containing cycloheximide. Five out of 100 cycloheximide-resistant colonies were cross-resistant to the unrelated inhibitor, sulfometuron methyl, due to a plasmid-borne resistance determinant. The plasmids isolated from these resistant clones contained two nonoverlapping regions in the yeast genome now designated PDR4 and PDR5 (for pleiotropic drug resistant). PDR4 was mapped to chromosome XIII, 31.5 cM from LYS7 and 9 cM from the centromere. PDR4 was mapped to chromosome XV between ADE2 and H1S3. Genetic analysis demonstrated that at least three tightly linked genes (PDR5, PDR2 and SMR3) that mediate resistance to inhibitors are located in this region. Insertion mutations in the either PDR4 or PDR5 genes are not lethal, but the insertion in PDR5 results in a drug-hypersensitive phenotype.
Collapse
Affiliation(s)
- G Leppert
- Department of Biology, Catholic University of America, Washington, D.C. 20064
| | | | | | | | | | | |
Collapse
|
19
|
Cianfriglia M, Cenciarelli C, Tombesi M, Barca S, Mariani M, Morrone S, Santoni A, Samoggia P, Alessio M, Malavasi F. Murine monoclonal antibody recognizing a 90-kDa cell-surface determinant selectively lost by multi-drug-resistant variants of CEM cells. Int J Cancer 1990; 45:95-103. [PMID: 1688832 DOI: 10.1002/ijc.2910450118] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a murine IgG1 monoclonal antibody (MAb56), specific for a cell-surface protein structure (MC56 determinant) expressed by the human CEM cell line. A large band of approximately 90 kDa was identified as the main specific component of the MC56 determinant. Such a 90-kDa protein is significantly associated with the drug-sensitive phenotype, its expression being progressively reduced quantitatively in multi-drug-resistant (MDR) variants of CEM cells, according to the extent of drug resistance. In addition, the MC56 determinant is expressed de novo in drug-sensitive revertant cell lines derived from MDR cells and unreactive with the MAb56. The MAb56 shows a high affinity towards the immunizing drug-sensitive CEM cell line (Ka = 1.86 x 10(9) L/mole) while not binding to MDR cell variants. The expression of the MC56 molecule on a variety of human cells and tissues makes such a cellular determinant a candidate as a marker for studying the MDR phenomenon both in vivo and in vitro.
Collapse
Affiliation(s)
- M Cianfriglia
- Laboratorio di Immunologia, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- W T Bellamy
- Arizona Cancer Center, University of Arizona, Tucson 85724
| | | | | |
Collapse
|
21
|
de la Garza M, Gallegos B, Meza I. Characterization of a cytochalasin D-resistant mutant of Entamoeba histolytica. THE JOURNAL OF PROTOZOOLOGY 1989; 36:556-60. [PMID: 2557444 DOI: 10.1111/j.1550-7408.1989.tb01095.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of a cytochalasin D-resistant mutant of the human parasite Entamoeba histolytica capable of growing at 10 microM cytochalasin is described. The mutant cells also show resistance to 5 mM colchicine and 100 microM cytochalasin B, drugs proved deleterious for wild type trophozoites. The mutants show increased osmotic fragility and electric mobility but reduced phagocytic activity, and agglutination by Concanavalin A. On the other hand pinocytic activity remains unaltered when compared with the wild type cells. Polymerized actin, seen by staining with phalloidin, often appears polarized to one end of the trophozoites and forms few of the endocytic invaginations found in wild type amebas. An altered distribution of part of the actin could explain the differences in surface properties and motility observed in the mutant amebas.
