1
|
Song G, Wu QP, Xu T, Liu YL, Xu ZG, Zhang SF, Guo ZY. Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones: Using erythropoietin as a model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:311-6. [PMID: 26506452 DOI: 10.1016/j.jphotobiol.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the so far brightest bioluminescence. In recent studies, we developed NanoLuc as an ultrasensitive probe for novel bioluminescent receptor-binding assays of some protein/peptide hormones. In the present study, we proposed a simple method for quick preparation of the NanoLuc-based protein tracers using erythropoietin (Epo) as a model. Epo is a glycosylated cytokine that promotes erythropoiesis by binding and activating the cell membrane receptor EpoR. For quick preparation of a bioluminescent Epo tracer, an Epo-Luc fusion protein carrying a NanoLuc-6 × His-tag at the C-terminus was secretorily overexpressed in transiently transfected human embryonic kidney (HEK) 293 T cells. The Epo-Luc fusion protein retained high-binding affinities with EpoR either overexpressed in HEK293T cells or endogenously expressed in mouse erythroleukemia cells, representing a novel ultrasensitive bioluminescent tracer for non-radioactive receptor-binding assays. Sufficient Epo-Luc tracer for thousands of assays could be quickly obtained within 2 days through simple transient transfection. Thus, our present work provided a simple method for quick preparation of novel NanoLuc-based bioluminescent tracers for Epo and some other protein hormones to facilitate their ligand-receptor interaction studies.
Collapse
Affiliation(s)
- Ge Song
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ping Wu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ting Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shi-Fu Zhang
- Proteomic and Molecular Enzymology Lab, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Tumor necrosis factor α primes cerebral endothelial cells for erythropoietin-induced angiogenesis. J Cereb Blood Flow Metab 2011; 31:640-7. [PMID: 20700128 PMCID: PMC3049518 DOI: 10.1038/jcbfm.2010.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythropoietin (EPO) enhances angiogenesis in the ischemic brain. Stroke induces secretion of tumor necrosis factor α (TNF-α). We investigated the effect of TNF-α on EPO-induced in vitro angiogenesis in cerebral endothelial cells. Using a capillary-like tubular formation assay, we found that transient incubation of primary rat cerebral microvascular endothelial cells (RECs) with TNF-α substantially upregulated EPO receptor (EPOR) expression and addition of EPO into TNF-α-treated RECs significantly augmented the capillary-like tube formation. Blockage of TNF receptor 1 (TNFR1) suppressed TNF-α-upregulated EPOR expression and abolished EPO-induced tube formation. Attenuation of endogenous EPOR with small interfering RNA (siRNA) also inhibited EPO-enhanced tube formation. Treatment of RECs with EPO activated nuclear factor-kappa B (NF-κB) and Akt. Incubation of the TNF-α-treated endothelial cells with EPO activated vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), angiopoietin 1 (Ang1), and Tie2. Blockage of VEGFR2 and Tie2 resulted in reduction of EPO-augmented tube formation. These data indicate that interaction of TNF-α with TNFR1 sensitizes cerebral endothelial cells for EPO-induced angiogenesis by upregulation of EPOR, which amplifies the effect of EPO on activation of the VEGF/VEGFR2 and Ang1/Tie2 pathways. Our results provide the evidence for crosslink between TNF and EPOR to coordinate the onset of angiogenesis in cerebral endothelial cells.
Collapse
|
3
|
Foster DJ, Moe OW, Hsia CCW. Upregulation of erythropoietin receptor during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1107-15. [PMID: 15286000 DOI: 10.1152/ajplung.00119.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circulating erythropoietin (EPO) stimulates erythrocytosis, whereas organ-specific local EPO receptor (EPOR) expression has been linked to angiogenesis, tissue growth, and development. On the basis of the observation of concurrent enhancement of lung growth and erythrocyte production during exposure to chronic hypoxia, we hypothesized that a paracrine EPO system is involved in mediating lung growth. We analyzed EPOR protein expression in normal dog lung tissue during postnatal maturation and during compensatory lung growth after right pneumonectomy (PNX). Membrane-bound EPOR was significantly more abundant in the immature lung compared with mature lung and in the remaining lung 3 wk after PNX compared with matched sham controls. COOH-terminal cytosolic EPOR peptides, which were even more abundant than membrane-bound EPOR, were also upregulated in immature lung but differentially processed after PNX. Apoptosis was enhanced during both types of lung growth in direct relationship to cellular proliferation and EPOR expression. We conclude that both developmental and compensatory lung growth involve paracrine EPO signaling with parallel upregulation but differential processing of EPOR.
Collapse
Affiliation(s)
- David J Foster
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9034, USA
| | | | | |
Collapse
|
4
|
Théoleyre O, Deguillien M, Morinière M, Starck J, Moreau-Gachelin F, Morlé F, Baklouti F. Spi-1/PU.1 but not Fli-1 inhibits erythroid-specific alternative splicing of 4.1R pre-mRNA in murine erythroleukemia cells. Oncogene 2004; 23:920-7. [PMID: 14647452 DOI: 10.1038/sj.onc.1207206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inclusion of exon 16 in mature protein 4.1R mRNA arises from a stage-specific splicing event that occurs during late erythroid development. We have shown that mouse erythroleukemia (MEL) cells reproduce this erythroid-specific splicing event upon induction of differentiation. We here found that this splicing event is regulated specifically in erythroleukemic cells that have the potential to differentiate and produce hemoglobin, regardless of the nature of the differentiation inducer. Knowing that dysregulated expression of spi-1/pu.1 and fli-1 oncogenes is involved in MEL cell differentiation arrest, we looked at their effect on exon 16 erythroid splicing. We found that exon 16 inclusion requires Spi-1/PU.1 shutdown in MEL cells, and that enforced expression of Spi-1/PU.1 inhibits exon selection, regardless of the presence or absence of a chemical inducer. By contrast, endogenous overexpression or enforced expression of Fli-1 has no effect on exon selection. We further showed that Spi-1/PU.1 acts similarly on the endogenous and on a transfected exon 16, suggesting a promoter-independent effect of Spi-1/PU.1 on splicing regulation. This study provides the first evidence that Spi-1/PU.1 displays the unique property, not shared with Fli-1, to inhibit erythroid-specific pre-mRNA splicing in erythroleukemia cell context.
Collapse
Affiliation(s)
- Orianne Théoleyre
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Schaefer A, Kósa F, Bittorf T, Magócsi M, Rosche A, Ramirez-Chávez Y, Marotzki S, Marquardt H. Opposite effects of inhibitors of mitogen-activated protein kinase pathways on the egr-1 and β-globin expression in erythropoietin-responsive murine erythroleukemia cells. Cell Signal 2004; 16:223-34. [PMID: 14636892 DOI: 10.1016/j.cellsig.2003.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of erythropoietin (Epo) on the expression of mitogen-activated protein kinase (MAPK) target genes egr-1 and c-fos was investigated in Epo-responsive murine erythroblastic cell line ELM-I-1. Epo induced a transient rise in egr-1 mRNA without a similar effect on c-fos expression. The induction of egr-1 correlated with a rapid ERK1/2 phosphorylation and was prevented with MEK1/2 inhibitors PD 98059 and UO126. The p38 inhibitor SB 203580 enhanced ERK1/2 phosphorylation and egr-1 mRNA levels. Longer incubations of ELM-I-1 cells with Epo revealed a second later phase of increase in egr-1 expression which was also prevented by MEK1/2 inhibitors, whereas SB 203580 had a stimulatory effect. In contrast, the beta-globin mRNA production was enhanced in the presence of PD 98059 and UO126 and reduced by SB 203580. The results suggest a regulatory role of egr-1 expression in Epo signal transduction and provide pharmacological evidence for the negative modulation of differentiation-specific gene expression by the ERK1/2 pathway in murine erythroleukemia cells.
Collapse
Affiliation(s)
- András Schaefer
- Institute of Toxicology, Hamburg University Medical School and Department of Environmental Medicine and Toxicology, Umweltmedizin Hamburg e.V., Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nagata Y, Oda M, Nakata H, Shozaki Y, Kozasa T, Todokoro K. A novel regulator of G-protein signaling bearing GAP activity for Galphai and Galphaq in megakaryocytes. Blood 2001; 97:3051-60. [PMID: 11342430 DOI: 10.1182/blood.v97.10.3051] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulator of G-protein signaling (RGS) negatively regulates the alpha subunit of G proteins by accelerating their intrinsic guanosine triphosphatase (GTPase) activity. Here are reported the isolation and characterization of a novel mouse RGS, termed RGS18, which is a new member of RGS subfamily B. Northern blot analysis showed that RGS18 messenger RNA was detected predominantly in spleen and hematopoietic cells, and immunohistochemical studies demonstrated that RGS18 was expressed in megakaryocytes, platelets, granulocytes/monocytes, and, weakly, in hematopoietic stem cells, but not in lymphocytes or erythrocytes. Although various subcellular localizations of RGS have been reported, RGS18 was found to be localized in cytoplasm in megakaryocytes. In vitro binding assays of RGS18 with megakaryocyte cell lysates with or without AlF(4)(-) treatment demonstrated that RGS18 specifically binds to 2 alpha subunits of the G protein, Galphai and Galphaq. Furthermore, RGS18 clearly exhibited GTPase-activating protein (GAP) activity for Galphai and Galphaq but not for Galphas or Galpha12. In addition, chemokine stromal-derived factor 1 (SDF-1), which has been reported to stimulate megakaryocyte colony formation in the presence of thrombopoietin, affected the binding of RGS18 to Galphai but not to Galphaq. Therefore, the newly isolated RGS18 turned out to be a new member of the RGS family bearing GAP activity for Galphai, which might be stimulated by SDF-1 in megakaryocytes, as well as for Galphaq. Thus, RGS18 may play an important role in proliferation, differentiation, and/or migration of megakaryocytes.
