1
|
Moriyama Y, Hasuzawa N, Nomura M. María Teresa Miras Portugal: a pioneer for vesicular nucleotide storage. Purinergic Signal 2024; 20:93-98. [PMID: 36525101 PMCID: PMC10997567 DOI: 10.1007/s11302-022-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chromaffin granules are secretory granules present in adrenal medulla chromaffin cells. They contain high contents of catecholamines and nucleotides and have been regarded as a model system for the study of vesicular transmitter uptake and release. In 1988, Dr. María Teresa Miras Portugal, when studying catecholamine biosynthesis, detected a novel group of nucleotides, the diadenosine polyphosphates, in the adrenal chromaffin granules. Based on this finding, she unraveled the existence of diadenosine polyphosphate-mediated chemical transmission, leading to a paradigm shift in the field of purinergic signaling. She is also a pioneer in the studies on vesicular nucleotide storage. First, María Teresa and her group characterized nucleotide transport in chromaffin granules and synaptic vesicles using fluorescent nucleotide derivatives such as 1, N6-ethenoadenosine triphosphates. Then, they revealed the presence of a hypothetical vesicular nucleotide transporter with unique properties in terms of substrate specificity. In this article, we will describe her contributions to vesicular nucleotide storage and the foundations she laid for future studies.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
2
|
Xie E, Guo H, Jiang L, Xia Q. Identification of the Vo domain of V-ATPase in Bombyx mori silkworm. Int J Biol Macromol 2020; 163:386-392. [DOI: 10.1016/j.ijbiomac.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
3
|
Litty D, Müller V. A Na + A 1 A O ATP synthase with a V-type c subunit in a mesophilic bacterium. FEBS J 2020; 287:3012-3023. [PMID: 31876375 DOI: 10.1111/febs.15193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023]
Abstract
A1 AO ATP synthases with a V-type c subunit have only been found in hyperthermophilic archaea which makes bioenergetic analyses impossible due to the instability of liposomes at high temperatures. A search for a potential archaeal A1 AO ATP synthase with a V-type c subunit in a mesophilic organism revealed an A1 AO ATP synthase cluster in the anaerobic, acetogenic bacterium Eubacterium limosum KIST612. The enzyme was purified to apparent homogeneity from cells grown on methanol to a specific activity of 1.2 U·mg-1 with a yield of 12%. The enzyme contained subunits A, B, C, D, E, F, H, a, and c. Subunit c is predicted to be a typical V-type c subunit with only one ion (Na+ )-binding site. Indeed, ATP hydrolysis was strictly Na+ -dependent. N,N'-dicyclohexylcarbodiimide (DCCD) inhibited ATP hydrolysis, but inhibition was relieved by addition of Na+ . Na+ was shown directly to abolish binding of the fluorescence DCCD derivative, NCD-4, to subunit c, demonstrating a competition of Na+ and DCCD/NCD-4 for a common binding site. After incorporation of the A1 AO ATP synthase into liposomes, ATP-dependent primary transport of 22 Na+ as well as ΔµNa+ -driven ATP synthesis could be demonstrated. The Na+ A1 AO ATP synthase from E. limosum is the first ATP synthase with a V-type c subunit from a mesophilic organism. This will enable future bioenergetic analysis of these unique ATP synthases.
Collapse
Affiliation(s)
- Dennis Litty
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
4
|
Krah A, Marzinek JK, Bond PJ. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1004-1010. [DOI: 10.1016/j.bbamem.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
|
5
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Jonas EA, Porter GA, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase. Pharmacol Res 2015; 99:382-92. [PMID: 25956324 PMCID: PMC4567435 DOI: 10.1016/j.phrs.2015.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Ion transport across the mitochondrial inner and outer membranes is central to mitochondrial function, including regulation of oxidative phosphorylation and cell death. Although essential for ATP production by mitochondria, recent findings have confirmed that the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane and cell death. This review will discuss recent advances in understanding the molecular components of mPTP, its regulatory mechanisms and how these contribute directly to its physiological as well as pathological roles.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
7
|
Mayer F, Lim JK, Langer JD, Kang SG, Müller V. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes. J Biol Chem 2015; 290:6994-7002. [PMID: 25593316 DOI: 10.1074/jbc.m114.616862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na(+) as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na(+) transport. This is the first proof of Na(+) transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na(+) in the bioenergetics of archaea.
