1
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
2
|
Akila AH, Ali MAS, Khairy AM, Elnahal ASM, Alfassam HE, Rudayni HA, Jaber FA, Tohamy MRA. Biological Control of Tomato Bacterial Leaf Spots and Its Impact on Some Antioxidant Enzymes, Phenolic Compounds, and Pigment Content. BIOLOGY 2024; 13:369. [PMID: 38927249 PMCID: PMC11201276 DOI: 10.3390/biology13060369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024]
Abstract
Tomato bacterial spots, caused by Xanthomonas campestris pv. vesicatoria (Xcv1) and X. euvesicatoria (Xe2), as well as bacterial specks, caused by two strains of Pseudomonas syringae pv. tomato (Pst1 and Pst2), represent significant threats to tomato production in the El-Sharkia governorate, often resulting in substantial yield losses. The objective of this study was to evaluate the efficacy of various biocontrol culture filtrates, including bacteria and fungi agents, in managing the occurrence and severity of these diseases, while also monitoring physiological changes in tomato leaves, including antioxidant enzymes, phenolics, and pigment content. The culture filtrates from examined Trichoderma species (T. viride, T. harzianum, and T. album), as well as the tested bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Serratia marcescens) at concentrations of 25%, 50%, and 100%, significantly inhibited the proliferation of pathogenic bacteria In vitro. For the In vivo experiments, we used specific doses of 5 mL of spore suspension per plant for the fungal bioagents at a concentration of 2.5 × 107 spores/mL. The bacterial bioagents were applied as a 10 mL suspension per plant at a concentration of 1 × 108 CFU/mL. Spraying the culture filtrates of the tested bioagents two days before infection In vivo significantly reduced disease incidence and severity. Trichoderma viride exhibited the highest efficacy among the fungal bioagents, followed by T. harzianum and T. album. Meanwhile, the culture filtrate of B. subtilis emerged as the most potent among the bacterial bioagents, followed by P. fluorescens. Furthermore, applying these culture filtrates resulted in elevated levels of chitinase, peroxidase, and polyphenol oxidase activity. This effect extended to increased phenol contents, as well as chlorophyll a, chlorophyll b, and carotenoids in sprayed tomato plants compared to the control treatment. Overall, these findings underscore the potential of these biocontrol strategies to effectively mitigate disease incidence and severity while enhancing plant defense mechanisms and physiological parameters, thus offering promising avenues for sustainable disease management in tomato production.
Collapse
Affiliation(s)
- Asmaa H. Akila
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt (M.A.S.A.)
| | - Mohamed A. S. Ali
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt (M.A.S.A.)
| | - Ahmed M. Khairy
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt (M.A.S.A.)
| | - Ahmed S. M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt (M.A.S.A.)
| | - Haifa E. Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A. Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia;
| | - Fatima A. Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Mohamed R. A. Tohamy
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt (M.A.S.A.)
| |
Collapse
|
3
|
Khatoon K, Warsi ZI, Singh A, Singh K, Khan F, Singh P, Shukla RK, Verma RS, Singh MK, Verma SK, Husain Z, Parween G, Singh P, Afroz S, Rahman LU. Bridging fungal resistance and plant growth through constitutive overexpression of Thchit42 gene in Pelargonium graveolens. PLANT CELL REPORTS 2024; 43:147. [PMID: 38771491 DOI: 10.1007/s00299-024-03233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
KEY MESSAGE Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.
Collapse
Affiliation(s)
- Kahkashan Khatoon
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Zafar Iqbal Warsi
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Akanksha Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Kajal Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Feroz Khan
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Palak Singh
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Kumar Shukla
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Munmun K Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sanjeet K Verma
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Zakir Husain
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Gazala Parween
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Pooja Singh
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Shama Afroz
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Laiq Ur Rahman
- Plant Tissue Culture Lab, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
4
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
5
|
Wang P, Zhou J, Sun W, Li H, Li D, Zhuge Q. Characteristics and function of the pathogenesis-related protein 1 gene family in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111857. [PMID: 37673220 DOI: 10.1016/j.plantsci.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
The pathogen-associated protein 1 (PR1) plays an important role in plant response to biotic and abiotic stresses. In this study, 17 PtPR1 genes were identified in Populus trichocarpa genome. The 17 PtPR1 genes were distributed on 7 chromosomes, and divided into A, B subfamilies by evolutionary tree analysis. RTqPCR analysis showed that the PtPR1 gene family showed different degrees of response to drought stress. PtPR1 genes showed changes in expression in response to fungal pathogen Septotinia populiperda or insect attacks (Nausinoe geometralis, Hyphantria cunea). Also, we found that subfamily B of PtPR1 may play an important role in response to biotic stress. We identified a new resistance gene PtPR1A. Overexpression of PtPR1A in Arabidopsis thaliana significantly enhanced the resistance to Pseudomonas syringae, while overexpression of PtPR1A in poplar significantly enhanced the resistance to S. populiperda. The present study investigates the expression pattern of the PtPR1 genes under biotic and abiotic stresses, and it found that the characteristics of the PtPR1 genes diverged, which provided a theoretical basis for the further study of the PtPR1 genes in the plant defense response.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Gu K, Yang LE, Ren K, Luo X, Qin X, Op de Beeck M, He C, Jian L, Chen Y. Effects of topping and non-topping on growth-regulating hormones of flue-cured tobacco ( Nicotiana tabacum L.)-a proteomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1255252. [PMID: 38023860 PMCID: PMC10643189 DOI: 10.3389/fpls.2023.1255252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Introduction Until now, the mechanism underlying the impact of topping on hormone regulation in tobacco plants remains unclear, and most studies investigating the hormone signaling pathways in plants rely on genes or transcriptional pathways. Methods This study examines the regulatory mechanisms of hormones in the roots and leaves of tobacco plants with and without topping at the protein level. Results The results demonstrate that, compared with non-topped plants, topping leads to a decrease in the levels of IAA (auxin), ABA (abscisic acid), and GA (gibberellin) hormones in the leaves, whereas the content of the JA (jasmonic acid) hormone increases. Furthermore, in the roots, topping results in an increase in the levels of IAA, ABA, and JA hormones, along with a decrease in GA content. In the leaves, a total of 258 significantly different proteins were identified before and after topping, with 128 proteins upregulated and 130 proteins downregulated. In the roots, there were 439 proteins with significantly different quantities before and after topping, consisting of 211 upregulated proteins and 228 downregulated proteins. Notably, these proteins were closely associated with the metabolic and biosynthetic pathways of secondary metabolites, as indicated by functional categorization. Conclusions When integrating the hormone changes and the proteomics results, it is evident that topping leads to increased metabolic activity and enhanced hormone synthesis in the root system. This research provides a theoretical foundation for further investigations into the regulation and signaling mechanisms of hormones at the protein level before and after topping in plants.