Collapse
Affiliation(s)
- Y Nagata
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Gregory RC, Lord KA, Panek LB, Gaines P, Dillon SB, Wojchowski DM. Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine 2000; 12:845-57. [PMID: 10880228 DOI: 10.1006/cyto.2000.0686] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies of erythropoietin (Epo) receptor signalling suggest that signals for mitogenesis, survival and differentiation are relayed efficiently by receptor forms lacking at least seven of eight cytoplasmic (phospho)tyrosine [(P)Y] sites for effector recruitment. While such receptor forms are known to activate Jak2 and a limited set of known immediate response genes (IRGs), the complex activities they exert predict the existence of additional target genes. To identify such targets, a minimal Epo receptor chimera was expressed in Epo-responsive erythroid SKT6 cells, and genes whose transcription is induced via this active receptor form were cloned by subtractive hybridization. Several known genes not previously linked to Epo signalling were discovered to be Epo IRGs including two which may further propagate Epo signals [Prl1 tyrosine phosphatase and receptor activator of of NFkappaB (Rank)], and three regulators of protein synthesis (EF1alpha, eIF3-p66 and Nat1). Several Epo IRGs were novel murine clones including FM2 and FM6 which proved to represent broadly expressed IRGs, and FM3 and FL10 which were induced primarily in haematopoietic cells. Interestingly, FL10 proved to correspond to a recently discovered regulator of yeast mating-type switching, and was induced by Epo in vivo. Thus, several new Epo signalling targets are described, which may modulate haematopoietic cell development.
Collapse
Affiliation(s)
- R C Gregory
- Departments of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | |
Collapse
|
8
|
Banerjee D, Rodriguez M, Nag M, Adamson JW. Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int 2000; 57:1895-904. [PMID: 10792608 DOI: 10.1046/j.1523-1755.2000.00039.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Anemic patients with chronic renal failure receiving recombinant human erythropoietin (rHuEPO) therapy frequently develop hypertension through an unknown mechanism. We hypothesize that EPO receptors (EPORs) on endothelial cells (ECs) in various sites of vasculature may mediate the activities of nitric oxide synthase (NOS) and/or the release of endothelin-1 (ET-1), contributing to blood pressure changes. We tested this hypothesis using primary cultures of ECs obtained from human coronary artery (HCAEC), pulmonary artery (HPAEC), dermis (HDEC), and umbilical vein (HUVEC). METHODS EPORs were measured by 125I-EPO binding. The effect of EPO on EPOR, ET-1, and NOS mRNA levels was assessed by quantitative reverse transcription-polymerase chain reaction. Cellular NOS activity and ET-1 release into the medium was measured by the NOSdetect assay and by radioimmunoassay kits. RESULTS Short-term (4 h) treatment with EPO (4 U/mL) did not change the number or affinity of EPOR per cell. Neither were there any changes in the amount of EPOR, ET-1, and NOS transcripts (cDNA/microg of mRNA) nor in ET-1 release and NOS activity. In HUVEC only, 24-hour exposure to EPO caused a threefold increase in NOS transcript. In other cells, EPO treatment for six days increased NOS activity by twofold to fourfold. CONCLUSIONS We show that upon extended exposure, EPO induces NOS activity but does not affect ET-1 release. These findings indicate that the hypertensive effect of EPO is not likely to be caused by a direct effect on ECs.
Collapse
Affiliation(s)
- D Banerjee
- The Lindsley F. Kimball Research Institute of The New York Blood Center, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
9
|
Ingley E, Sarna MK, Beaumont JG, Tilbrook PA, Tsai S, Takemoto Y, Williams JH, Klinken SP. HS1 interacts with Lyn and is critical for erythropoietin-induced differentiation of erythroid cells. J Biol Chem 2000; 275:7887-93. [PMID: 10713104 DOI: 10.1074/jbc.275.11.7887] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid cells terminally differentiate in response to erythropoietin binding its cognate receptor. Previously we have shown that the tyrosine kinase Lyn associates with the erythropoietin receptor and is essential for hemoglobin synthesis in three erythroleukemic cell lines. To understand Lyn signaling events in erythroid cells, the yeast two-hybrid system was used to analyze interactions with other proteins. Here we show that the hemopoietic-specific protein HS1 interacted directly with the SH3 domain of Lyn, via its proline-rich region. A truncated HS1, bearing the Lyn-binding domain, was introduced into J2E erythroleukemic cells to determine the impact upon responsiveness to erythropoietin. Truncated HS1 had a striking effect on the phenotype of the J2E line-the cells were smaller, more basophilic than the parental proerythoblastoid cells and had fewer surface erythropoietin receptors. Moreover, basal and erythropoietin-induced proliferation and differentiation were markedly suppressed. The inability of cells containing the truncated HS1 to differentiate may be a consequence of markedly reduced levels of Lyn and GATA-1. In addition, erythropoietin stimulation of these cells resulted in rapid, endosome-mediated degradation of endogenous HS1. The truncated HS1 also suppressed the development of erythroid colonies from fetal liver cells. These data show that disrupting HS1 has profoundly influenced the ability of erythroid cells to terminally differentiate.
Collapse
Affiliation(s)
- E Ingley
- Laboratory for Cancer Medicine, Department of Biochemistry, the University of Western Australia and Royal Perth Hospital, WA 6001, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsuzaki T, Aisaki KI, Yamamura Y, Noda M, Ikawa Y. Induction of erythroid differentiation by inhibition of Ras/ERK pathway in a friend murine leukemia cell line. Oncogene 2000; 19:1500-8. [PMID: 10734309 DOI: 10.1038/sj.onc.1203461] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of Ras and MAP kinases (MAPKs) in the regulation of erythroid differentiation was studied using a cell line (SKT6) derived from Friend virus (Anemic strain)-induced murine erythroleukemia. This cell line undergoes differentiation in vitro in response to erythropoietin (EPO) or other chemical inducers such as dimethylsulfoxide (DMSO). When a constitutively active ras mutant (ras12V) was expressed in SKT6 cells, EPO-induced differentiation was inhibited. Conversely, a dominant negative ras mutant (ras17N) induced differentiation even in the absence of EPO, suggesting that the basal Ras activity is essential for the maintenance of the undifferentiated phenotype and proliferative potential in this cell line. Rapid inactivation of ERK was observed after expression of ras17N. Slow but significant inactivation of ERK was also observed during EPO-induced differentiation. Furthermore, overexpression of a constitutively active mutant of ERK-activating kinase (MAPKK) was found to suppress erythroid differentiation, while pharmacological inhibition of MAPKK induced differentiation. These findings suggest that down-regulation of Ras/ERK signaling pathway may be an essential event in EPO-induced erythroid differentiation in this system.
Collapse
Affiliation(s)
- T Matsuzaki
- Department of Retroviral Regulation, Tokyo Medical and Dental University, Medical Research Division, 1-5-45 Yushima, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
11
|
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res 1999; 253:143-56. [PMID: 10579919 DOI: 10.1006/excr.1999.4673] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Events relayed via the single transmembrane receptor for erythropoietin (Epo) are essential for the development of committed erythroid progenitor cells beyond the colony-forming unit-erythroid stage, and this clearly involves Epo's inhibition of programmed cell death (PCD). Less well resolved, however, are issues regarding the precise nature of Epo-dependent antiapoptotic mechanisms, the extent to which Epo might also promote mitogenesis and/or terminal erythroid differentiation, and the essential vs modulatory nature of certain Epo receptor cytoplasmic subdomains, signal transducing factors, and downstream pathways. Accordingly, this review focuses on the following aspects of Epo signal transduction: (1) Epo receptor/Jak2 activation mechanisms; (2) the critical vs dispensable nature of (P)Y sites and SH2 domain-encoding effectors in survival, growth, and differentiation responses; (3) primary mechanisms by which Epo inhibits PCD; (4) the integration of signals relayed by coexpressed and possibly directly interacting cytokine receptors; and (5) predictions regarding effector function which are provided by the association of certain primary and familial polycythemias with mutated human Epo receptor forms.