Collapse
Affiliation(s)
- Florian Mayer
- From the Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jae Kyu Lim
- the Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan 426-744, South Korea, the Department of Marine Biotechnology, University of Science and Technology, 217 Gajeongro, Daejeon 350-333, South Korea, and
| | - Julian D Langer
- the Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt/Main, Germany
| | - Sung Gyun Kang
- the Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan 426-744, South Korea, the Department of Marine Biotechnology, University of Science and Technology, 217 Gajeongro, Daejeon 350-333, South Korea, and
| | - Volker Müller
- From the Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany,
| |
Collapse
|
8
|
Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 2014; 55:69-77. [DOI: 10.1016/j.ceca.2013.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/25/2013] [Accepted: 12/08/2013] [Indexed: 01/27/2023]
|
9
|
Zhang C, Marcia M, Langer JD, Peng G, Michel H. Role of the N-terminal signal peptide in the membrane insertion ofAquifex aeolicusF1F0ATP synthase c-subunit. FEBS J 2013; 280:3425-35. [DOI: 10.1111/febs.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven CT USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Guohong Peng
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Hartmut Michel
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| |
Collapse
|
10
|
Nasiri N, Shokri E, Nematzadeh GA. Aeluropus littoralis NaCl-induced vacuolar H+-ATPase Subunit c: Molecular cloning and expression analysis. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mayer F, Leone V, Langer JD, Faraldo-Gómez JD, Müller V. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure. J Biol Chem 2012; 287:39327-37. [PMID: 23007388 DOI: 10.1074/jbc.m112.411223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.
Collapse
Affiliation(s)
- Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
12
|
Dreisigacker S, Latek D, Bockelmann S, Huss M, Wieczorek H, Filipek S, Gohlke H, Menche D, Carlomagno T. Understanding the Inhibitory Effect of Highly Potent and Selective Archazolides Binding to the Vacuolar ATPase. J Chem Inf Model 2012; 52:2265-72. [DOI: 10.1021/ci300242d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Dreisigacker
- Structural and Computational Biology Unit, EMBL, Mayerhofstrasse 1, D-69117 Heidelberg, Germany
- Institute of Organic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer
Feld 270, D-69120 Heidelberg, Germany
| | - Dorota Latek
- Structural and Computational Biology Unit, EMBL, Mayerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Svenja Bockelmann
- Department of Animal Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Markus Huss
- Department of Animal Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Department of Animal Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Slawomir Filipek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Holger Gohlke
- Heinrich-Heine-University Düsseldorf,
Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Dirk Menche
- Institute of Organic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer
Feld 270, D-69120 Heidelberg, Germany
| | - Teresa Carlomagno
- Structural and Computational Biology Unit, EMBL, Mayerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
13
|
Knight AJ, Behm CA. Minireview: the role of the vacuolar ATPase in nematodes. Exp Parasitol 2011; 132:47-55. [PMID: 21959022 DOI: 10.1016/j.exppara.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
The vacuolar ATPase enzyme complex (V-ATPase) pumps protons across membranes, energised by hydrolysis of ATP. It is involved in many physiological processes and has been implicated in many different diseases. While the broader functions of V-ATPases have been reviewed extensively, the role of this complex in nematodes specifically has not. Here, the essential role of the V-ATPase in nematode nutrition, osmoregulation, synthesis of the cuticle, neurobiology and reproduction is discussed. Based on the requirement of V-ATPase activity, or components of the V-ATPase, for these processes, the potential of the V-ATPase as a drug target for nematode parasites, which cause a significant burden to human health and agriculture, is also discussed. The V-ATPase has all the characteristics of a suitable drug target against nematodes, however the challenge will be to develop a high-throughput assay with which to test potential inhibitors.
Collapse
Affiliation(s)
- Alison J Knight
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
14
|
Al‐Awqati Q, Beauwens R. Cellular Mechanisms of H
+
and HCO
3
−
transport in tight urinary epithelia. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Miranda KC, Karet FE, Brown D. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One 2010; 5:e9531. [PMID: 20224822 PMCID: PMC2835735 DOI: 10.1371/journal.pone.0009531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/03/2010] [Indexed: 12/31/2022] Open
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) is a multisubunit proton pump that is involved in both intra- and extracellular acidification processes throughout the body. Multiple homologs and splice variants of V-ATPase subunits are thought to explain its varied spatial and temporal expression pattern in different cell types. Recently subunit nomenclature was standardized with a total of 22 subunit variants identified. However this standardization did not accommodate the existence of splice variants and is therefore incomplete. Thus, we propose here an extension of subunit nomenclature along with a literature and sequence database scan for additional V-ATPase subunits. An additional 17 variants were pulled from a literature search while 4 uncharacterized potential subunit variants were found in sequence databases. These findings have been integrated with the current V-ATPase knowledge base to create a new V-ATPase subunit catalogue. It is envisioned this catalogue will form a new platform on which future studies into tissue- and organelle-specific V-ATPase expression, localization and function can be based.