Collapse
Affiliation(s)
- Kaiyuan Gu
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Li-E. Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Ke Ren
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xianxue Luo
- Raw material center, Hunan Zhangjiajie Municipal Tobacco Co., Zhangjiajie, Hunan, China
| | - Xiao Qin
- Raw material center, Hunan Zhangjiajie Municipal Tobacco Co., Zhangjiajie, Hunan, China
| | - Michiel Op de Beeck
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Conglian He
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Li Jian
- Key Laboratory of Urban Environment and Health, Instituteo of Urban Enviroment, Chinense Academy of Sciences, Xiamen, Fujian, China
| | - Yi Chen
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
7
|
Marchese A, Balan B, Trippa DA, Bonanno F, Caruso T, Imperiale V, Marra FP, Giovino A. NGS transcriptomic analysis uncovers the possible resistance mechanisms of olive to Spilocea oleagina leaf spot infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1219580. [PMID: 37528972 PMCID: PMC10388255 DOI: 10.3389/fpls.2023.1219580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found.
Collapse
Affiliation(s)
- Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Floriana Bonanno
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Valeria Imperiale
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Antonio Giovino
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, Palermo, Italy
| |
Collapse
|
8
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
9
|
Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Transgenic Res 2022; 31:457-487. [PMID: 35763120 PMCID: PMC9489592 DOI: 10.1007/s11248-022-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Building 004 Room 122 BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Plant Pathology, North Dakota State University, 1402 Albrecht Blvd., Walster Hall 306, Fargo, ND 58102 USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Cereal Disease Laboratory, 1551 Lindig Street, Saint Paul, MN 55108 USA
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Biological Sciences, Delaware State University, 1200 North Dupont Highway, Science Center 164, Dover, DE 19901 USA
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Nutrien Ag Solutions, 737 Blaylock Road, Winterville, MS 38703 USA
| |
Collapse
|
10
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
11
|
Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, Ling X, Wang J, Zhang B. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:722-735. [PMID: 34812570 PMCID: PMC8989497 DOI: 10.1111/pbi.13751] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Collapse
Affiliation(s)
- Tingli Liu
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianzi Chen
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jialiang Kan
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yao Yao
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Dongshu Guo
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuwen Yang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xitie Ling
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jinyan Wang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Baolong Zhang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
12
|
Hou X, Zhang G, Han R, Wan R, Li Z, Wang X. Ultrastructural Observations of Botrytis cinerea and Physical Changes in Resistant and Susceptible Grapevines. PHYTOPATHOLOGY 2022; 112:387-395. [PMID: 34242064 DOI: 10.1094/phyto-11-20-0520-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. Here, a highly resistant Chinese wild grapevine, Vitis amurensis 'Shuangyou' (SY), and the susceptible V. vinifera 'Red Globe' (RG) were selected for study, and their pathogenic infection and biochemical responses to B. cinerea were evaluated. The results revealed more trichomes on and a thicker cuticle for leaves of SY than RG under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both SEM and TEM also showed that conidial germination, appressorium formation, and hyphal development of B. cinerea were delayed on the leaves of resistant SY. Fewer infected hyphae were also observed in leaves of resistant SY when compared with susceptible RG. The infected leaves of resistant SY harbored higher levels of cellulase and pectinase activity during the early infection stages of B. cinerea at 4 h postinoculation (hpi), and higher glucanase and chitinase activity were maintained in the inoculated leaves of SY from 4 through 18 hpi. Lignin was deposited in the infected leaves of susceptible RG but not in resistant SY. Taken together, these results provide insights into the ultrastructural characterizations and physical changes in resistant and susceptible grapevines.