Collapse
Affiliation(s)
- D M Wojchowski
- Program in Cell & Developmental Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Macromolecular centromere-kinetochore complex plays a critical role in sister chromatid separation, but its complete protein composition as well as its precise dynamic function during mitosis has not yet been clearly determined. Here we report the isolation of a novel mouse kinetochore protein, CENP-H. The CENP-H, with an apparent molecular mass of 33 kDa, was found to contain a coiled-coil structure and a nuclear localization signal. The CENP-H transcripts were relatively scarce but were detectable in most tissues and embryos at various stages of development. Immunofluorescence stainings of mouse fibroblast cells with anti-CENP-H-specific antibody demonstrated that the CENP-H is specifically and constitutively localized in kinetochores throughout the cell cycle; this was also confirmed by stainings with anti-centromere-specific antibody. Thus the newly isolated CENP-H may play a role in kinetochore organization and function throughout the cell cycle.
Collapse
Affiliation(s)
- N Sugata
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
13
|
Requirement of Activation of JNK and p38 for Environmental Stress-Induced Erythroid Differentiation and Apoptosis and of Inhibition of ERK for Apoptosis. Blood 1999. [DOI: 10.1182/blood.v94.3.853.415a12_853_863] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-Jun amino terminal kinase/stress-activated protein kinases (JNK/SAPK) and p38 subgroups of mitogen-activated protein kinases have been suggested to play a critical role in apoptosis, cell growth, and/or differentiation. We found that a short exposure of SKT6 cells, which respond to erythropoietin (Epo) and induce erythroid differentiation, to osmotic or heat shock induced transient activation of JNK/SAPK and p38 and inactivation of ERK and resulted in erythroid differentiation without Epo, whereas long exposure of the cells to these stresses induced prolonged activation/inactivation of the same kinases and caused apoptosis. Inhibition of JNK/SAPK and p38 resulted in inhibition of stress-induced erythroid differentiation and apoptosis. Inhibition of ERK had no effect on stress-induced erythroid differentiation, but stimulated apoptosis. Activation of p38 and/or JNK/SAPK for a short time caused erythroid differentiation without Epo, although its prolonged activation induced apoptosis. Activation of ERK suppressed stress-induced apoptosis. These results indicate that short cellular stresses, inducing transient activation of JNK/SAPK and p38, lead to cell differentiation rather than apoptosis. Furthermore, activation of JNK/SAPK and p38 is required for both cell differentiation and apoptosis, and the duration of their activation may determine the cell fate, cell differentiation, and apoptosis. In contrast, inactivation of ERK is required for stress-induced apoptosis but not cell differentiation.
Collapse
|
14
|
Abstract
Hematopoietic progenitor kinase-1 (HPK1), which is expressed predominantly in hematopoietic cells, was identified as a mammalian Ste20 homologue that, upon transfection, leads to activation of JNK/SAPK in nonhematopoietic cells. The JNK/SAPK pathway is activated by various environmental stresses and proinflammatory and hematopoietic cytokines. Upstream activators of HPK1 currently remain elusive, and its precise role in hematopoiesis has yet to be defined. We therefore examined the possible involvement of HPK1 in erythropoietin (Epo) and environmental stress-induced JNK/SAPK activation in the Epo-dependent FD-EPO cells and Epo-responsive SKT6 cells. We found that Epo, but not environmental stresses, induced rapid and transient activation of HPK1, whereas both induced activation of JNK/SAPK. A screen for HPK1 binding proteins identified the hematopoietic cell-specific protein 1 (HS1) as a potential HPK1 interaction partner. We found HPK1 constitutively associated with HS1 and that HS1 was tyrosine-phosphorylated in response to cellular stresses as well as Epo stimulation. Furthermore, antisense oligonucleotides to HPK1 suppressed Epo-dependent cell growth and Epo-induced erythroid differentiation. We therefore conclude that Epo induces activation of both HPK1 and HS1, whereas cellular stresses activate only HS1, and that the HPK1-JNK/SAPK pathway is involved in Epo-induced growth and differentiation signals.
Collapse
|
15
|
Activation of p38 MAP Kinase and JNK But Not ERK Is Required for Erythropoietin-Induced Erythroid Differentiation. Blood 1998. [DOI: 10.1182/blood.v92.6.1859] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstractp38 MAP kinase (p38) and JNK have been described as playing a critical role in the response to a variety of environmental stresses and proinflammatory cytokines. It was recently reported that hematopoietic cytokines activate not only classical MAP kinases (ERK), but also p38 and JNK. However, the physiological function of these kinases in hematopoiesis remains obscure. We found that all MAP kinases examined, ERK1, ERK2, p38, JNK1, and JNK2, were rapidly and transiently activated by erythropoietin (Epo) stimulation in SKT6 cells, which can be induced to differentiate into hemoglobinized cells in response to Epo. Furthermore, p38-specific inhibitor SB203580 but not MEK-specific inhibitor PD98059 significantly suppressed Epo-induced differentiation and antisense oligonucleotides of p38, JNK1, and JNK2, but neither ERK1 nor ERK2 clearly inhibited Epo-induced hemoglobinization. However, in Epo-dependent FD-EPO cells, inhibition of either ERKs, p38, or JNKs suppressed cell growth. Furthermore, forced expression of a gain-of-function MKK6 mutant, which specifically activated p38, induced hemoglobinization of SKT6 cells without Epo. These results indicate that activation of p38 and JNKs but not of ERKs is required for Epo-induced erythroid differentiation of SKT6 cells, whereas all of these kinases are involved in Epo-induced mitogenesis of FD-EPO cells.© 1998 by The American Society of Hematology.
Collapse
|
16
|
Abstract
p38 MAP kinase (p38) and JNK have been described as playing a critical role in the response to a variety of environmental stresses and proinflammatory cytokines. It was recently reported that hematopoietic cytokines activate not only classical MAP kinases (ERK), but also p38 and JNK. However, the physiological function of these kinases in hematopoiesis remains obscure. We found that all MAP kinases examined, ERK1, ERK2, p38, JNK1, and JNK2, were rapidly and transiently activated by erythropoietin (Epo) stimulation in SKT6 cells, which can be induced to differentiate into hemoglobinized cells in response to Epo. Furthermore, p38-specific inhibitor SB203580 but not MEK-specific inhibitor PD98059 significantly suppressed Epo-induced differentiation and antisense oligonucleotides of p38, JNK1, and JNK2, but neither ERK1 nor ERK2 clearly inhibited Epo-induced hemoglobinization. However, in Epo-dependent FD-EPO cells, inhibition of either ERKs, p38, or JNKs suppressed cell growth. Furthermore, forced expression of a gain-of-function MKK6 mutant, which specifically activated p38, induced hemoglobinization of SKT6 cells without Epo. These results indicate that activation of p38 and JNKs but not of ERKs is required for Epo-induced erythroid differentiation of SKT6 cells, whereas all of these kinases are involved in Epo-induced mitogenesis of FD-EPO cells.© 1998 by The American Society of Hematology.
Collapse
|
17
|
Abstract
Erythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
18
|
Abstract
AbstractErythrocyte production in mammals is known to depend on the exposure of committed progenitor cells to the glycoprotein hormone erythropoietin (Epo). In chimeric mice, gene disruption experiments have demonstrated a critical role for Epo signaling in development beyond the erythroid colony-forming unit (CFU-e) stage. However, whether this might include the possible Epo-specific induction of red blood cell differentiation events is largely unresolved. To address this issue, mechanisms of induced globin expression in Epo-responsive SKT6 cells have been investigated. Chimeric receptors containing an epidermal growth factor (EGF) receptor extracellular domain and varied Epo receptor cytoplasmic domains first were expressed stably at physiological levels in SKT6 cells, and their activities in mediating induced hemoglobinization were assayed. While activity was exerted by a full-length chimera (EE483), truncation to remove 7 of 8 carboxyl-terminal tyrosine sites (EE372) markedly enhanced differentiation signaling. Moreover, mutation of a STAT5 binding site in this construct (EE372-Y343F) inhibited induced globin expression and SKT6 cell hemoglobinization, as did the ectopic expression of dominant-negative forms of STAT5 in parental SKT6 cells. As in normal CFU-e, SKT6 cells also were shown to express functional receptors for stem cell factor (SCF). To further define possible specific requirements for differentiation signaling, effects of SCF on SKT6 cell hemoglobinization were tested. Interestingly, SCF not only failed to promote globin expression but inhibited this Epo-induced event in a dose-dependent, STAT5-independent fashion. Thus, effects of Epo on globin expression may depend specifically on STAT5-dependent events, and SCF normally may function to attenuate terminal differentiation while promoting CFU-e expansion.© 1998 by The American Society of Hematology.