Collapse
Affiliation(s)
- Kevin C. Miranda
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fiona E. Karet
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Saroussi S, Nelson N. The little we know on the structure and machinery of V-ATPase. J Exp Biol 2009; 212:1604-10. [PMID: 19448070 DOI: 10.1242/jeb.025866] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
The life of every eukaryotic cell depends on the function of vacuolar H+-ATPase (V-ATPase). Today we know that V-ATPase is vital for many more physiological and biochemical processes than it was expected three decades ago when the enzyme was discovered. These range from a crucial role in the function of internal organelles such as vacuoles, lysosomes, synaptic vesicles, endosomes, secretory granules and the Golgi apparatus to the plasma membrane of several organisms and specific tissues, and specialized cells. The overall structure and mechanism of action of the V-ATPase is supposed to be similar to that of the well-characterized F-type ATP synthase (F-ATPase). Both consist of a soluble catalytic domain (V1 or F1) that is coupled to a membrane-spanning domain (Vo or Fo) by one or more `stalk' components. Owing to the complexity and challenging properties of V-ATPase its study is lagging behind that of its relative F-ATPase. Time will tell whether V-ATPase shares an identical mechanism of action with F-ATPase or its mode of operation is unique.
Collapse
Affiliation(s)
- Shai Saroussi
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V. Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 2009; 284:10110-9. [PMID: 19203996 PMCID: PMC2665065 DOI: 10.1074/jbc.m808498200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/09/2009] [Indexed: 11/06/2022] Open
Abstract
The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A(1) part and a transmembrane, ion translocation domain A(0). The A(1)A(0) complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 +/- 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A(1) and A(0) domain, connected by a central stalk and two peripheral stalks, one of which is connected to A(0), and both connected to A(1) via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A(3)B(3)CDE(2)FH(2)ac(10).
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
18
|
Cloning and sequencing of V-ATPase subunit d from mung bean and its function in passive proton transport. J Bioenerg Biomembr 2009; 40:569-76. [PMID: 19194790 DOI: 10.1007/s10863-008-9193-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
We have previously shown that vacuolar H+-ATPase subcomplex V(o) from mung bean contains subunit d, however, its sequence and function were unknown. In the present study, we report the cloning and recombinant over expression of subunit d from mung bean in E. coli. To study the function of subunit d, two vacuolar H+-ATPase subcomplexes V(o) from mung bean were purified-one containing subunits a and c(c',c") and the other containing subunits a, c(c',c") and d. After reconstitution of the purified V(o) subcomplexes into liposomes, the proton translocation was studied. Our results show that the V(o) subcomplex in the absence of subunit d is a passive proton channel, while the V(o) subcomplex in the presence of the subunit d is not. Taken together, our data supports the conclusion that the subunit d of the plant vacuolar H(+)-ATPase from mung bean is positioned at the central stalk and involved in the proton translocation across the tonoplast membrane.
Collapse
|
19
|
Cipriano DJ, Wang Y, Bond S, Hinton A, Jefferies KC, Qi J, Forgac M. Structure and regulation of the vacuolar ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:599-604. [PMID: 18423392 DOI: 10.1016/j.bbabio.2008.03.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 12/31/2022]
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c'', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c''), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.
Collapse
Affiliation(s)
- Daniel J Cipriano
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, Müller V. An intermediate step in the evolution of ATPases - a hybrid F0-V0 rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J 2008; 275:1999-2007. [DOI: 10.1111/j.1742-4658.2008.06354.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wang Y, Cipriano DJ, Forgac M. Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 2007; 282:34058-65. [PMID: 17897940 PMCID: PMC2394185 DOI: 10.1074/jbc.m704331200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- ¶ To whom correspondence should be addressed: Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111. Tel: 617-636-6939; Fax: 617-636-0445; E-mail:
| |
Collapse
|
22
|
Fritz M, Müller V. An intermediate step in the evolution of ATPases--the F1F0-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. FEBS J 2007; 274:3421-8. [PMID: 17555523 DOI: 10.1111/j.1742-4658.2007.05874.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous preparations of the Na(+) F(1)F(0)-ATP synthase solubilized by Triton X-100 lacked some of the membrane-embedded motor subunits [Reidlinger J & Müller V (1994) Eur J Biochem233, 275-283]. To improve the subunit recovery, we revised our purification protocol. The ATP synthase was solubilized with dodecylmaltoside and further purified to apparent homogeneity by chromatographic techniques. The preparation contained, along with the F(1) subunits, the entire membrane-embedded motor with the stator subunits a and b, and the heterooligomeric c ring, which contained the V(1)V(0)-like subunit c(1) and the F(1)F(0)-like subunits c(2) and c(3). After incorporation into liposomes, ATP synthesis could be driven by an electrochemical sodium ion potential or a potassium ion diffusion potential, but not by a sodium ion potential. This is the first demonstration that an ATPase with a V(0)-F(0) hybrid motor is capable of ATP synthesis.