Collapse
Affiliation(s)
- Xiaoqing Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Orlando M, Buchholz PCF, Lotti M, Pleiss J. The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One 2021; 16:e0256817. [PMID: 34699529 PMCID: PMC8547705 DOI: 10.1371/journal.pone.0256817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
14
|
Transcriptome analysis of early stages of sorghum grain mold disease reveals defense regulators and metabolic pathways associated with resistance. BMC Genomics 2021; 22:295. [PMID: 33888060 PMCID: PMC8063297 DOI: 10.1186/s12864-021-07609-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background Sorghum grain mold is the most important disease of the crop. The disease results from simultaneous infection of the grain by multiple fungal species. Host responses to these fungi and the underlying molecular and cellular processes are poorly understood. To understand the genetic, molecular and biochemical components of grain mold resistance, transcriptome profiles of the developing grain of resistant and susceptible sorghum genotypes were studied. Results The developing kernels of grain mold resistant RTx2911 and susceptible RTx430 sorghum genotypes were inoculated with a mixture of fungal pathogens mimicking the species complexity of the disease under natural infestation. Global transcriptome changes corresponding to multiple molecular and cellular processes, and biological functions including defense, secondary metabolism, and flavonoid biosynthesis were observed with differential regulation in the two genotypes. Genes encoding pattern recognition receptors (PRRs), regulators of growth and defense homeostasis, antimicrobial peptides, pathogenesis-related proteins, zein seed storage proteins, and phytoalexins showed increased expression correlating with resistance. Notably, SbLYK5 gene encoding an orthologue of chitin PRR, defensin genes SbDFN7.1 and SbDFN7.2 exhibited higher expression in the resistant genotype. The SbDFN7.1 and SbDFN7.2 genes are tightly linked and transcribed in opposite orientation with a likely common bidirectional promoter. Interestingly, increased expression of JAZ and other transcriptional repressors were observed that suggested the tight regulation of plant defense and growth. The data suggest a pathogen inducible defense system in the developing grain of sorghum that involves the chitin PRR, MAPKs, key transcription factors, downstream components regulating immune gene expression and accumulation of defense molecules. We propose a model through which the biosynthesis of 3-deoxyanthocynidin phytoalexins, defensins, PR proteins, other antimicrobial peptides, and defense suppressing proteins are regulated by a pathogen inducible defense system in the developing grain. Conclusions The transcriptome data from a rarely studied tissue shed light into genetic, molecular, and biochemical components of disease resistance and suggested that the developing grain shares conserved immune response mechanisms but also components uniquely enriched in the grain. Resistance was associated with increased expression of genes encoding regulatory factors, novel grain specific antimicrobial peptides including defensins and storage proteins that are potential targets for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07609-y.
Collapse
|
15
|
Template Stripping Method-Based Au Nanoarray for Surface-Enhanced Raman Scattering Detection of Antiepileptic Drug. MICROMACHINES 2020; 11:mi11100936. [PMID: 33066672 PMCID: PMC7602448 DOI: 10.3390/mi11100936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a potential candidate for highly sensitive detection of target molecules. A SERS active substrate with a noble metal nanostructure is required for this. However, a SERS active substrate requires complicated fabrication procedures. This in turn makes it difficult to fabricate highly sensitive SERS active substrates with high reproducibility. To overcome this difficulty, a plasmonic crystal (PC) with periodic noble metal nanostructures was fabricated via the template-stripping method using a polymer-based template. Using SERS active substrates, SERS was successfully achieved using the PC by detecting low concentrations of phenobarbital which is an antiepileptic drug using a commercially available portable Raman module. The PC can be fabricated by demolding the deposited gold layer from a polymer-based template. This method is rapid, economic, and has high reproducibility. SERS can be achieved easily using this PC for a wide variety of applications such as medical, pharmaceutical, and environmental protection.
Collapse
|
16
|
Mathew GM, Madhavan A, Arun KB, Sindhu R, Binod P, Singhania RR, Sukumaran RK, Pandey A. Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. Appl Biochem Biotechnol 2020; 193:142-164. [PMID: 32827066 DOI: 10.1007/s12010-020-03416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Chitin is the second most widely found natural polymer next to cellulose. Chitinases degrade the insoluble chitin to bioactive chitooligomers and monomers for various industrial applications. Based on their function, these enzymes act as biocontrol agents against pathogenic fungi and invasive pests compared with conventional chemical fungicides and insecticides. They have other functional roles in shellfish waste management, fungal protoplast generation, and Single-Cell Protein production. Among the chitinases, thermophilic and thermostable chitinases are gaining popularity in recent years, as they can withstand high temperatures and maintain the enzyme stability for longer periods. Not all chitinases are thermostable; hence, tailor-made thermophilic chitinases are designed to enhance their thermostability by direct evolution, genetic engineering involving mutagenesis, and proteomics approach. Although research has been done extensively on cloning and expression of thermophilic chitinase genes, there are only few papers discussing on the mechanism of chitin degradation using thermophiles. The current review discusses the sources of thermophilic chitinases, improvement of protein stability by gene manipulation, metagenomics approaches, chitin degradation mechanism in thermophiles, and their prospective applications for industrial, agricultural, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Gincy M Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | | | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR - Indian Institute of Toxicology Research, Lucknow, 226 001, India.
- Frontier Research Lab, Yonsei University, Seoul, South Korea.
| |
Collapse
|
17
|
Xiao S, Liu L, Zhang Y, Sun H, Zhang K, Bai Z, Dong H, Liu Y, Li C. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:328. [PMID: 32652934 PMCID: PMC7353779 DOI: 10.1186/s12870-020-02531-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Fine roots are the central part of the root system that contributes to plant water and nutrient uptake. However, the mechanisms underlying the response of cotton fine roots to soil drought remains unclear. To elucidate the proteomic changes in fine roots of cotton plants under drought stress, 70-75% and 40-45% soil relative water content treatments were imposed on control (CK) and drought stress (DS) groups, respectively. Then, tandem mass tags (TMT) technology was used to determine the proteome profiles of fine root tissue samples. RESULTS Drought significantly decreased the value of average root diameter of cotton seedlings, whereas the total root length and the activities of antioxidases were increased. To study the molecular mechanisms underlying drought response further, the proteome differences between tissues under CK and DS treatments were compared pairwise at 0, 30, and 45 DAD (days after drought stress). In total, 118 differentially expressed proteins (DEPs) were up-regulated and 105 were down-regulated in the 'DS30 versus CK30' comparison; 662 DEPs were up-regulated, and 611 were down-regulated in the 'DS45 versus CK45' comparison. The functions of these DEPs were classified according to their pathways. Under early stage drought (30 DAD), some DEPs involved in the 'Cutin, suberin, and wax synthesis' pathway were up-regulated, while the down-regulated DEPs were mainly enriched within the 'Monoterpenoid biosynthesis' pathway. Forty-five days of soil drought had a greater impact on DEPs involved in metabolism. Many proteins involving 'Carbohydrate metabolism,' 'Energy metabolism,' 'Fatty acid metabolism,' 'Amino acid metabolism,' and 'Secondary metabolite biosynthesis' were identified as DEPs. Additionally, proteins related to ion transport, stress/defense, and phytohormones were also shown to play roles in determining the fine root growth of cotton plants under drought stress. CONCLUSIONS Our study identified potential biological pathways and drought-responsive proteins related to stress/defense responses and plant hormone metabolism under drought stress. Collectively, our results provide new insights for further improving drought tolerance in cotton and other crops.