Collapse
Affiliation(s)
- M de la Garza
- Departamento de Biologia Celular, Centro de Investigacion y Estudios Avanzados del IPN, Mexico
| | | | | |
Collapse
|
22
|
Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84675-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Membrane Protein Changes in an L1210 Leukemia Cell Line with a Translocation Defect in the Methotrexate-Tetrahydrofolate Cofactor Transport Carrier. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71616-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Lee FY, Siemann DW, Sutherland RM. Changes in cellular glutathione content during adriamycin treatment in human ovarian cancer--a possible indicator of chemosensitivity. Br J Cancer 1989; 60:291-8. [PMID: 2789934 PMCID: PMC2247186 DOI: 10.1038/bjc.1989.273] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Patients with ovarian cancer often respond well to combination chemotherapy initially but the majority eventually relapse when, with further treatment, the initially successful regimen proves ineffectual. The cause of such failures frequently has been attributed to the development of drug resistance. Although the mechanisms of acquired resistance in situ are still poorly understood, studies in vitro have shown that cells selected for resistance to one drug often exhibit cross-resistance to other seemingly unrelated agents, suggesting a somewhat generalised mechanism of resistance. We have studied the role of glutathione (GSH) and drug transport in determining the sensitivity to adriamycin (ADR) of a panel of human ovarian cell lines established directly from biopsies of patients with diverse treatment histories. These cell lines exhibited inherent differences in sensitivity to ADR by a dose factor of up to 3; a difference that was considerably less than what has been reported when cells were selected for drug resistance in vitro. The differences in drug sensitivity reported here among the various cell lines appeared to be unrelated to drug transport, in terms of both influx and efflux. Moreover, although these cell lines have a wide range of GSH content, there was only a poor correlation between drug sensitivity and cellular GSH content per se. However, when exposed to a clinically relevant dose of ADR, the GSH content of cell lines that were 'sensitive' decreased, whereas that of cell lines that were 'resistant' increased. To take these time-dependent changes in GSH into consideration, the area under the GSH content versus time curve (AUC), with and without ADR treatment, was calculated for each cell line. When this latter factor was included in the analysis, greatly improved correlations were found between GSH kinetic parameters and responses to ADR. In particular, ADR resistance was found to be closely correlated with the positive changes in absolute GSH AUC following ADR treatment (r = 0.92; P less than 0.01). Using 35S-labelled cysteine and methionine as tracers, it was found that the essential difference between the 'resistant' and 'sensitive' lines was that the 'resistant' lines had higher steady-state rates of GSH synthesis than the 'sensitive' lines. These results demonstrate that changes in cellular GSH concentration during treatment may be an important indicator of tumour cell response to ADR.
Collapse
Affiliation(s)
- F Y Lee
- Division of Experimental Therapeutics, University of Rochester Cancer Center, NY 14642
| | | | | |
Collapse
|
25
|
Germann UA, Gottesman MM, Pastan I. Expression of a multidrug resistance-adenosine deaminase fusion gene. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83250-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Takano H, Kohno K, Shiraishi N, Sato S, Asoh K, Yakushiniji M, Ono M, Kuwano M. Altered expression of epidermal growth factor receptor gene in a classical multidrug-resistant variant of a human cancer cell line, KB. Jpn J Cancer Res 1989; 80:373-9. [PMID: 2501254 PMCID: PMC5917741 DOI: 10.1111/j.1349-7006.1989.tb02322.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A variant clone resistant to high doses of colchicine (KB-C1) derived from human cancer KB cell line is resistant to various anticancer agents. The KB-C1 cells were much more resistant to epidermal growth factor and a chimeric toxin, EGF-Pseudomonas exotoxin (PE), than the parental KB cells. KB-C1 cells have decreased numbers of EGF-receptors, though the affinity of the receptors is similar to that in the parental KB cells. A drug-sensitive revertant (C1-R2) partially recovered its EGF-receptor activity. Northern blot analysis showed a decreased level of EGF-receptor mRNA in KB-C1 cells, while the multidrug-resistance gene, mdr-1, was expressed at very high levels in KB-C1 cells, but not in KB or C1-R2 cells. The drug-resistant cells were less tumorigenic than the parental cells when injected into nude mice. A decreased expression of EGF-receptor in these cells may be one of the pleiotropic properties of multidrug-resistant cells and may perhaps represent the basis for their reduced tumorigenicity.