Collapse
|
19
|
Abstract
Cytokines manifest their function through regulation of gene expression. We searched for immediate-early cytokine responsive genes by the mRNA differential display technique using interleukin-3 (IL-3)–dependent OTT-1 cells, and have isolated a novel cDNA which encodes 210 amino acids and shows 87% amino acid identity to human SNAP-23 (synaptosomal-associated protein of 23 kD). The message for this protein (mouse SNAP-23) was induced in OTT-1 cells by IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5. The experiment using C-terminal deletion mutants of the common β subunit (βc) of IL-3/GM-CSF/IL-5 receptors showed that expression of SNAP-23 was associated with the Ras-Raf-MAPK pathway, but not with the JAK-STAT pathway. Moreover, SNAP-23 was induced in response to a wide variety of cytokines, including IL-2, IL-3, IL-5, IL-10, stem cell factor, G-CSF, GM-CSF, leukemia inhibitory factor, and erythropoietin. Constitutive expression of SNAP-23 was seen in various tissues, including heart, lung, kidney, liver, spleen, and small intestine. Possible involvement of SNAP-23 in cytokine signal transduction is discussed.
Collapse
|
20
|
Kotani S, Tugendreich S, Fujii M, Jorgensen PM, Watanabe N, Hoog C, Hieter P, Todokoro K. PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell 1998; 1:371-80. [PMID: 9660921 DOI: 10.1016/s1097-2765(00)80037-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ubiquitin-mediated proteolysis is the key to cell cycle control. Anaphase-promoting complex/cyclosome (APC) is a ubiquitin ligase that targets cyclin B and factors regulating sister chromatid separation for proteolysis by the proteasome and, consequently, regulates metaphase-anaphase transition and exit from mitosis. Here we report that Cdc2-cyclin B-activated Polo-like kinase (Plk) specifically phosphorylates at least three components of APC and activates APC to ubiquitinate cyclin B in the in vitro-reconstituted system. Conversely, protein kinase A (PKA) phosphorylates two subunits of APC but suppresses APC activity. PKA is superior to Plk in its regulation of APC, and Plk activity peaks whereas PKA activity is falling at metaphase. These results indicate that Plk and PKA regulate mitosis progression by controlling APC activity.
Collapse
Affiliation(s)
- S Kotani
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hematopoietic Cell Phosphatase Negatively Regulates Erythropoietin-Induced Hemoglobinization in Erythroleukemic SKT6 Cells. Blood 1997. [DOI: 10.1182/blood.v90.6.2175.2175_2175_2187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an increasing number of hematopoietic cytokine receptor systems (T-cell receptor, B-cell receptor, and macrophage colony-stimulating factor, stem cell factor, interleukin-3, and erythropoietin [EPO] receptors), inhibitory roles for the protein tyrosine phosphatase hematopoietic cell phosphatase (HCP; SHPTP1, PTP1C, and SHP1) have been defined in proliferative signaling. However, evidence exists to suggest that HCP also may exert important effects on blood cell differentiation. To investigate possible roles for HCP during late erythroid differentiation, effects of manipulating HCP expression or recruitment on EPO-induced hemoglobinization in erythroleukemic SKT6 cells have been investigated. No effects of EPO on levels of HCP, Syp, Stat5, the EPO receptor, or GATA-1 expression were observed during induced differentiation. However, the tyrosine phosphorylation of JAK2, the EPO receptor, and Stat5 was efficiently activated, and HCP was observed to associate constitutively with the EPO receptor in this differentiation-specific system. In studies of HCP function, inhibition of HCP expression by antisense oligonucleotides enhanced hemoglobinization, whereas the enforced ectopic expression of wild-type (wt) HCP markedly inhibited EPO-induced globin expression and Stat5 activation. Based on these findings, epidermal growth factor (EGF) receptor/EPO receptor chimeras containing either the wt EPO receptor cytoplasmic domain (EECA) or a derived HCP binding site mutant (EECA-Y429,431F ) were expressed in SKT6 cells, and their abilities to mediate differentiation were assayed. Each chimera supported EGF-induced hemoglobinization, but efficiencies for EECA-Y429,431F were enhanced 400% to 500%. Thus, these studies show a novel role for HCP as a negative regulator of EPO-induced erythroid differentiation. In normal erythroid progenitor cells, HCP may act to prevent premature commitment to terminal differentiation. In erythroleukemic SKT6 cells, this action also may enforce mitogenesis.
Collapse
|
22
|
Clonal Variability in β-Globin mRNA Content in an Interleukin-3–Dependent Bone Marrow Cell Line Transfected With the Erythropoietin Receptor Before and After Stimulation With Erythropoietin. Blood 1997. [DOI: 10.1182/blood.v90.6.2273.2273_2273_2281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Unexpected clonal variability was observed in the content of β-globin mRNA in erythropoietin receptor (EpoR)-transfected Ba/F3 cells before and after exposure to erythropoietin (Epo). Of 11 clones selected by virtue of G418 resistance and positive EpoR expression, 5 clones showed high levels of βmajor-globin mRNA before Epo exposure, with subsequent Epo treatment causing little or no increase in globin mRNA. Five clones had undetectable levels of globin mRNA before Epo stimulation, and they did not accumulate globin mRNA when exposed to Epo, exhibiting resistance to the differentiation inducing action of Epo. Only one clone exhibited the expected phenotype, a low level of globin mRNA before exposure to Epo, and a significant Epo-dependent accumulation of globin mRNA. Phosphorylation of tyrosyl residues of the EpoR, Stat5, and JAK2 occurred upon Epo stimulation in clones representing each category. Furthermore, electrophoretic mobility shift assays using a Stat5 consensus sequence showed a difference in the nuclear binding component among these clones. These findings indicate that (1) the attainment of EpoR+ Ba/F3 clones with the anticipated sensitivity to both the growth and differentiation inducing actions of Epo is a rare event and (2) STAT5 transcription factors were differently activated by Epo in clones that differed in sensitivity to Epo.
Collapse
|
23
|
Hematopoietic Cell Phosphatase Negatively Regulates Erythropoietin-Induced Hemoglobinization in Erythroleukemic SKT6 Cells. Blood 1997. [DOI: 10.1182/blood.v90.6.2175] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn an increasing number of hematopoietic cytokine receptor systems (T-cell receptor, B-cell receptor, and macrophage colony-stimulating factor, stem cell factor, interleukin-3, and erythropoietin [EPO] receptors), inhibitory roles for the protein tyrosine phosphatase hematopoietic cell phosphatase (HCP; SHPTP1, PTP1C, and SHP1) have been defined in proliferative signaling. However, evidence exists to suggest that HCP also may exert important effects on blood cell differentiation. To investigate possible roles for HCP during late erythroid differentiation, effects of manipulating HCP expression or recruitment on EPO-induced hemoglobinization in erythroleukemic SKT6 cells have been investigated. No effects of EPO on levels of HCP, Syp, Stat5, the EPO receptor, or GATA-1 expression were observed during induced differentiation. However, the tyrosine phosphorylation of JAK2, the EPO receptor, and Stat5 was efficiently activated, and HCP was observed to associate constitutively with the EPO receptor in this differentiation-specific system. In studies of HCP function, inhibition of HCP expression by antisense oligonucleotides enhanced hemoglobinization, whereas the enforced ectopic expression of wild-type (wt) HCP markedly inhibited EPO-induced globin expression and Stat5 activation. Based on these findings, epidermal growth factor (EGF) receptor/EPO receptor chimeras containing either the wt EPO receptor cytoplasmic domain (EECA) or a derived HCP binding site mutant (EECA-Y429,431F ) were expressed in SKT6 cells, and their abilities to mediate differentiation were assayed. Each chimera supported EGF-induced hemoglobinization, but efficiencies for EECA-Y429,431F were enhanced 400% to 500%. Thus, these studies show a novel role for HCP as a negative regulator of EPO-induced erythroid differentiation. In normal erythroid progenitor cells, HCP may act to prevent premature commitment to terminal differentiation. In erythroleukemic SKT6 cells, this action also may enforce mitogenesis.
Collapse
|
24
|
Clonal Variability in β-Globin mRNA Content in an Interleukin-3–Dependent Bone Marrow Cell Line Transfected With the Erythropoietin Receptor Before and After Stimulation With Erythropoietin. Blood 1997. [DOI: 10.1182/blood.v90.6.2273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractUnexpected clonal variability was observed in the content of β-globin mRNA in erythropoietin receptor (EpoR)-transfected Ba/F3 cells before and after exposure to erythropoietin (Epo). Of 11 clones selected by virtue of G418 resistance and positive EpoR expression, 5 clones showed high levels of βmajor-globin mRNA before Epo exposure, with subsequent Epo treatment causing little or no increase in globin mRNA. Five clones had undetectable levels of globin mRNA before Epo stimulation, and they did not accumulate globin mRNA when exposed to Epo, exhibiting resistance to the differentiation inducing action of Epo. Only one clone exhibited the expected phenotype, a low level of globin mRNA before exposure to Epo, and a significant Epo-dependent accumulation of globin mRNA. Phosphorylation of tyrosyl residues of the EpoR, Stat5, and JAK2 occurred upon Epo stimulation in clones representing each category. Furthermore, electrophoretic mobility shift assays using a Stat5 consensus sequence showed a difference in the nuclear binding component among these clones. These findings indicate that (1) the attainment of EpoR+ Ba/F3 clones with the anticipated sensitivity to both the growth and differentiation inducing actions of Epo is a rare event and (2) STAT5 transcription factors were differently activated by Epo in clones that differed in sensitivity to Epo.