Collapse
Affiliation(s)
- Shuang Xiao
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Yongjiang Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hongchun Sun
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Zhiying Bai
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Hezhong Dong
- Cotton Research Center/ Key Laboratory of Cotton Breeding and Cultivation in Huang-huai-hai Plain, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yuchun Liu
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China
| | - Cundong Li
- College of Agronomy, Hebei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of HeBei Province, Baoding, 071001, Hebei, China.
| |
Collapse
|
18
|
Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC PLANT BIOLOGY 2020; 20:215. [PMID: 32404101 PMCID: PMC7222326 DOI: 10.1186/s12870-020-02426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. RESULTS A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. These results provided useful information for further understanding the roles of miR156/157/SPL and miR482/2118/NBS-LRR pairs. CONCLUSIONS Integration analysis of the transcriptome, miRNAome and degradome of resistant and susceptible peanut varieties were performed in this study. The knowledge gained will help to understand the roles of miRNAs of peanut in response to A. flavus.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- Rizhao Experimental High School od Shandong, Rizhao, 276826 PR China
| | - Yuhan Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC USA
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA 31793 USA
- Department of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| |
Collapse
|
19
|
Han B, Jiang Y, Cui G, Mi J, Roelfsema MRG, Mouille G, Sechet J, Al-Babili S, Aranda M, Hirt H. CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae. PLANT PHYSIOLOGY 2020; 182:1052-1065. [PMID: 31806735 PMCID: PMC6997689 DOI: 10.1104/pp.19.01279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.
Collapse
Affiliation(s)
- Baoda Han
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Yunhe Jiang
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Mi
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - M Rob G Roelfsema
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Heribert Hirt
- King Abdullah University of Science and Technology (KAUST), DARWIN21, Biological and Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
20
|
Sierra-Gómez Y, Rodríguez-Hernández A, Cano-Sánchez P, Gómez-Velasco H, Hernández-Santoyo A, Siliqi D, Rodríguez-Romero A. A biophysical and structural study of two chitinases from Agave tequilana and their potential role as defense proteins. FEBS J 2019; 286:4778-4796. [PMID: 31291689 DOI: 10.1111/febs.14993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/04/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).
Collapse
Affiliation(s)
- Yusvel Sierra-Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | |
Collapse
|
21
|
Zhou T, Xu W, Hirani AH, Liu Z, Tuan PA, Ayele BT, Daayf F, McVetty PBE, Duncan RW, Li G. Transcriptional Insight Into Brassica napus Resistance Genes LepR3 and Rlm2-Mediated Defense Response Against the Leptosphaeria maculans Infection. FRONTIERS IN PLANT SCIENCE 2019; 10:823. [PMID: 31333690 PMCID: PMC6615431 DOI: 10.3389/fpls.2019.00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogenic fungus Leptosphaeria maculans causes the blackleg disease on Brassica napus, resulting in severe loss of rapeseed production. Breeding of resistant cultivars containing race-specific resistance genes is provably effective to combat this disease. While two allelic resistance genes LepR3 and Rlm2 recognizing L. maculans avirulence genes AvrLm1 and AvrLm2 at plant apoplastic space have been cloned in B. napus, the downstream gene expression network underlying the resistance remains elusive. In this study, transgenic lines expressing LepR3 and Rlm2 were created in the susceptible "Westar" cultivar and inoculated with L. maculans isolates containing different sets of AvrLm1 and AvrLm2 for comparative transcriptomic analysis. Through grouping the RNA-seq data based on different levels of defense response, we find LepR3 and Rlm2 orchestrate a hierarchically regulated gene expression network, consisting of induced ABA acting independently of the disease reaction, activation of signal transduction pathways with gradually increasing intensity from compatible to incompatible interaction, and specifically induced enzymatic and chemical actions contributing to hypersensitive response with recognition of AvrLm1 and AvrLm2. This study provides an unconventional investigation into LepR3 and Rlm2-mediated plant defense machinery and adds novel insight into the interaction between surface-localized receptor-like proteins (RLPs) and apoplastic fungal pathogens.