Collapse
Affiliation(s)
- Michael Fritz
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
23
|
Penefsky HS, Cross RL. Structure and mechanism of FoF1-type ATP synthases and ATPases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:173-214. [PMID: 1828930 DOI: 10.1002/9780470123102.ch4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H S Penefsky
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse
| | | |
Collapse
|
24
|
Abstract
Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
25
|
Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A Model for the Proteolipid Ring and Bafilomycin/Concanamycin-binding Site in the Vacuolar ATPase of Neurospora crassa. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Bowman BJ, McCall ME, Baertsch R, Bowman EJ. A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 2006; 281:31885-93. [PMID: 16912037 DOI: 10.1074/jbc.m605532200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPase has been implicated in a variety of physiological processes in eukaryotic cells. Bafilomycin and concanamycin, highly potent and specific inhibitors of the vacuolar ATPase, have been widely used to investigate the enzyme. Derivatives have been developed as possible therapeutic drugs. We have used random mutagenesis and site-directed mutagenesis to identify 23 residues in the c subunit involved in binding these drugs. We generated a model for the structure of the ring of c subunits in Neurospora crassa by using data from the crystal structure of the homologous subunits of the bacterium Enterococcus hirae (Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G., and Walker, J. E. (2005) Science 308, 654-659). In the model 10 of the 11 mutation sites that confer the highest degree of resistance are closely clustered. They form a putative drug-binding pocket at the interface between helices 1 and 2 on one c subunit and helix 4 of the adjacent c subunit. The excellent fit of the N. crassa sequence to the E. hirae structure and the degree to which the structural model predicts the clustering of these residues suggest that the folding of the bacterial and eukaryotic polypeptides is very similar.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|
27
|
Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M. Structure and regulation of the V-ATPases. J Bioenerg Biomembr 2006; 37:393-8. [PMID: 16691471 DOI: 10.1007/s10863-005-9478-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and an integral V(0) domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V(0) domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
28
|
Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006; 10:167-80. [PMID: 16645313 DOI: 10.1159/000091563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Archaea are a heterogeneous group of microorganisms that often thrive under harsh environmental conditions such as high temperatures, extreme pHs and high salinity. As other living cells, they use chemiosmotic mechanisms along with substrate level phosphorylation to conserve energy in form of ATP. Because some archaea are rooted close to the origin in the tree of life, these unusual mechanisms are considered to have developed very early in the history of life and, therefore, may represent first energy-conserving mechanisms. A key component in cellular bioenergetics is the ATP synthase. The enzyme from archaea represents a new class of ATPases, the A1A0 ATP synthases. They are composed of two domains that function as a pair of rotary motors connected by a central and peripheral stalk(s). The structure of the chemically-driven motor (A1) was solved by small-angle X-ray scattering in solution, and the structure of the first A1A0 ATP synthases was obtained recently by single particle analyses. These studies revealed novel structural features such as a second peripheral stalk and a collar-like structure. In addition, the membrane-embedded electrically-driven motor (A0) is very different in archaea with sometimes novel, exceptional subunit composition and coupling stoichiometries that may reflect the differences in energy-conserving mechanisms as well as adaptation to temperatures at or above 100 degrees C.