Collapse
Affiliation(s)
- H Takano
- Department of Biochemistry, Oita Medical School
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- A M van der Bliek
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
28
|
Amano F, Gottesman MM, Pastan I. Epidermal growth factor-dependent growth of human KB cells in a defined medium and altered growth factor requirements of KB mutants resistant to EGF-Pseudomonas exotoxin conjugates. J Cell Physiol 1988; 135:502-8. [PMID: 3294236 DOI: 10.1002/jcp.1041350319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A serum-free culture system was established for human KB carcinoma (HeLa) cells that consisted of a chemically defined medium and several growth factors including epidermal growth factor (EGF), insulin, transferrin, hydrocortisone, and ethanolamine. EGF and insulin showed the greatest effects on the growth rate of KB cells. Insulin-like growth factor I (IGF-I) at the same concentration as insulin stimulated cell growth less than insulin. Transferrin, hydrocortisone, or ethanolamine had no growth-stimulatory effects alone but were stimulatory when combined with EGF and/or insulin. Transforming growth factor-beta inhibited growth and triiodothyronine stimulated growth. The growth factor requirements were established for several KB mutants with low EGF receptor levels that had been selected for resistance to a conjugate of EGF with Pseudomonas exotoxin (EGF-PE). Three of five KB mutants did not respond to EGF; two other mutants responded to a lesser extent than the parental KB cells. Four mutants had a reduced response to insulin and responded to T3; one mutant (ET-30) responded to neither. These results indicate that KB cells selected for EGF-PE resistance have lost their growth response to EGF and illustrate the usefulness of serum-free medium for studying the growth factor requirements of mutants with altered receptor levels.
Collapse
Affiliation(s)
- F Amano
- Division of Cancer Biology and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
29
|
Hwang J, Richert N, Pastan I, Gottesman MM. Mutant KB cells with decreased EGF receptor expression: biochemical characterization. J Cell Physiol 1987; 133:127-34. [PMID: 2444605 DOI: 10.1002/jcp.1041330116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutants of the human KB carcinoma cell line resistant to a cytotoxic conjugate of epidermal growth factor and Pseudomonas exotoxin (EGF-PE) express a pleiotropic phenotype, which includes reduced levels of 125I-EGF binding, without altered affinity for EGF (Lyall et al., 1987). Here, the EGF-toxin (ET) resistant mutants were further characterized with respect to the amount and size of the EGF receptor and the level of EGF receptor RNA. These data indicate that decreased binding of 125I-EGF in the mutants is due to reduced amounts of EGF receptor, which is associated with decreased mRNA levels. Changes in other proteins in the ET mutants were also examined. Five of the six ET mutants had a decrease in a 78,000 Mr- membrane glycoprotein. In addition, an increase in a protein with a Mr- of 40,000 and a pl = 8.0 was found in all the mutants, and an increase in a series of proteins with a Mr- of 36,000 and a pl of 6.3-6.5 was found in some of the mutants. These results confirm the pleiotropic nature of the EGF-PE resistant mutants and show that reduced EGF binding is due to altered expression of the EGF receptor gene in the mutants.
Collapse
Affiliation(s)
- J Hwang
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Differential amplification and disproportionate expression of five genes in three multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol 1987. [PMID: 2879224 DOI: 10.1128/mcb.6.12.4717] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least five linked genes are amplified in the multidrug-resistant Chinese hamster ovary cell line CHRC5, selected with colchicine (A. M. Van der Bliek, T. Van der Velde-Koerts, V. Ling, and P. Borst, Mol. Cell. Biol. 6:1671-1678, 1986). We report here that only a subset of these, encoding the 170-kilodalton P-glycoprotein, are consistently amplified in three different multidrug-resistant Chinese hamster lung cell lines, selected with vincristine, daunorubicin, or actinomycin D. Within each cell line, genomic sequences homologous to the P-glycoprotein cDNA probe were amplified to different levels. The pattern of differential amplification was consistent with the presence of at least two and possibly three P-glycoprotein genes. In the actinomycin D-selected cell line, these genes were disproportionately overexpressed relative to the associated levels of amplification. These results underline a central role for P-glycoprotein in multidrug resistance. In the daunorubicin-selected cell line, another, as yet uncharacterized, gene was amplified but disproportionately underexpressed. Its amplification was therefore fortuitous. We present a tentative map of the region in the hamster genome that is amplified in the multidrug-resistant cell lines which were analyzed.