Collapse
|
25
|
Wakao H, Chida D, Damen JE, Krystal G, Miyajima A. A possible involvement of Stat5 in erythropoietin-induced hemoglobin synthesis. Biochem Biophys Res Commun 1997; 234:198-205. [PMID: 9168989 DOI: 10.1006/bbrc.1997.6486] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Erythropoietin (EPO) and its cell surface receptor (EPOR) play central roles in the proliferation and differentiation of mammalian erythroid progenitor cells. Recently both the tyrosine residues in the EPOR responsible for the activation of Stat5 and the role of Stat5 for EPO-dependent cell proliferation have been shown. Here, we describe the roles of Stat5 and of these tyrosine residues in the EPOR in the erythroid differentiation of murine hematopoietic cell line SKT6 which produces hemoglobin in response to EPO. Chimeric receptors carrying the extracellular domain of the EGF receptor and the intracellular domain of the EPOR were introduced into SKT6 cells. Like EPO, EGF equally activated Stat5 and induced hemoglobin. Activation of Stat5 and hemoglobin expression by EGF were markedly impaired in cells expressing the tyrosine mutated chimeric receptors. In addition, ectopic expression of the prolactin receptor, another cytokine receptor that activates Stat5, led to hemoglobin synthesis. Finally, hemoglobin synthesis was severely inhibited by overexpressing a dominant negative form of Stat5. These results collectively suggest that Stat5 plays a role in EPO-mediated hemoglobin synthesis in SKT6 cells.
Collapse
Affiliation(s)
- H Wakao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
26
|
Reese TT, Gregory RC, Sharlow ER, Pacifici RE, Crouse JA, Todokoro K, Wojchowski DM. Epo-induced hemoglobinization of SKT6 cells is mediated by minimal cytoplasmic domains of the Epo or prolactin receptors without modulation of GATA-1 or EKLF. Growth Factors 1997; 14:161-76. [PMID: 9255607 DOI: 10.3109/08977199709021518] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interaction of erythropoietin with its type 1 receptor is essential to the development of late erythroid progenitor cells. Through the ectopic expression of receptor mutants in lymphoid and myeloid cell lines, insight has been gained regarding effectors that regulate Epo-induced proliferation. In contrast, effectors that regulate Epo-induced differentiation events (e.g. globin gene expression) are largely undefined. For in vitro studies of this pathway, erythroleukemic SKT6 cell sublines have been isolated which stably and efficiently hemoglobinize in response to Epo. Epo rapidly activated Jak2, STAT5 and detectably STATs 1 and 3, while no effects on GATA-1, EKLF or STAT5 expression were observed. Finally, efficient hemoglobinization of SKT6 cells was shown to be mediated by chimeric receptors comprised of the EGF receptor extracellular domain and truncated cytoplasmic subdomains of either the Epo receptor or the prolactin Nb2 receptor. This work further establishes SKT6 cells as an important model for studies of Epo-stimulated differentiation, and shows that this signaling pathway is promoted by a limited set of membrane-proximal receptor domains and effectors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- ErbB Receptors/chemistry
- ErbB Receptors/genetics
- Erythroid Precursor Cells/cytology
- Erythroid Precursor Cells/metabolism
- Erythroid-Specific DNA-Binding Factors
- Erythropoietin/pharmacology
- GATA1 Transcription Factor
- Gene Expression Regulation, Developmental
- Hemoglobins/biosynthesis
- Hemoglobins/genetics
- Janus Kinase 2
- Kruppel-Like Transcription Factors
- Leukemia, Erythroblastic, Acute
- Mice
- Mice, Inbred Strains
- Milk Proteins
- Molecular Sequence Data
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Receptors, Erythropoietin/chemistry
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Recombinant Fusion Proteins/pharmacology
- STAT1 Transcription Factor
- STAT3 Transcription Factor
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T T Reese
- Graduate Program in Pathobiology, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Miller BA, Bell L, Hansen CA, Robishaw JD, Linder ME, Cheung JY. G-protein alpha subunit Gi(alpha)2 mediates erythropoietin signal transduction in human erythroid precursors. J Clin Invest 1996; 98:1728-36. [PMID: 8878422 PMCID: PMC507610 DOI: 10.1172/jci118971] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Erythropoietin induces a dose-dependent increase in cytosolic calcium in human erythroblasts that is mediated by a voltage-independent Ca2+ channel. Inhibition of this response to erythropoietin by pertussis toxin suggests involvement of guanine nucleotide-binding regulatory proteins (G-proteins). The role of G-proteins in regulation of the erythropoietin-modulated Ca2+ channel was delineated here by microinjection of G-protein modulators or subunits into human erythroid precursors. This is the first report on the use of microinjection to study erythropoietin signal transduction in normal precursor cells. Fura-2 loaded day-10 burst-forming units-erythroid-derived erythroblasts were used for microinjection and free intracellular calcium concentration ([Ca(i)]) was measured with digital video imaging. BCECF (1,2',7'-bis(2-carboxyethyl)-5-(and -6-)-carboxyfluorescein) was included in microinjectate, and an increase in BCECF fluorescence was evidence of successful microinjection. Cells were microinjected with nonhydrolyzable analogues of GTP, GTPgammaS or GDPbetaS, which maintain the alpha subunit in an activated or inactivated state, respectively. [Ca(i)] increased significantly in a dose-dependent manner after microinjection of GTPgammaS. However, injection of GDPbetaS blocked the erythropoietin-induced calcium increase, providing direct evidence that activation of a G-protein is required. To delineate which G-protein subunits are involved, alpha or betagamma transducin subunits were purified and microinjected as a sink for betagamma or alpha subunits in the erythroblast, respectively. Transducin betagamma, but not alpha, subunits eliminated the calcium response to erythropoietin, demonstrating the primary role of the alpha subunit. Microinjected antibodies to Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3, blocked the erythropoietin-stimulated [Ca(i)] rise, identifying Gi(alpha)2 as the subunit involved. This was confirmed by the ability of microinjected recombinant myristoylated Gi(alpha)2, but not Gi(alpha)1 or Gi(alpha)3 subunits, to reconstitute the response of pertussis toxin-treated erythroblasts to erythropoietin. These data directly demonstrate a physiologic function of G-proteins in hematopoietic cells and show that Gi(alpha)2 is required in erythropoietin modulation of [Ca(i)] via influx through calcium channels.
Collapse
Affiliation(s)
- B A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
A model of the structure of erythropoietin (Epo) is presented based on structural homology to other hemopoietic cytokines. A model of the erythropoietin receptor complex was made based on evidence that this includes a homodimer of the receptor chain with known sequence. Key interactions are noted which explain data from mutation experiments, although at not all residues believed to be important to binding of Epo are at the interface. This is consistent with the hypothesis that the Epo receptor complex includes proteins in addition to the cloned receptor chain that have been cross-linked to Epo (Todokoro et al., Proc. Natl. Acad. Sci. USA 84:4126-4130, 1987; Mayeux et al., J. Biol. Chem. 266:23380-23385, 1991) but not isolated.
Collapse
Affiliation(s)
- J A Caravella
- Physical and Theoretical Chemistry Laboratory, Oxford University, United Kingdom
| | | | | |
Collapse
|
29
|
Taxman DJ, Wojchowski DM. Erythropoietin-induced transcription at the murine beta maj-globin promoter. A central role for GATA-1. J Biol Chem 1995; 270:6619-27. [PMID: 7896801 DOI: 10.1074/jbc.270.12.6619] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using J2E cells and the murine beta maj-globin promoter as a model, we have performed the first direct analyses of erythropoietin (EPO)-activated transcription from defined templates. The -346 to +26 beta maj promoter was shown to comprise a target for maximal activation. This included a positive role for a -346 to -107-base pair (bp) domain in J2E cells, but not in F-MEL cells. Mutagenesis of a -215-bp AGATAA element within this domain showed that this effect did not require GATA-1 binding. In contrast, a critical role for GATA-1 at a -60-bp (G)GATAG element was defined by mutagenesis (GGg-TAG and TGATAG), complementation with a synthetic TGATAA element, and the demonstrated specific binding of GATA-1. Proximal CCAAT (-75) and CACCC (-90) elements also were shown to contribute to transcriptional activation in J2E cells, yet exerted quantitatively distinct effects in the F-MEL system. Based on these results, minimal [TGATAA]4-TATA and TGATAA-CACCC-TATA promoters were constructed and assayed in each system. Remarkably, the [TGATAA]4-TATA promoter, but not the TGATAA-CACCC-TATA promoter, was induced efficiently by EPO in J2E cells, whereas the TGATAA-CACCC-TATA promoter was highly induced by Me2SO in F-MEL cells. These findings suggest that mechanisms of EPO-induced transcription in J2E cells involve GATA-1 and differ from chemically activated mechanisms studied previously in F-MEL cells. Globin induction in J2E cells was not associated with effects of EPO on levels or nuclear translocation of GATA-1. However, hemoglobinization was induced by okadaic acid, 8-Br-cAMP, and forskolin, a finding consistent with induction mechanisms that may involve modulated serine/threonine phosphorylation.