Collapse
Affiliation(s)
- V Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Campus Riedberg, Frankfurt a. Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
30
|
Yatsushiro S, Taniguchi S, Mitamura T, Omote H, Moriyama Y. Proteolipid of vacuolar H+-ATPase of Plasmodium falciparum: cDNA cloning, gene organization and complementation of a yeast null mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:89-96. [PMID: 16293223 DOI: 10.1016/j.bbamem.2005.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 08/28/2005] [Accepted: 08/30/2005] [Indexed: 11/19/2022]
Abstract
Vacuolar H(+)-ATPase (V-ATPase), an electrogenic proton pump, is highly expressed in Plasmodium falciparum, the human malaria parasite. Although V-ATPase-driven proton transport is involved in various physiological processes in the parasite, the overall features of the V-ATPase of P. falciparum, including the gene organization and biogenesis, are far less known. Here, we report cDNA cloning of proteolipid subunit c of P. falciparum, the smallest and most highly hydrophobic subunit of V-ATPase. RT-PCR analysis as well as Northern blotting indicated expression of the proteolipid gene in the parasite cells. cDNA, which encodes a complete reading frame comprising 165 amino acids, was obtained, and its deduced amino acid sequence exhibits 52 and 57% similarity to the yeast and human counterparts, respectively. Southern blot analysis suggested the presence of a single copy of the proteolipid gene, with 5 exons and 4 introns. Upon transfection of the cDNA into a yeast null mutant, the cells became able to grow at neutral pH, accompanied by vesicular accumulation of quinacrine. In contrast, a mutated proteolipid with replacement of glutamate residue 138 with glutamine did not lead to recovery of the growth ability or vesicular accumulation of quinacrine. These results indicated that the cDNA actually encodes the proteolipid of P. falciparum and that the proteolipid is functional in yeast.
Collapse
Affiliation(s)
- Shouki Yatsushiro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | |
Collapse
|
31
|
A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005; 36:109-26. [PMID: 15629643 DOI: 10.1016/j.micron.2004.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Vacuolar ATPases (V-ATPases) are large, membrane bound, multisubunit protein complexes which function as ATP hydrolysis driven proton pumps. V-ATPases and related enzymes are found in the endomembrane system of eukaryotic organsims, the plasma membrane of specialized cells in higher eukaryotes, and the plasma membrane of prokaryotes. The proton pumping action of the vacuolar ATPase is involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release. This review summarizes recent progress in the structure determination of the vacuolar ATPase focusing on studies by transmission electron microscopy. A model of the subunit architecture of the vacuolar ATPase is presented which is based on the electron microscopic images and the available information from genetic, biochemical and biophysical experiments.
Collapse
|
32
|
Abstract
The F-, V-, and A-adenosine triphosphatases (ATPases) represent a family of evolutionarily related ion pumps found in every living cell. They either function to synthesize adenosine triphosphate (ATP) at the expense of an ion gradient or they act as primary ion pumps establishing transmembrane ion motive force at the expense of ATP hydrolysis. The A-, F-, and V-ATPases are rotary motor enzymes. Synthesis or hydrolysis of ATP taking place in the three catalytic sites of the membrane extrinsic domain is coupled to ion translocation across the single ion channel in the membrane-bound domain via rotation of a central part of the complex with respect to a static portion of the enzyme. This chapter reviews recent progress in the structure determination of several members of the family of F-, A-, and V-ATPases and our current understanding of the rotary mechanism of energy coupling.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
33
|
Bernal RA, Stock D. Three-Dimensional Structure of the Intact Thermus thermophilus H+-ATPase/Synthase by Electron Microscopy. Structure 2004; 12:1789-98. [PMID: 15458628 DOI: 10.1016/j.str.2004.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/27/2004] [Accepted: 07/28/2004] [Indexed: 11/20/2022]
Abstract
ATPases are unique rotary motors that are essential to all living organisms because of their role in energy interconversion. A three-dimensional reconstruction of the intact H+-ATPase/synthase from Thermus thermophilus has revealed the presence of two interconnected peripheral stalks, a well-defined central stalk, and a hexagonally shaped hydrophobic domain. The peripheral stalks are each attached to the water soluble sector at a noncatalytic subunit interface and extend down toward the membrane where they interact with a strong elongated tube of density that runs parallel to the membrane and connects the two stalks. The central stalk is well resolved, especially with respect to its interaction with a single catalytic subunit giving rise to an asymmetry comparable to that identified in F-ATPases. The hexagonal shape of the membrane domain might suggest the presence of 12 proteolipids arranged as dimers, analogous to the proposed arrangement in the related eukaryotic V-ATPases.