Collapse
|
31
|
Overexpression and amplification of five genes in a multidrug-resistant Chinese hamster ovary cell line. Mol Cell Biol 1987. [PMID: 2431283 DOI: 10.1128/mcb.6.5.1671] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant cells are cross-resistant to a wide range of unrelated drugs, many of which are used in cancer chemotherapy. We constructed a cDNA library from RNA of the multidrug-resistant Chinese hamster ovary cell line CHRC5. By differential screening we isolated cDNAs derived from mRNAs that are overexpressed in this cell line. The cDNAs could be grouped in five classes on the basis of transcript lengths detected in RNA blots. We infer that each class codes for a separate protein. The corresponding genes are amplified 10 or 30 times in CHRC5 DNA, providing an explanation for the constitutive overexpression found in this cell line. Despite differential amplification, the genes may be linked in one large amplicon as indicated by the hybridization analysis of large fragments of CHRC5 DNA separated by pulsed field gradient gel electrophoresis. Therefore, some of these genes might be fortuitously coamplified and not contribute functionally to the resistant phenotype. It is also possible, however, that genes involved in drug resistance are clustered. One of our clones cross-hybridized with the recently described cDNA pCHP1 (J. R. Riordan, K. Deuchars, N. Kartner, N. Alon, J. Trent, and V. Ling, Nature [London] 316:817-819, 1985) encoding part of the 170-kilodalton P-glycoprotein, a protein which is frequently overproduced in multidrug-resistant cells. The nature of the four other genes is still unknown. Sequences of four of the five classes of cDNAs are conserved in mouse and human DNA.
Collapse
|
32
|
de Bruijn MH, Van der Bliek AM, Biedler JL, Borst P. Differential amplification and disproportionate expression of five genes in three multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol 1986; 6:4717-22. [PMID: 2879224 PMCID: PMC367257 DOI: 10.1128/mcb.6.12.4717-4722.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
At least five linked genes are amplified in the multidrug-resistant Chinese hamster ovary cell line CHRC5, selected with colchicine (A. M. Van der Bliek, T. Van der Velde-Koerts, V. Ling, and P. Borst, Mol. Cell. Biol. 6:1671-1678, 1986). We report here that only a subset of these, encoding the 170-kilodalton P-glycoprotein, are consistently amplified in three different multidrug-resistant Chinese hamster lung cell lines, selected with vincristine, daunorubicin, or actinomycin D. Within each cell line, genomic sequences homologous to the P-glycoprotein cDNA probe were amplified to different levels. The pattern of differential amplification was consistent with the presence of at least two and possibly three P-glycoprotein genes. In the actinomycin D-selected cell line, these genes were disproportionately overexpressed relative to the associated levels of amplification. These results underline a central role for P-glycoprotein in multidrug resistance. In the daunorubicin-selected cell line, another, as yet uncharacterized, gene was amplified but disproportionately underexpressed. Its amplification was therefore fortuitous. We present a tentative map of the region in the hamster genome that is amplified in the multidrug-resistant cell lines which were analyzed.
Collapse
|
33
|
Teeter LD, Atsumi S, Sen S, Kuo T. DNA amplification in multidrug, cross-resistant Chinese hamster ovary cells: molecular characterization and cytogenetic localization of the amplified DNA. J Cell Biol 1986; 103:1159-66. [PMID: 3771630 PMCID: PMC2114345 DOI: 10.1083/jcb.103.4.1159] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vincristine-resistant (VCR) Chinese hamster ovary (CHO) cells have been established by stepwise selection in increasing concentrations of vincristine. These cells exhibit multidrug cross-resistance to a number of drugs that have no structural or functional similarities. Cytogenetic analyses of resistant cells revealed the presence of double minutes and expanded chromosomal segments, thus implicating gene amplification as a possible mechanism of resistance. An amplified DNA segment isolated from other multidrug cross-resistant CHO cell lines (Roninson, I. B., H. T. Abelson, D. E. Housman, N. Howell, and A. Varshavsky, 1984, Nature (Lond.), 309:626-628) is also amplified in our VCR lines. This DNA segment was used as a probe to screen a cosmid library of VCR genomic DNA, and overlapping clones were retrieved. All of these segments, totaling approximately 45 kilobases (kb), were amplified in VCR cells. Using in situ hybridization, we localized the amplification domain to the long arm of CHO chromosome 1 or Z1. Northern hybridization analysis revealed that a 4.3-kb mRNA was encoded by this amplified DNA domain and was over-produced in the VCR cells. Suggestions for the involvement of these amplified DNA segments in the acquisition of multidrug cross-resistance in animal cells are also presented.