Collapse
Affiliation(s)
- D J Taxman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
30
|
Yamamura Y, Noda M, Ikawa Y. Activated Ki-Ras complements erythropoietin signaling in CTLL-2 cells, inducing tyrosine phosphorylation of a 160-kDa protein. Proc Natl Acad Sci U S A 1994; 91:8866-70. [PMID: 7522324 PMCID: PMC44707 DOI: 10.1073/pnas.91.19.8866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that expression of erythropoietin (EPO) receptor (EPOR) alone failed to confer EPO responsiveness on the interleukin 2-dependent T-cell line CTLL-2, whereas the introduction of the EPOR into interleukin 3-dependent pro-B-cell lines, such as BAF-B03, allowed the cells to proliferate in response to EPO. Here, we report that additional expression of v-Ki-Ras conferred EPO-dependent growth on CTLL-2 cells expressing the EPOR, with additional formation of a high-affinity EPOR. To investigate possible mechanisms of EPOR downstream signaling induced by v-Ki-Ras expression in these CTLL-2-derived cells, we carried out anti-phosphotyrosine immunoblot analysis of the EPOR complex immunoprecipitated with anti-EPOR antibody from lysates of cells with and without cytokine stimulation, revealing two 160-kDa and 130-kDa phosphotyrosyl proteins. An anti-JAK2 antibody did not react with these proteins, suggesting that they may represent cellular components involved in an EPO-EPOR signaling pathway induced by v-Ki-Ras. Similar phosphotyrosyl proteins were present among Friend erythroleukemia cell lines, in which the Friend virus gp55/EPOR complex on the cell surface constitutively sends signals for cell growth.
Collapse
Affiliation(s)
- Y Yamamura
- Department of Biochemistry, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | |
Collapse
|
31
|
Steinlein P, Deiner E, Leutz A, Beug H. Recombinant murine erythropoietin receptor expressed in avian erythroid progenitors mediates terminal erythroid differentiation in vitro. Growth Factors 1994; 10:1-16. [PMID: 8179929 DOI: 10.3109/08977199409019599] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biological activity of the recombinant murine erythropoietin receptor (muEpoR) has so far been ascertained only in nonerythroid, established cell lines ectopically expressing the exogenous receptor. Here we show that the regulation of proliferation and differentiation by the muEpoR can be studied in chicken erythroid cells capable of terminal differentiation. The cloned muEpoR was introduced into primary and immortalized chicken erythroblast clones transformed by conditional oncogenes, using retroviral gene transfer. After turning off oncoprotein function, these cells terminally differentiated in response to human erythropoietin (rhu-Epo), similar to cells treated with chicken anemic serum containing avian Epo. Control vector-containing erythroblasts were totally unresponsive to rhu-Epo, but differentiated normally in presence of avian Epo. The avian erythroblasts expressed biologically active muEpoR at physiological levels and bound rhu-Epo with similar high affinity as mammalian erythroblasts expressing endogenous EpoR. Finally, rhu-Epo synergized with insulin in these cells similar to avian Epo. Our results demonstrate that the exogenous muEpoR is able to mediate normal, terminal differentiation in avian erythroid progenitors.
Collapse
Affiliation(s)
- P Steinlein
- Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Chiba T, Nagata Y, Kishi A, Sakamaki K, Miyajima A, Yamamoto M, Engel JD, Todokoro K. Induction of erythroid-specific gene expression in lymphoid cells. Proc Natl Acad Sci U S A 1993; 90:11593-7. [PMID: 8265595 PMCID: PMC48030 DOI: 10.1073/pnas.90.24.11593] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Erythropoietin (Epo) is a cytokine which specifically regulates differentiation and proliferation of erythroid progenitor cells. We report here that Epo receptor expressed in interleukin 3-dependent lymphoid Ba/F3 cells transmits both differentiation and growth signals. Epo stimulation of these cells leads to activation of transcription and/or translation of the erythroid-specific transcription factors GATA-1 and SCL, followed by the accumulation of both alpha- and beta-globin chains. These results suggest that expression and activation of the Epo receptor regulates erythroid-specific gene expression and might play a role in determining a cell lineage in vivo and that GATA-1 and SCL may exert their effects after Epo binds to its receptor. It was further found that chimeric receptors composed of extracellular domains of Epo receptor and cytoplasmic domains of interleukin 2 or interleukin 3 receptors could also induce erythroid-specific gene expression in Ba/F3 cells. Taking these data together with previous observations, we conclude that interaction of the extracellular domains of the Epo receptor with other membrane components is essential for transmission of both the erythroid differentiation and the growth signals.
Collapse
Affiliation(s)
- T Chiba
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Developing erythroid cells require the glycoprotein hormone, erythropoietin (EPO) as an activator of the rapid proliferation of early proerythroblasts (colony forming units-erythroid [CFU-e]), and subsequently as an activator of late erythroid gene expression. Activation of these growth and differentiation events proceeds from the binding of EPO at its transmembrane receptor (Class I cytokine receptor), to the engagement of a complex set of signaling pathways. Studies of reconstituted activities of the cloned EPO receptor in transfected hematopoietic cell lines have served well in identifying receptor domains and downstream mediators involved in proliferative signaling. Extracellular domains have been defined which contribute to ligand binding, receptor processing and transport, and possible dimerization. Cytosolic regions have been delineated which mediate induced mitogenesis, early gene transcription, activated protein tyrosine phosphorylation, down modulation of EPO- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation, and direct association with PI3- and JAK-2 kinases. These newly defined properties begin to align the EPO receptor mechanistically with growth factor receptors (GFR) which encode, or likewise associate with, regulated protein tyrosine kinases including the Class II cytokine receptors for interferons alpha/beta and gamma. An improved understanding of factors which mediate EPO-induced late erythroid gene activation also is emerging. These factors and pathways may be distinct from those associated with EPO-induced proliferation and may involve induced increases in cellular Ca++, cAMP and arachidonic acid, as well as the modulation of GATA-1, and/or SCL. Attributes of model systems used in studies of the role of EPO in late erythroid differentiation also are considered.
Collapse
Affiliation(s)
- D M Wojchowski
- Center for Gene Regulation, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
34
|
Chiba T, Nagata Y, Machide M, Kishi A, Amanuma H, Sugiyama M, Todokoro K. Tyrosine kinase activation through the extracellular domains of cytokine receptors. Nature 1993; 362:646-8. [PMID: 8464516 DOI: 10.1038/362646a0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interaction of cytokines with their membrane receptors induces the proliferation and differentiation of a specific lineage of haematopoietic progenitors. The molecular mechanism of cytokine receptor-mediated signal transduction is unclear because these receptors do not have tyrosine kinase activity. Interleukin-3 and erythropoietin, however, induce transient tyrosine phosphorylation of a common set of proteins as a growth signal, and interleukin-2 induces phosphorylation of an overlapping but distinct set of proteins. Here we show that chimaeric receptors consisting of the extracellular domains of the erythropoietin receptor and the cytoplasmic domains of the interleukin-2 (or interleukin-3) receptor induce an erythropoietin-dependent tyrosine phosphorylation in interleukin-3-dependent Ba/F3 cells; however, chimaeric receptors composed of the extracellular domains of the interleukin-2 receptor and the cytoplasmic domains of the erythropoietin (or interleukin-3) receptor apparently transmit an interleukin-2-dependent signal. Our results indicate that these cytokines transmit distinct signals for activation of specific tyrosine kinases through the extracellular rather than cytoplasmic domains of the receptors.
Collapse
Affiliation(s)
- T Chiba
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Busfield SJ, Farr TJ, Singh T, Sainsbury AJ, Klinken SP. Clonal analysis of erythropoietin stimulated J2E cells reveals asynchrony during terminal differentiation. Growth Factors 1993; 9:307-15. [PMID: 8148159 DOI: 10.3109/08977199308991591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
J2E erythroid cells proliferate and differentiate in response to erythropoietin (epo), the red blood cell specific hormone. Using methylcellulose colony assays and suspension cultures we have demonstrated that nearly all the cells stimulated by epo synthesized haemoglobin. To achieve maximum production of haemoglobin J2E cells had to be treated with epo for only 6 h; hormone added subsequently did not enhance haemoglobin synthesis. Although virtually all viable J2E cells produced haemoglobin, the cells matured morphologically at different rates. Thus, upon exposure to epo J2E cells become committed to erythroid terminal differentiation but proceed in an asynchronous manner.