Collapse
Affiliation(s)
- Ricardo A Bernal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
34
|
Flannery AR, Graham LA, Stevens TH. Topological Characterization of the c, c′, and c″ Subunits of the Vacuolar ATPase from the Yeast Saccharomyces cerevisiae. J Biol Chem 2004; 279:39856-62. [PMID: 15252052 DOI: 10.1074/jbc.m406767200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that acidifies intracellular organelles in eukaryotes. Similar to the F-type ATP synthase (FATPase), the V-ATPase is composed of two subcomplexes, V(1) and V(0). Hydrolysis of ATP in the V(1) subcomplex is tightly coupled to proton translocation accomplished by the V(0) subcomplex, which is composed of five unique subunits (a, d, c, c', and c"). Three of the subunits, subunit c (Vma3p), c' (Vma11p), and c" (Vma16p), are small highly hydrophobic integral membrane proteins called "proteolipids" that share sequence similarity to the F-ATPase subunit c. Whereas subunit c from the F-ATPase spans the membrane bilayer twice, the V-ATPase proteolipids have been modeled to have at least four transmembrane-spanning helices. Limited proteolysis experiments with epitope-tagged copies of the proteolipids have revealed that the N and the C termini of c (Vma3p) and c' (Vma11p) were in the lumen of the vacuole. Limited proteolysis of epitope-tagged c" (Vma16p) indicated that the N terminus is located on the cytoplasmic face of the vacuole, whereas the C terminus is located within the vacuole. Furthermore, a chimeric fusion between Vma16p and Vma3p, Vma16-Vma3p, was found to assemble into a fully functional V-ATPase complex, further supporting the conclusion that the C terminus of Vma16p resides within the lumen of the vacuole. These results indicate that subunits c and c' have four transmembrane segments with their N and C termini in the lumen and that c" has five transmembrane segments, with the N terminus exposed to the cytosol and the C terminus lumenal.
Collapse
Affiliation(s)
- Andrew R Flannery
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
35
|
Harrison M, Durose L, Song CF, Barratt E, Trinick J, Jones R, Findlay JBC. Structure and function of the vacuolar H+-ATPase: moving from low-resolution models to high-resolution structures. J Bioenerg Biomembr 2004; 35:337-45. [PMID: 14635779 DOI: 10.1023/a:1025728915565] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the absence of a high-resolution structure for the vacuolar H+-ATPase, a number of approaches can yield valuable information about structure/function relationships in the enzyme. Electron microscopy can provide not only a representation of the overall architecture of the complex, but also a low-resolution map onto which structures solved for individually expressed subunits can be fitted. Here we review the possibilities for electron microscopy of the Saccharomyces V-ATPase and examine the suitability of V-ATPase subunits for expression in high yield prokaryotic systems, a key step towards high-resolution structural studies. We also review the role of experimentally-derived structural models in understanding structure/function relationships in the V-ATPase, with particular reference to the complex of proton-translocating 16 kDa proteolipids in the membrane domain of the V-ATPase. This model in turn makes testable predictions about the sites of binding of bafilomycins and the functional interactions between the proteolipid and the single-copy membrane subunit Vph1p, with implications for the constitution of the proton translocation pathway.
Collapse
Affiliation(s)
- Michael Harrison
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPase has a structure and mechanism of action similar to F-ATPase and several of their subunits probably evolved from common ancestors. In eukaryotic cells, F-ATPase is confined to the semiautonomous organelles, chloroplasts and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the protonmotive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. It was the survival of the yeast mutant without the active enzyme and yeast genetics that allowed the identification of genuine subunits of the V-ATPase. It also revealed special properties of individual subunits, factors that are involved in the enzyme's biogenesis and assembly, as well as the involvement of V-ATPase in the secretory pathway, endocytosis, and respiration. It may be the insect V-ATPase that unconventionally resides in the plasma membrane of their midgut, that will give the first structure resolution of this complex.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv Israel.