Collapse
|
34
|
Fojo A, Lebo R, Shimizu N, Chin JE, Roninson IB, Merlino GT, Gottesman MM, Pastan I. Localization of multidrug resistance-associated DNA sequences to human chromosome 7. SOMATIC CELL AND MOLECULAR GENETICS 1986; 12:415-20. [PMID: 3016920 DOI: 10.1007/bf01570737] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multidrug resistance in several human cell lines correlates with amplification or increased expression of two related DNA sequences, designated mdr1 and mdr2. These DNA sequences were used as probes for hybridization with DNA with a panel of human-mouse somatic cell hybrids and from individual human chromosomes separated by fluorescence-activated chromosome sorting. By these assays, both mdr1 and mdr2 sequences were localized to chromosome 7.
Collapse
|
35
|
|
36
|
Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 1986; 83:4538-42. [PMID: 3459187 PMCID: PMC323769 DOI: 10.1073/pnas.83.12.4538] [Citation(s) in RCA: 426] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability of tumor cells to develop simultaneous resistance to structurally different cytotoxic drugs constitutes a major problem in cancer chemotherapy. It was previously demonstrated that multidrug-resistant Chinese hamster cell lines contain an amplified, transcriptionally active DNA sequence designated mdr. This report presents evidence that multidrug-resistant sublines of human KB carcinoma cells, selected for resistance to either colchicine, vinblastine, or Adriamycin (doxorubicin), display amplification of two different DNA sequences homologous to the hamster mdr gene. Segments of the human mdr DNA sequences, designated mdr1 and mdr2, have been cloned. mdr1 sequences were amplified in all of the highly drug-resistant sublines and were expressed as a poly(A)+ RNA species of 4.5 kilobases that was detected in the resistant cells but not in the parental cell line. No expression of mdr2 sequences was detected. mdr2 sequences were coamplified with mdr1 in some of the multidrug-resistant sublines and, in two independently derived cell lines, underwent very similar rearrangements. The data suggest that the mdr1 gene is involved in multidrug resistance in human cells.
Collapse
|
37
|
Shen DW, Cardarelli C, Hwang J, Cornwell M, Richert N, Ishii S, Pastan I, Gottesman MM. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57466-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 1986; 232:643-5. [PMID: 3457471 DOI: 10.1126/science.3457471] [Citation(s) in RCA: 461] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of simultaneous resistance to multiple structurally unrelated drugs is a major impediment to cancer chemotherapy. Multidrug resistance in human KB carcinoma cells selected in colchicine, vinblastine, or Adriamycin is associated with amplification of specific DNA sequences (the multidrug resistance locus, mdr1). During colchicine selection resistance is initially accompanied by elevated expression of a 4.5-kilobase mdr1 messenger RNA (mRNA) without amplification of the corresponding genomic sequences. During selection for increased levels of resistance, expression of this mRNA is increased simultaneously with amplification of mdr1 DNA. Increased expression and amplification of mdr1 sequences were also found in multidrug-resistant sublines of human leukemia and ovarian carcinoma cells. These results suggest that increased expression of mdr1 mRNA is a common mechanism for multidrug resistance in human cells. Activation of the mdr1 gene by mutations or epigenetic changes may precede its amplification during the development of resistance.