Collapse
Affiliation(s)
- S J Busfield
- Department of Biochemistry, University of Western Australia, Nedlands
| | | | | | | | | |
Collapse
|
36
|
Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:649-63. [PMID: 1483451 DOI: 10.1111/j.1432-1033.1992.tb17466.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M J Koury
- Division of Hematology, Vanderbilt University School of Medicine, Nashville, TN 37232-2287
| | | |
Collapse
|
37
|
Abstract
The interaction of 125I-asialoerythropoietin (asialoepo) with receptors has been characterized both by binding assay and affinity cross-linking. Purified spleen cells from mice infected with the anemia strain of Friend virus (FVA cells) have receptors for 125I-asialoepo with two classes of affinity constant: one with Kd = 0.02-0.03 nM and 300-400 per cell, the other with lower affinity (Kd = 0.9-1.2 nM) and 1,000-1,200 per cell. The Kd value for the high affinity site is one-third of that for the binding of native 125I-erythropoietin (125I-epo) to the same FVA cells (Kd = 0.08-0.1 nM). Using 125I-asialoepo or 125I-epo affinity cross-linking methods, we find two components with apparent molecular weights of 88 kDa and 105 kDa in FVA cells, and in the transformed mouse cell lines, 201, IW32, and NN10, in agreement with earlier studies using 125I-epo. These results indicate that 125I-asialoepo binds to the same receptors as 125I-epo, but with greater affinity for the high affinity site. Since 201 cells contain only a single class of lower affinity receptors for erythropoietin (epo), finding the same two components as found for FVA cells by cross-linking experiment indicates that the two components do not represent the two classes of receptor.
Collapse
Affiliation(s)
- Y J Dong
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
38
|
Yoshida T, Ishida Y, Sasaki H, Inoue T, Kaku K, Kaneko T. Expression of high affinity binding sites for erythropoietin on L8057 cells, a mouse megakaryoblastic cell line, associated with cell differentiation. Am J Hematol 1992; 39:32-8. [PMID: 1311145 DOI: 10.1002/ajh.2830390108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, specific binding sites were examined for erythropoietin (EPO) on the mouse leukemic cell line, L8057. This cell line is megakaryoblastic in origin as evidenced by an enlargement of cell size, multinuclearity, intense activity of acetylcholinesterase, more expression of glycoprotein IIb and IIIa antigen, and higher ploidy distribution after the treatment with 12-o-tetradecanoylphorbor-13-acetate (TPA). The original undifferentiated cells possessed a single class of low affinity binding sites for recombinant human (rh) EPO with a Kd of 3.5 nM. Following the treatment with TPA, high affinity binding sites (Kd; 440 pM) were expressed in addition to the low affinity sites. EPO stimulated the incorporation of 3H-leucine into TPA-treated L8057 cells, and the maximal effect of EPO was observed at the same order as the Kd value of high affinity sites. The present data demonstrates that the expression of high affinity binding sites for EPO is associated with the differentiation of L8057 cells which have megakaryocytic characteristics. Furthermore, protein synthesis stimulated by EPO may be mediated through the high affinity sites.
Collapse
MESH Headings
- Acetylcholinesterase/metabolism
- Animals
- Antigens/analysis
- Antigens/immunology
- Cell Differentiation/physiology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA, Neoplasm/genetics
- Erythropoietin/metabolism
- Erythropoietin/physiology
- Iodine Radioisotopes
- Leucine/metabolism
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Megakaryoblastic, Acute
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Megakaryocytes/ultrastructure
- Mice
- Platelet Membrane Glycoproteins/immunology
- Protein Binding
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/metabolism
- Receptors, Erythropoietin
- Recombinant Proteins/metabolism
- Recombinant Proteins/physiology
- Tetradecanoylphorbol Acetate/pharmacology
- Thymidine/metabolism
- Tumor Cells, Cultured/chemistry
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- T Yoshida
- Third Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Mayeux P, Lacombe C, Casadevall N, Chretien S, Dusanter I, Gisselbrecht S. Structure of the murine erythropoietin receptor complex. Characterization of the erythropoietin cross-linked proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54507-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Unregulated expression of the erythropoietin receptor gene caused by insertion of spleen focus-forming virus long terminal repeat in a murine erythroleukemia cell line. Mol Cell Biol 1991. [PMID: 1656233 DOI: 10.1128/mcb.11.11.5527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A murine erythroleukemia (MEL) cell line, F5-5, expressed 10,000 binding sites for erythropoietin (EPO) per cell, 10-fold more than was expressed by other murine erythroleukemia cell lines and normal erythroid progenitors. Northern (RNA) and Southern blot analyses revealed overexpression of mRNA for the EPO receptor (EPOR) and rearrangement of one of the EPOR gene alleles in F5-5 cells, respectively. Molecular cloning of F5-5-derived cDNA encoding EPOR revealed that the 5' noncoding region of the EPOR cDNA corresponds to the 3' long terminal repeat sequence of the polycythemic strain of Friend spleen focus-forming virus (F-SFFVP). The aberrant EPOR transcripts containing the 3' long terminal repeat sequence were mainly expressed in F5-5 cells. The same integration upstream of the EPOR gene was also observed in other subclones and the parent cell line. It is possible that overexpression of EPOR by viral promoter insertion will confer growth advantage to an F-SFFVP-infected erythroid progenitor cell, leading to positive clonal selection through further leukemogenic steps.
Collapse
|
41
|
Hino M, Tojo A, Misawa Y, Morii H, Takaku F, Shibuya M. Unregulated expression of the erythropoietin receptor gene caused by insertion of spleen focus-forming virus long terminal repeat in a murine erythroleukemia cell line. Mol Cell Biol 1991; 11:5527-33. [PMID: 1656233 PMCID: PMC361922 DOI: 10.1128/mcb.11.11.5527-5533.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A murine erythroleukemia (MEL) cell line, F5-5, expressed 10,000 binding sites for erythropoietin (EPO) per cell, 10-fold more than was expressed by other murine erythroleukemia cell lines and normal erythroid progenitors. Northern (RNA) and Southern blot analyses revealed overexpression of mRNA for the EPO receptor (EPOR) and rearrangement of one of the EPOR gene alleles in F5-5 cells, respectively. Molecular cloning of F5-5-derived cDNA encoding EPOR revealed that the 5' noncoding region of the EPOR cDNA corresponds to the 3' long terminal repeat sequence of the polycythemic strain of Friend spleen focus-forming virus (F-SFFVP). The aberrant EPOR transcripts containing the 3' long terminal repeat sequence were mainly expressed in F5-5 cells. The same integration upstream of the EPOR gene was also observed in other subclones and the parent cell line. It is possible that overexpression of EPOR by viral promoter insertion will confer growth advantage to an F-SFFVP-infected erythroid progenitor cell, leading to positive clonal selection through further leukemogenic steps.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Cloning, Molecular
- DNA, Neoplasm/genetics
- Erythropoietin/metabolism
- Gene Expression Regulation, Viral
- Kinetics
- Leukemia, Erythroblastic, Acute
- Mice
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oligonucleotides
- Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Erythropoietin
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Spleen Focus-Forming Viruses/genetics
Collapse
Affiliation(s)
- M Hino
- Department of Genetics, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Casadevall N, Lacombe C, Muller O, Gisselbrecht S, Mayeux P. Multimeric structure of the membrane erythropoietin receptor of murine erythroleukemia cells (Friend cells). Cross-linking of erythropoietin with the spleen focus-forming virus envelope protein. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98509-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Chiba T, Ikawa Y, Todokoro K. GATA-1 transactivates erythropoietin receptor gene, and erythropoietin receptor-mediated signals enhance GATA-1 gene expression. Nucleic Acids Res 1991; 19:3843-8. [PMID: 1650452 PMCID: PMC328472 DOI: 10.1093/nar/19.14.3843] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin is a cytokine which specifically regulates the proliferation and differentiation of erythroid progenitor cells. The expression of erythropoietin receptor on the cell membrane of the progenitor cells is a critical event during the erythroid differentiation process. In order to clarify the tissue-specific and differentiation stage-specific expression of the erythropoietin receptor gene, its transcriptional regulation was examined by transient expression assay, gel mobility shift assay and DNase I footprinting. The results clearly showed that GATA-1 transactivates the gene expression through a single GATA motif located around -200 bp upstream from the ATG codon in a dose dependent manner. Furthermore, Northern blot analysis revealed that erythropoietin receptor-mediated signals strongly enhanced GATA-1 gene expression in accordance with the appearance of hemoglobin-positive cells. Taken together with other observations, these results suggested the following scheme of erythroid differentiation: 1)GATA-1 is expressed in the early stage of blood cell development; 2) GATA-1 transactivates the erythropoietin receptor gene; 3) erythropoietin binds its receptor and the receptor-mediated signals enhance GATA-1 gene expression in erythroid progenitor cells; and 4) GATA-1 finally transactivates hemoglobin synthesis-related genes and globin genes in relatively matured erythroid cells.