| |
Collapse
|
37
|
Inoue T, Wilkens S, Forgac M. Subunit structure, function, and arrangement in the yeast and coated vesicle V-ATPases. J Bioenerg Biomembr 2004; 35:291-9. [PMID: 14635775 DOI: 10.1023/a:1025720713747] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) are ATP-dependent proton pumps that function both to acidify intracellular compartments and to transport protons across the plasma membrane. Acidification of intracellular compartments is important for such processes as receptor-mediated endocytosis, intracellular trafficking, protein processing, and coupled transport. Plasma membrane V-ATPases function in renal acidification, bone resorption, pH homeostasis, and, possibly, tumor metastasis. This review will focus on work from our laboratories on the V-ATPases from mammalian clathrin-coated vesicles and from yeast. The V-ATPases are composed of two domains. The peripheral V1 domain has a molecular mass of 640 kDa and is composed of eight different subunits (subunits A-H) of molecular mass 70-13 kDa. The integral V0 domain, which has a molecular mass of 260 kDa, is composed of five different subunits (subunits a, d, c, c', and c'') of molecular mass 100-17 kDa. The V1 domain is responsible for ATP hydrolysis whereas the V0 domain is responsible for proton transport. Using a variety of techniques, including cysteine-mediated crosslinking and electron microscopy, we have defined both the overall shape of the V-ATPase and the V0 domain as well as the location of various subunits within the complex. We have employed site-directed and random mutagenesis to identify subunits and residues involved in nucleotide binding and hydrolysis, proton translocation, and the coupling of these two processes. We have also investigated the mechanism of regulation of the V-ATPase by reversible dissociation and the role of different subunits in this process.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
38
|
Wang Y, Inoue T, Forgac M. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. J Biol Chem 2004; 279:44628-38. [PMID: 15322078 DOI: 10.1074/jbc.m407345200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H+)-ATPase (or V-ATPase) is an ATP-dependent proton pump which couples the energy released upon ATP hydrolysis to rotational movement of a ring of proteolipid subunits (c, c', and c'') relative to the integral subunit a. The proteolipid subunits each contain a single buried acidic residue that is essential for proton transport, with this residue located in TM4 of subunits c and c' and TM2 of subunit c''. Subunit c'' contains an additional buried acidic residue in TM4 that is not required for proton transport. The buried acidic residues of the proteolipid subunits are believed to interact with an essential arginine residue (Arg735) in TM7 of subunit a during proton translocation. We have previously shown that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM4 of subunit c' bordered by Glu145 and Leu147 (Kawasaki-Nishi et al. (2003) J. Biol. Chem. 278, 41908-41913). We have now analyzed interaction of subunits a and c'' using disulfide-mediated cross-linking. The results indicate that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM2 of subunit c'' centered on Ile105, with the essential glutamic acid residue (Glu108) located near the opposite border of this face compared with TM4 of subunit c'. By contrast, TM4 of subunit c'' does not form strong cross-links with TM7 of subunit a, suggesting that these transmembrane segments are not normally in close proximity. These results are discussed in terms of a model involving rotation of interacting helices in subunit a and the proteolipid subunits relative to each other.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
39
|
Bowman EJ, Graham LA, Stevens TH, Bowman BJ. The Bafilomycin/Concanamycin Binding Site in Subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 2004; 279:33131-8. [PMID: 15180988 DOI: 10.1074/jbc.m404638200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar H+-ATPase is inhibited with high specificity and potency by bafilomycin and concanamycin, macrolide antibiotics with similar structures. We previously reported that mutation at three residues in subunit c of the vacuolar ATPase from Neurospora crassa conferred strong resistance to bafilomycin but little or no resistance to concanamycin (Bowman, B. J., and Bowman, E. J. (2002) J. Biol. Chem. 277, 3965-3972). We have identified additional mutated sites in subunit c that confer resistance to bafilomycin. Furthermore, by subjecting a resistant mutant to a second round of mutation we isolated strains with increased resistance to both bafilomycin and concanamycin. In all of these strains the second mutation is also in subunit c, suggesting it forms at least part of the concanamycin binding site. Site-directed mutagenesis of the gene encoding subunit c in Saccharomyces cerevisiae showed that single mutations in each of the residues identified in one of the double mutants of N. crassa conferred resistance to both bafilomycin and concanamycin. Mutations at the corresponding sites in the VMA11 and VMA16 genes of S. cerevisiae, which encode the c' and c" subunits, did not confer resistance to the drugs. In all, nine residues of subunit c have been implicated in drug binding. The positions of these residues support a model in which the drug binding site is a pocket formed by helices 1, 2, and 4. We hypothesize that the drugs inhibit by preventing the rotation of the c subunits.