Collapse
Affiliation(s)
- Tengsheng Zhou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Wen Xu
- Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Arvind H. Hirani
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Zheng Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Belay T. Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Robert W. Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Genyi Li
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Cao S, Wang Y, Li Z, Shi W, Gao F, Zhou Y, Zhang G, Feng J. Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic stress in Ammopiptanthus nanus. Genes (Basel) 2019; 10:genes10060472. [PMID: 31234426 PMCID: PMC6627877 DOI: 10.3390/genes10060472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Chitinase is a kind of hydrolase with chitin as a substrate and is proposed to play an essential role in plant defense system by functioning against fungal pathogens through degrading chitin. Recent studies indicated chitinase is also involved in abiotic stress response in plants, helping plants to survive in stressful environments. A. nanus, a rare evergreen broad-leaved shrub distrusted in deserts in Central Asia, exhibits a high level of tolerance to drought and low temperature stresses. To identify the chitinase gene involved in drought and low temperature responses in A. nanus, we performed genome-wide identification, classification, sequence alignment, and spatio-temporal gene expression analysis of the chitinases in A. nanus under osmotic and low temperature stress. A total of 32 chitinase genes belonging to glycosyl hydrolase 18 (GH18) and GH19 families were identified from A. nanus. Class III chitinases appear to be amplified quantitatively in A. nanus, and their genes carry less introns, indicating their involvement in stress response in A. nanus. The expression level of the majority of chitinases varied in leaves, stems, and roots, and regulated under environmental stress. Some chitinases, such as EVM0022783, EVM0020238, and EVM0003645, are strongly induced by low temperature and osmotic stress, and the MYC/ICE1 (inducer of CBF expression 1) binding sites in promoter regions may mediate the induction of these chitinases under stress. These chitinases might play key roles in the tolerance to these abiotic stress in A. nanus and have potential for biotechnological applications. This study provided important data for understanding the biological functions of chitinases in A. nanus.
Collapse
Affiliation(s)
- Shilin Cao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhiqiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Wei Shi
- Key Laboratory of Biogeography and Bioresource in Arid Land, Institute of Ecology and Geography in Xinjiang, The Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Genfa Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
23
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Manocha MS, Zhonghua Z. Immunocytochemical and cytochemical localization of chitinase and chitin in the infected hosts of a biotrophic mycoparasite,Piptocephalis virginiana. Mycologia 2018. [DOI: 10.1080/00275514.1997.12026770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. S. Manocha
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Z. Zhonghua
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
25
|
Liu S, Murtaza A, Liu Y, Hu W, Xu X, Pan S. Catalytic and Structural Characterization of a Browning-Related Protein in Oriental Sweet Melon ( Cucumis Melo var. Makuwa Makino). Front Chem 2018; 6:354. [PMID: 30191148 PMCID: PMC6116579 DOI: 10.3389/fchem.2018.00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Polyphenol oxidase (PPO) in plants plays an important role in browning reactions and may affect the quality of sweet melon products. In this study, a browning-related protein (BRP) with PPO activity was partially purified from oriental sweet melon (Cucumis melo var. makuwa Makino) by salt precipitation and column chromatography. The BRP possessed a high degree of identity with several chitinase proteins, particularly defense-related proteins, by MS identification. Pyrogallol was determined as the most appropriate substrate for BRP (Km = 0.04278 M). BRP exhibited extreme resistance under alkaline and high temperature conditions when pyrogallol was used as substrate. Polyacrylamide gel electrophoresis (PAGE) analysis indicated that BRP was a homo-dimer of two subunits and had a molecular weight of 37 kDa. Structural analysis indicated that the α-helix was the dominant conformation of BRP. The active site of the protein might be buried deeply in the protein, and BRP might be monodispersed in an aqueous system.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ayesha Murtaza
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wanfeng Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
26
|
Shao Z, Li Z, Fu Y, Wen Y, Wei S. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211. J Basic Microbiol 2018; 58:686-697. [PMID: 29901825 DOI: 10.1002/jobm.201800100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 11/10/2022]
Abstract
The induced resistance against plant pathogens via biocontrol agents is considered as an eco-friendly and promising strategy. In this study, the induced resistance against Magnaporthe oryzae (M. oryzae) in rice seedling by a new potential biocontrol agent Streptomyces JD211 (JD211) was evaluated. The effects of JD211 on defense-related enzymes activities and defense genes expression were investigated. The biocontrol efficacy of different JD211 concentrations was different, and the treatment of 10 g kg-1 JD211 achieved the highest biocontrol efficacy. Activities of catalase, phenylalanine ammonia-lyase (PAL) and β-1,3-glucanase significantly increased in the presence of JD211. The gene expression level of both PAL and pathogenesis related protein 1 increased when rice seedlings were inoculated with JD211 alone or co-inoculated with M. oryzae, and the expression level of chitinase gene was enhanced by JD211 in the later stage. All results suggested that JD211 could increase the rice resistance by stimulating a series of defense responses, which was the result of induced systemic resistance by JD211. This work will provide a new biocontrol agent against Magnaporthe oryzae in rice seedling.
Collapse
Affiliation(s)
- Zhengying Shao
- Nanchang Key Laboratory of Applied Fermentation Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Zhang Li
- Nanchang Key Laboratory of Applied Fermentation Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Yanhui Fu
- Nanchang Key Laboratory of Applied Fermentation Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Yangping Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Saijin Wei
- Nanchang Key Laboratory of Applied Fermentation Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| |
Collapse
|
27
|
Chen J, Piao Y, Liu Y, Li X, Piao Z. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:257-267. [PMID: 29576079 DOI: 10.1016/j.plantsci.2018.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Chitinases, a category of pathogenesis-related proteins, are responsible for catalyzing the hydrolysis of chitin into the N-acetyl-d-glucosamine. Therefore, chitinases are believed to function as a guardian against chitin-containing pathogens. Here, we examined the role of the Brassica rapa chitinase family genes in clubroot disease. A total of 33 chitinase genes were identified and grouped into five classes based on their conserved domain. They were distributed unevenly across eight chromosomes in B. rapa, and 31 of them contained few introns (≤2). In addition, the expression of these genes was organ-specific, and 14 genes were expressed differentially in response to Plasmodiophora brassicae challenge of clubroot-susceptible (CS NIL) and resistant (CR NIL) lines. Furthermore, reduced pathogen DNA content and clubroot symptoms were observed in the CS NILs after their treatment with chitin oligosaccharides 24 h prior to inoculation with P. brassicae. The findings indicate that chitinases play a crucial role in pathogen resistance of the host plants. The results offer an insight into the role of chitinase in B. rapa-P. brassicae interaction.