Collapse
|
39
|
Van der Bliek AM, Van der Velde-Koerts T, Ling V, Borst P. Overexpression and amplification of five genes in a multidrug-resistant Chinese hamster ovary cell line. Mol Cell Biol 1986; 6:1671-8. [PMID: 2431283 PMCID: PMC367694 DOI: 10.1128/mcb.6.5.1671-1678.1986] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multidrug-resistant cells are cross-resistant to a wide range of unrelated drugs, many of which are used in cancer chemotherapy. We constructed a cDNA library from RNA of the multidrug-resistant Chinese hamster ovary cell line CHRC5. By differential screening we isolated cDNAs derived from mRNAs that are overexpressed in this cell line. The cDNAs could be grouped in five classes on the basis of transcript lengths detected in RNA blots. We infer that each class codes for a separate protein. The corresponding genes are amplified 10 or 30 times in CHRC5 DNA, providing an explanation for the constitutive overexpression found in this cell line. Despite differential amplification, the genes may be linked in one large amplicon as indicated by the hybridization analysis of large fragments of CHRC5 DNA separated by pulsed field gradient gel electrophoresis. Therefore, some of these genes might be fortuitously coamplified and not contribute functionally to the resistant phenotype. It is also possible, however, that genes involved in drug resistance are clustered. One of our clones cross-hybridized with the recently described cDNA pCHP1 (J. R. Riordan, K. Deuchars, N. Kartner, N. Alon, J. Trent, and V. Ling, Nature [London] 316:817-819, 1985) encoding part of the 170-kilodalton P-glycoprotein, a protein which is frequently overproduced in multidrug-resistant cells. The nature of the four other genes is still unknown. Sequences of four of the five classes of cDNAs are conserved in mouse and human DNA.
Collapse
|
40
|
Gros P, Croop J, Roninson I, Varshavsky A, Housman DE. Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells. Proc Natl Acad Sci U S A 1986; 83:337-41. [PMID: 3455770 PMCID: PMC322853 DOI: 10.1073/pnas.83.2.337] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mechanism by which mammalian cells acquire resistance to chemotherapeutic agents has been investigated by using molecular genetic techniques. LZ and C5, two independently derived multidrug-resistant Chinese hamster cell lines, share specific amplified DNA sequences. We demonstrate that commonly amplified DNA sequences reside in a contiguous domain of approximately equal to 120 kilobases (kb). We report the isolation of this DNA domain in cosmid clones and show that the level of amplification of the domain is correlated with the level of resistance in multidrug-resistant cell lines. The organization of the amplified domain was deduced by a unique approach utilizing in-gel hybridization of cloned DNA with amplified genomic DNA. We show that the entire cloned region is amplified in adriamycin-resistant LZ cells and independently derived, colchicine-resistant C5 cells. A mRNA species of approximately equal to 5 kb is encoded by a gene located within the boundaries of this region. Genomic sequences homologous to the 5-kb mRNA span over 75 kb of the amplified DNA segment. The level of expression of this mRNA in multidrug-resistant cells is correlated with the degree of gene amplification and the degree of drug resistance. Our results strongly suggest that the 5-kb mRNA species plays a role in the mechanism of multidrug resistance common to the LZ and C5 cell lines.
Collapse
|
41
|
Clark AJ, Ishii S, Richert N, Merlino GT, Pastan I. Epidermal growth factor regulates the expression of its own receptor. Proc Natl Acad Sci U S A 1985; 82:8374-8. [PMID: 3001700 PMCID: PMC390918 DOI: 10.1073/pnas.82.24.8374] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The epidermal growth factor (EGF) receptor gene is the cellular homolog of the avian erythroblastosis virus erbB oncogene. Control of EGF receptor expression determines cellular responsiveness to EGF and might play an important role in neoplastic development. Using RNA blot hybridization, we have found that exposure of human KB carcinoma cells to EGF results in elevated levels of EGF receptor mRNA. The phorbol ester 4 beta-phorbol 12-myristate 13-acetate also stimulates EGF receptor RNA accumulation. Immunoprecipitation of metabolically labeled (30 min) EGF receptor protein revealed that synthesis of new EGF receptor follows the increase in receptor RNA. Addition of cycloheximide together with EGF further enhances EGF receptor RNA accumulation. Results of nuclear runoff-transcription experiments suggest that the stimulatory effects of EGF and cycloheximide are most likely due to a posttranscriptional control mechanism.
Collapse
|