Collapse
Affiliation(s)
- T Chiba
- Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | |
Collapse
|
44
|
Berdel WE, Oberberg D, Reufi B, Thiel E. Studies on the role of recombinant human erythropoietin in the growth regulation of human nonhematopoietic tumor cells in vitro. Ann Hematol 1991; 63:5-8. [PMID: 1878424 DOI: 10.1007/bf01714953] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recombinant human (rh) erythropoietin (EPO) is attracting increasing interest as an agent for treating cancer-related anemia. Thus, we have tested the effects of rhEPO on the clonal growth of 22 different cell lines derived from a wide range of human solid tumors (head and neck 3, lung 2, breast 2, stomach 1, colorectal 3, hepatocellular 1, pancreas 1, ovary 1, choriocarcinoma 1, osteogenic sarcoma 1, glioblastoma 2, neuroblastoma 1, prostate 1, renal 2) in vitro. RhEPO (dose range 0.01-100 U/ml) caused no significant and reproducible stimulation of clonal growth as measured by a capillary modification of the human tumor cloning assay in agar in any of the cell lines tested. In particular, there was no sensitivity for rhEPO of those cell lines which were shown to be responsive to interleukin-3 and GM-CSF. On the other hand, there were no growth inhibitory effects of rhEPO on the cell lines of this study. Finally, neutralizing anti-human EPO antibody had no effect on the clonal growth of two kidney carcinoma cell lines, making autocrine growth regulation by hEPO in these lines unlikely.
Collapse
Affiliation(s)
- W E Berdel
- Department of Hematology and Oncology, Freie Universität Berlin, FRG
| | | | | | | |
Collapse
|
45
|
Yonekura S, Chern Y, Donahue KA, Feldman L, Vanasse GJ, Sytkowski AJ. Erythropoietin receptors induced by dimethyl sulfoxide exhibit positive cooperativity associated with an amplified biologic response. Proc Natl Acad Sci U S A 1991; 88:2535-9. [PMID: 1848708 PMCID: PMC51267 DOI: 10.1073/pnas.88.6.2535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin triggers the differentiation of erythrocyte progenitors by binding to receptors on their plasma membrane. We report here that pretreatment of erythropoietin-responsive murine erythroleukemia cells with chemical inducers resulted in a striking increase in erythropoietin-specific hemoglobinization. This amplification of the erythropoietin biologic response was accompanied by the induction of a new population of high-density receptors (approximately 20,000 per cell) exhibiting marked positive cooperativity. Erythropoietin binding to new receptors displayed a convex upward Scatchard plot and a Hill coefficient (nH) of 6.75. Measurement of erythropoietin receptor mRNA demonstrated an initial decrease in receptor transcript followed by an approximately 2- to 3-fold increase after 24-48 hr. This increase in receptor message does not appear to account for the magnitude of the receptor up-regulation by dimethyl sulfoxide. We propose that this positive cooperativity reflects the interaction (clustering) of receptors, presumably through the formation of homooligomers or heterooligomers, and that this receptor interaction may amplify the erythropoietin signal transduction pathway.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Line
- Dimethyl Sulfoxide/pharmacology
- Erythropoietin/metabolism
- Kinetics
- Leukemia, Erythroblastic, Acute
- Leukemia, Experimental
- Mice
- Models, Biological
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Erythropoietin
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- S Yonekura
- Laboratory for Cell and Molecular Biology, New England Deaconess Hospital, Boston, MA 02215
| | | | | | | | | | | |
Collapse
|
46
|
Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52478-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Mayeux P, Casadevall N, Lacombe C, Muller O, Tambourin P. Solubilization and hydrodynamic characteristics of the erythropoietin receptor. Evidence for a multimeric complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:271-8. [PMID: 2174776 DOI: 10.1111/j.1432-1033.1990.tb19453.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to study the erythropoietin receptor in its native state, we solubilized erythropoietin-receptor complexes from spleen cell membranes of mice infected with the anemia strain of Friend virus using mild detergents. Among 11 tested detergents, Triton X-100 and Lubrol PX were the most effective. Triton X-100 was therefore selected for this study. The solubilized complexes appeared to be well representative of the total membrane receptor population as indicated by cross-linking experiments and affinity measurements. The hydrodynamic characteristics of the complexes were determined by gel filtration chromatography and ultracentrifugation through sucrose gradients prepared with H2O or D2O. Although erythropoietin-receptor-detergent complexes exhibited some heterogeneity, we determined the following minimal hydrodynamic values: sedimentation coefficient (s20,w): 11.7 +/- 0.8 S, Stokes radius: 7.7 +/- 0.2 nm, partial specific volume: 0.774 +/- 0.017 ml/g, giving a molecular mass of 458 +/- 66 kDa. The contribution of the detergent was estimated to be 28% from the measured partial specific volume, giving an estimated molecular mass of 330 +/- 48 kDa for the erythropoietin-receptor complex. The minimal molecular mass value was significantly greater than those obtained by polyacrylamide gel electrophoresis under denaturing conditions, strongly suggesting that the erythropoietin receptors were present as multimeric complexes. The nature of these complexes is discussed. Beside this major component our results revealed the presence of higher-molecular-mass erythropoietin binding components. We also demonstrated that erythropoietin-receptor complexes could be precipitated with anti-erythropoietin antibodies. This property should greatly improve the purification of erythropoietin receptors.
Collapse
Affiliation(s)
- P Mayeux
- Unite INSERM 152, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Kuramochi S, Sugimoto Y, Ikawa Y, Todokoro K. Transmembrane signaling during erythropoietin- and dimethylsulfoxide-induced erythroid cell differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:163-8. [PMID: 2171931 DOI: 10.1111/j.1432-1033.1990.tb19318.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Erythropoietin is a glycoprotein factor which specifically regulates the proliferation and differentiation of erythroid progenitor cells. We have investigated here the biochemical mechanisms of erythroid differentiation on mouse erythroleukemia SKT6 cells which can be induced to differentiate either with erythropoietin or dimethyl sulfoxide (Me2SO). cAMP-elevating agents, such as forskolin and 3-isobutyl-1-methyl-xanthine, caused spontaneous erythroid differentiation, and these agents showed the stimulatory effects on erythropoietin- or Me2SO-induced differentiation. An adenylate cyclase inhibitor, 2',5'-dideoxyadenosine, blocked erythropoietin-induced differentiation. The intracellular cAMP level was rapidly increased by addition of erythropoietin but not by Me2SO. These observations suggest that erythroid differentiation induced by erythropoietin is mediated, at least in part, through the cAMP-dependent pathway. When the effect of erythropoietin and Me2SO on the intracellular Ca2+ level was examined using fura 2, no acute change was observed. Measurements of the levels of inositol 1,4,5-trisphosphate and diacylglycerol following stimulation with erythropoietin or Me2SO showed that phosphatidylinositol turnover did not change significantly after erythropoietin stimulation but decreased gradually after Me2SO induction. Taken together, these results indicate that a complex signaling network including the cAMP-dependent pathway is involved in the erythroid differentiation process.
Collapse
|
49
|
Okuno Y, Suzuki A, Ichiba S, Takahashi T, Nakamura K, Hitomi K, Sasaki R, Tada K, Imura H. Establishment of an erythroid cell line (JK-1) that spontaneously differentiates to red cells. Cancer 1990; 66:1544-51. [PMID: 2169992 DOI: 10.1002/1097-0142(19901001)66:7<1544::aid-cncr2820660719>3.0.co;2-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The authors established a new hemopoietic cell line (JK-1) from a patient with chronic myelogenous leukemia in erythroid crisis. This JK-1 line predominantly consists of immature cells, but a small number of mature erythroblasts and red cells can be consistently seen without any specific differentiation inducer. The JK-1 cells grow in suspension culture supplemented with human plasma and carry double Philadelphia chromosomes. Hemoglobin staining with benzidine was positive for about 20% of cells and the type of the hemoglobin was for the most part HbF. Surface-marker analysis revealed JK-1 cells positive for glycophorin A, EP-1, and HAE9. The proportion of mature cells was elevated by the addition of delta-aminolevulinic acid. Erythropoietin (EPO) enhanced the growth of JK-1 cells either in the suspension or in methylcellulose semisolid culture. The total number of EPO receptors was 940 per cell, of which 220 sites had an affinity higher than the other 720 sites. This is the first report of an established human erythroid cell line which spontaneously undergoes terminal differentiation.
Collapse
Affiliation(s)
- Y Okuno
- 2nd Department of Internal Medicine, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Eridani S. Erythropoietin. Chapter for the monograph on haemopoietic growth factors. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1990; 2:291-8. [PMID: 2176513 DOI: 10.1007/bf02170078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S Eridani
- UMDS Division of Haematology, St. Thomas' Campus, London, UK
| |
Collapse
|