Collapse
Affiliation(s)
- Jingjing Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China
| | - Yinglan Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiming Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
28
|
Saabale PR, Dubey SC, Priyanka K, Sharma TR. Analysis of differential transcript expression in chickpea during compatible and incompatible interactions with Fusarium oxysporum f. sp . ciceris Race 4. 3 Biotech 2018; 8:111. [PMID: 29430372 DOI: 10.1007/s13205-018-1128-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/19/2018] [Indexed: 11/24/2022] Open
Abstract
The present study reports the transcriptome analysis of resistance (WR315) and susceptible (JG62) genotypes of chickpea in response to Fusarium oxysporum f. sp. ciceris (Foc) race 4 using the method of suppression subtractive hybridization. Altogether, 162 chickpea-expressed sequence tags (ESTs) were identified from two libraries and analyzed to catalog eight functional categories. These ESTs could be assembled into 18 contigs and 144 singletons with 10 contigs and 68 singletons from compatible and 8 contigs and 70 singletons from incompatible interaction. The largest category consisted of ESTs which encode for proteins related to hypothetical proteins (22.8%), followed by energy and metabolism (20.3%)-related genes, defense and cell rescue-related genes (17.9%) and signal transduction-related genes (16%). Among them, 17.1 and 18.7% were defense-related genes in compatible and incompatible interaction, respectively. These ESTs mainly includes various putative genes related to oxidative burst, pathogenesis and secondary metabolism. Induction of putative superoxide dismutase, metallothionein, 4-coumarate-CoA ligase, heat shock proteins and cysteine proteases indicated oxidative burst after infection. The ESTs belonged to various functional categories which were directly and indirectly associated with defense signaling pathways. Quantitative and semi-quantitative polymerase chain reaction exhibited differential expression of candidate genes and detected higher levels in incompatible interaction compared to compatible interaction. The present study revealed partial molecular mechanism associated with the resistance in chickpea against Foc, which is the key to design a strategy for incorporation of resistance via either biotechnological means or introgression of resistance genes.
Collapse
Affiliation(s)
- Parasappa R Saabale
- 1Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012 India
- 2Present Address: Regional Research Centre, Indian Institute of Pulses Research, Dharwad, 580005 India
| | - Sunil C Dubey
- 1Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012 India
- 3Present Address: Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110 012 India
| | - Kumari Priyanka
- 1Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Tilak R Sharma
- 4National Research Centre on Plant Biotechnology, LBS Centre, IARI, New Delhi, 110 012 India
| |
Collapse
|
29
|
Fuerst EP, James MS, Pollard AT, Okubara PA. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen. FRONTIERS IN PLANT SCIENCE 2018; 8:2259. [PMID: 29410673 PMCID: PMC5787103 DOI: 10.3389/fpls.2017.02259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen.
Collapse
Affiliation(s)
- E. Patrick Fuerst
- Department of Crop and Soil Sciences and Western Wheat Quality Laboratory, Washington State University, Pullman, WA, United States
| | - Matthew S. James
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Anne T. Pollard
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Patricia A. Okubara
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|
30
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 DOI: 10.1007/s13580-019-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2019] [Accepted: 10/06/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
31
|
Palmer IA, Shang Z, Fu ZQ. Salicylic acid-mediated plant defense: Recent developments, missing links, and future outlook. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1460-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Gamir J, Darwiche R, Van't Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:502-509. [PMID: 27747953 DOI: 10.1111/tpj.13398] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 05/20/2023]
Abstract
Pathogenesis-related proteins played a pioneering role 50 years ago in the discovery of plant innate immunity as a set of proteins that accumulated upon pathogen challenge. The most abundant of these proteins, PATHOGENESIS-RELATED 1 (PR-1) encodes a small antimicrobial protein that has become, as a marker of plant immune signaling, one of the most referred to plant proteins. The biochemical activity and mode of action of PR-1 proteins has remained elusive, however. Here, we provide genetic and biochemical evidence for the capacity of PR-1 proteins to bind sterols, and demonstrate that the inhibitory effect on pathogen growth is caused by the sequestration of sterol from pathogens. In support of our findings, sterol-auxotroph pathogens such as the oomycete Phytophthora are particularly sensitive to PR-1, whereas sterol-prototroph fungal pathogens become highly sensitive only when sterol biosynthesis is compromised. Our results are in line with previous findings showing that plants with enhanced PR-1 expression are particularly well protected against oomycete pathogens.
Collapse
Affiliation(s)
- Jordi Gamir
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rabih Darwiche
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Pieter Van't Hof
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vineet Choudhary
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Jopcik M, Moravcikova J, Matusikova I, Bauer M, Rajninec M, Libantova J. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). PLANTA 2017; 245:313-327. [PMID: 27761648 DOI: 10.1007/s00425-016-2608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.
Collapse
Affiliation(s)
- Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravcikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Ildiko Matusikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Bauer
- NAFC Research Institute for Animal Production, Nitra, Hlohovska 2, 951 41, Lužianky, Slovak Republic
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University, Nábrežie mládeže 91, 949 74, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
34
|
Pennington HG, Gheorghe DM, Damerum A, Pliego C, Spanu PD, Cramer R, Bindschedler LV. Interactions between the Powdery Mildew Effector BEC1054 and Barley Proteins Identify Candidate Host Targets. J Proteome Res 2016; 15:826-39. [DOI: 10.1021/acs.jproteome.5b00732] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen G. Pennington
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Dana M. Gheorghe
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Annabelle Damerum
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Clara Pliego
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Pietro D. Spanu
- Department
of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Laurence V. Bindschedler
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
- School
of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| |
Collapse
|
35
|
Gajera H, Savaliya DD, Patel S, Golakiya B. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). INFECTION GENETICS AND EVOLUTION 2015; 34:314-25. [DOI: 10.1016/j.meegid.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
|
36
|
Pant SR, Krishnavajhala A, McNeece BT, Lawrence GW, Klink VP. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines. PLANT SIGNALING & BEHAVIOR 2015; 10:e977737. [PMID: 25530246 PMCID: PMC4622666 DOI: 10.4161/15592324.2014.977737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 05/19/2023]
Abstract
Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified.
Collapse
Key Words
- BIK1, botrytis induced kinase1
- CuSOD, copper superoxide dismutase
- EDS1, enhanced disease susceptibility1
- ER, endoplasmic reticulum
- GOI, gene of interest
- Golgi
- INA, 2,6-dichloroisonicotinic acid
- JA, jasmonic acid
- LESION SIMULATING DISEASE1 (LSD1)
- LOL1, LSD1-like
- LSD1, lesion simulating disease1
- MATE, multidrug and toxin extrusion
- NPR1, nonexpressor of PR1
- O2−, superoxide
- PAD4, phytoalexin deficient 4
- PCD, programmed cell death
- PR1, pathogenesis-related 1
- RNAi, RNA interference
- ROI, reactive oxygen intermediates
- SA, salicylic acid
- SAR, systemic acquired resistance
- SHMT, serine hydroxymethyltransferase
- SID2, salicylic-acid-induction deficient2
- Sed5p, suppressors of the erd2-deletion 5
- XTH, xyloglucan endotransglycosylase/hydrolase
- membrane fusion
- pathogen resistance
- qPCR, quantitative polymerase chain reaction
- salicylic acid
- sec, secretion
- signaling
- syntaxin 31
- vesicle
- α-SNAP, alpha soluble N-ethylmaleimide-sensitive factor attachment protein
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| | - Aparna Krishnavajhala
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
- Department of Biochemistry; Molecular Biology; Entomology and Plant Pathology; Mississippi State University; Starkville, MS USA
| | - Brant T McNeece
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| | - Gary W Lawrence
- Department of Biochemistry; Molecular Biology; Entomology and Plant Pathology; Mississippi State University; Starkville, MS USA
| | - Vincent P Klink
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| |
Collapse
|
37
|
Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2014; 85:107-21. [PMID: 24452833 DOI: 10.1007/s11103-014-0172-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/08/2014] [Indexed: 05/23/2023]
Abstract
A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA,
| | | | | | | | | | | | | |
Collapse
|
38
|
Pasin F, Simón-Mateo C, García JA. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 2014; 10:e1003985. [PMID: 24603811 PMCID: PMC3946448 DOI: 10.1371/journal.ppat.1003985] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity.
Collapse
Affiliation(s)
- Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
39
|
Singh B, Singh A, Singh B, Singh H. Trichoderma harzianum
elicits induced resistance in sunflower challenged by Rhizoctonia solani. J Appl Microbiol 2013; 116:654-66. [DOI: 10.1111/jam.12387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Affiliation(s)
- B.N. Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences; Banaras Hindu University; Varanasi India
| | - A. Singh
- Department of Botany, Faculty of Science; Banaras Hindu University; Varanasi India
| | - B.R. Singh
- Department of Applied Physics, Z.H. College of Engg. & Tech., Centre of Excellence in Materials Science (Nanomaterials); Aligarh Muslim University; Aligarh India
| | - H.B. Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences; Banaras Hindu University; Varanasi India
| |
Collapse
|
40
|
Renner T, Specht CD. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:436-42. [PMID: 23830995 PMCID: PMC3820484 DOI: 10.1016/j.pbi.2013.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 05/08/2023]
Abstract
The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales.
Collapse
Affiliation(s)
- Tanya Renner
- Center for Insect Science and Department of Entomology, University of Arizona, United States.
| | | |
Collapse
|
41
|
Abstract
Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.
Collapse
Affiliation(s)
- Anand Nagpure
- University School of Biotechnology, Guru Gobind Singh Indraprastha University , New Delhi , India
| | | | | |
Collapse
|
42
|
Han Q, Feng H, Zhao H, Huang L, Wang X, Wang X, Kang Z. Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae. PROTOPLASMA 2013; 250:471-81. [PMID: 22777214 DOI: 10.1007/s00709-012-0430-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/23/2012] [Indexed: 05/16/2023]
Abstract
Effects of benzothidiazole (BTH), an inducer of resistance, were examined in a compatible interaction of soybean seedlings and Phytophthora sojae using electron microscopy and quantitative real-time polymerase chain reaction (qRT-PCR) techniques. Seedlings were sprayed with BTH 2 days before inoculation of hypocotyls with zoospore suspension of P. sojae. In hypocotyls treated with BTH, the infection process of P. sojae was significantly delayed, and also the structures of hyphae and haustorium-like bodies were remarkably altered. These changes included increased vacuolation, plasmolysis, degeneration of cytoplasm, and collapse of hyphae and haustorium-like bodies. Large morphological differences were detected in P. sojae-infected hypocotyl tissue treated with BTH compared with infected but non-treated control tissue. Very thick layers of wall appositions were formed in the host cells contacting with hyphae, whereas such structures were never observed in only P. sojae-infected control hypocotyls. In addition, five pathogenesis-related (PR)-genes were selected to detect their transcription changes using qRT-PCR. Expression of PR-1, PR-3a, PR-3b, PR-9, and PR-10 genes were induced in BTH-treated and P. sojae-inoculated tissue at different times and levels. The up-regulated expression of these genes as well as the morphological defense structures may contribute to disease resistance in soybean hypocotyls to P. sojae.
Collapse
Affiliation(s)
- Qingmei Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Han Q, Feng H, Zhao H, Huang L, Wang X, Wang X, Kang Z. Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae. PROTOPLASMA 2013. [PMID: 22777214 DOI: 10.1007/s00709-012-0430-436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Effects of benzothidiazole (BTH), an inducer of resistance, were examined in a compatible interaction of soybean seedlings and Phytophthora sojae using electron microscopy and quantitative real-time polymerase chain reaction (qRT-PCR) techniques. Seedlings were sprayed with BTH 2 days before inoculation of hypocotyls with zoospore suspension of P. sojae. In hypocotyls treated with BTH, the infection process of P. sojae was significantly delayed, and also the structures of hyphae and haustorium-like bodies were remarkably altered. These changes included increased vacuolation, plasmolysis, degeneration of cytoplasm, and collapse of hyphae and haustorium-like bodies. Large morphological differences were detected in P. sojae-infected hypocotyl tissue treated with BTH compared with infected but non-treated control tissue. Very thick layers of wall appositions were formed in the host cells contacting with hyphae, whereas such structures were never observed in only P. sojae-infected control hypocotyls. In addition, five pathogenesis-related (PR)-genes were selected to detect their transcription changes using qRT-PCR. Expression of PR-1, PR-3a, PR-3b, PR-9, and PR-10 genes were induced in BTH-treated and P. sojae-inoculated tissue at different times and levels. The up-regulated expression of these genes as well as the morphological defense structures may contribute to disease resistance in soybean hypocotyls to P. sojae.
Collapse
Affiliation(s)
- Qingmei Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, Tokarski C. Identification of cell wall proteins in the flax (Linum usitatissimum
) stem. Proteomics 2013; 13:812-25. [DOI: 10.1002/pmic.201200257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/08/2012] [Accepted: 11/14/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Arnaud Day
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Stéphane Fénart
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Godfrey Neutelings
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Simon Hawkins
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Christian Rolando
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| | - Caroline Tokarski
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| |
Collapse
|
45
|
Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Mol Biol Rep 2012; 40:147-58. [PMID: 23065213 DOI: 10.1007/s11033-012-2043-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/02/2012] [Indexed: 01/17/2023]
Abstract
Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
Collapse
|
46
|
Matsye PD, Lawrence GW, Youssef RM, Kim KH, Lawrence KS, Matthews BF, Klink VP. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. PLANT MOLECULAR BIOLOGY 2012; 80:131-55. [PMID: 22689004 DOI: 10.1007/s11103-012-9932-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 05/23/2023]
Abstract
Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.
Collapse
Affiliation(s)
- Prachi D Matsye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Leimu R, Kloss L, Fischer M. Inbreeding alters activities of the stress-related enzymes chitinases and β-1,3-glucanases. PLoS One 2012; 7:e42326. [PMID: 22879940 PMCID: PMC3411783 DOI: 10.1371/journal.pone.0042326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis-related proteins, chitinases (CHT) and β-1,3-glucanases (GLU), are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi) populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant–enemy interactions on a biochemical level.
Collapse
Affiliation(s)
- Roosa Leimu
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
48
|
De-La-Peña C, Rangel-Cano A, Alvarez-Venegas R. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. MOLECULAR PLANT PATHOLOGY 2012; 13:388-98. [PMID: 22023111 PMCID: PMC6638851 DOI: 10.1111/j.1364-3703.2011.00757.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes.
Collapse
Affiliation(s)
- Clelia De-La-Peña
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., CP 36821, Mexico
| | | | | |
Collapse
|
49
|
Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY. Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 2012; 8:e1002640. [PMID: 22496658 PMCID: PMC3320592 DOI: 10.1371/journal.ppat.1002640] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/26/2012] [Indexed: 01/19/2023] Open
Abstract
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring "receiver" plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of "receiver" plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the "receivers". Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
50
|
Renner T, Specht CD. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Mol Biol Evol 2012; 29:2971-85. [PMID: 22490823 DOI: 10.1093/molbev/mss106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins produced by the large and diverse chitinase gene family are involved in the hydrolyzation of glycosidic bonds in chitin, a polymer of N-acetylglucosamines. In flowering plants, class I chitinases are important pathogenesis-related proteins, functioning in the determent of herbivory and pathogen attack by acting on insect exoskeletons and fungal cell walls. Within the carnivorous plants, two subclasses of class I chitinases have been identified to play a role in the digestion of prey. Members of these two subclasses, depending on the presence or absence of a C-terminal extension, can be secreted from specialized digestive glands found within the morphologically diverse traps that develop from carnivorous plant leaves. The degree of homology among carnivorous plant class I chitinases and the method by which these enzymes have been adapted for the carnivorous habit has yet to be elucidated. This study focuses on understanding the evolution of carnivory and chitinase genes in one of the major groups of plants that has evolved the carnivorous habit: the Caryophyllales. We recover novel class I chitinase homologs from species of genera Ancistrocladus, Dionaea, Drosera, Nepenthes, and Triphyophyllum, while also confirming the presence of two subclasses of class I chitinases based upon sequence homology and phylogenetic affinity to class I chitinases available from sequenced angiosperm genomes. We further detect residues under positive selection and reveal substitutions specific to carnivorous plant class I chitinases. These substitutions may confer functional differences as indicated by protein structure homology modeling.
Collapse
Affiliation(s)
- Tanya Renner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | | |
Collapse
|