Collapse
Affiliation(s)
- Emma Jean Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Volker Müller
- Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
41
|
Kawasaki-Nishi S, Nishi T, Forgac M. Interacting helical surfaces of the transmembrane segments of subunits a and c' of the yeast V-ATPase defined by disulfide-mediated cross-linking. J Biol Chem 2003; 278:41908-13. [PMID: 12917411 DOI: 10.1074/jbc.m308026200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
42
|
Aviezer-Hagai K, Padler-Karavani V, Nelson N. Biochemical support for the V-ATPase rotary mechanism: antibody against HA-tagged Vma7p or Vma16p but not Vma10p inhibits activity. J Exp Biol 2003; 206:3227-37. [PMID: 12909704 DOI: 10.1242/jeb.00543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
V-ATPase null mutants in yeast have a distinct, conditionally lethal phenotype that can be obtained through disruption of any one of its subunits. This enables supplementation of this mutant with the relevant subunit tagged with an epitope against which an antibody is available. In this system, the effect of antibody on the activity of the enzyme can be analyzed. Towards this end we used HA to tag subunits Vma7p, Vma10p and Vma16p, which are assumed to represent, respectively, the shaft, stator and turbine of the enzyme, and used them to supplement the corresponding yeast V-ATPase null mutants. The anti-HA epitope antibody inhibited both the ATP-dependent proton uptake and the ATPase activities of the Vma16p-HA and Vma7p-HA containing complexes, in intact vacuoles and in the detergent-solubilized enzyme. Neither of these activities was inhibited by the antibody in Vma10p-HA containing enzyme. These results support the function of Vma10p as part of the stator, while the other tagged subunits are part of the rotor apparatus. The HA-tag was attached to the N terminus of Vma16p; thus the antibody inhibition points to its accessibility outside the vacuolar membrane. This assumption is supported by the supplementation of the yeast mutant by the homologues of Vma16p isolated from Arabidopsis thaliana and lemon fruit c-DNA. Contrary to yeast, which has five predicted helices, the plant subunit Vma16p has only four. Our results confirm a recent report that only four of the yeast Vma16p complexes are actually transmembrane helices.
Collapse
Affiliation(s)
- Keren Aviezer-Hagai
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
43
|
Abstract
The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are multisubunit complexes composed of a peripheral domain (V(1)) responsible for ATP hydrolysis and an integral domain (V(0)) responsible for proton translocation. Based upon their structural similarity to the F(1)F(0) ATP synthases, the V-ATPases are thought to operate by a rotary mechanism in which ATP hydrolysis in V(1) drives rotation of a ring of proteolipid subunits in V(0). This review is focused on the current structural knowledge of the V-ATPases as it relates to the mechanism of ATP-driven proton translocation.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Murata T, Arechaga I, Fearnley IM, Kakinuma Y, Yamato I, Walker JE. The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. J Biol Chem 2003; 278:21162-7. [PMID: 12651848 DOI: 10.1074/jbc.m301620200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In F-ATPases, ATP hydrolysis is coupled to translocation of ions through membranes by rotation of a ring of c subunits in the membrane. The ring is attached to a central shaft that penetrates the catalytic domain, which has pseudo-3-fold symmetry. The ion translocation pathway lies between the external circumference of the ring and another hydrophobic protein. The H+ or Na+:ATP ratio depends upon the number of ring protomers, each of which has an essential carboxylate involved directly in ion translocation. This number and the ratio differ according to the source, and 10, 11, and 14 protomers have been found in various enzymes, with corresponding calculated H+ or Na+:ATP ratios of 3.3, 3.7, and 4.7. V-ATPases are related in structure and function to F-ATPases. Oligomers of subunit K from the Na+-motive V-ATPase of Enterococcus hirae also form membrane rings but, as reported here, with 7-fold symmetry. Each protomer has one essential carboxylate. Thus, hydrolysis of one ATP provides energy to extrude 2.3 sodium ions. Symmetry mismatch between the catalytic and membrane domains appears to be an intrinsic feature of both V- and F-ATPases.
Collapse
Affiliation(s)
- Takeshi Murata
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Zhan H, Yokoyama K, Otani H, Tanigaki K, Shirota N, Takano S, Ohkuma S. Different roles of proteolipids and 70-kDa subunits of V-ATPase in growth and death of cultured human cells. Genes Cells 2003; 8:501-13. [PMID: 12786941 DOI: 10.1046/j.1365-2443.2003.00651.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The vacuolar-type proton-translocating adenosine triphosphatase (V-ATPase) plays important roles in cell growth and tumour progression. V-ATPase is composed of two distinct structures, a hydrophilic catalytic cytosolic sector (V(1)) and a hydrophobic transmembrane sector (V(0)). The V(1) sector is composed of 5-8 different subunits with the structure A(3)B(3)C(1)D(1)E(1)F(1)G(1)H(1). The V0 sector is composed of 5 different subunits with the structure 1161381191166. The over-expression of 16-kDa proteolipid subunit of V-ATPase in the perinuclear region of the human adventitial fibroblasts promotes phenotypic modulation that contributes to neointimal formation and medial thickening. A relationship between oncogenicity and the expression of the 16-kDa proteolipid has also been suggested in human pancreatic carcinoma tissue. RESULTS We found that the mRNA levels of the 16-kDa proteolipid but not of the 70-kDa subunit of V-ATPase in human myofibroblasts were more abundant in serum-containing medium (MF(+) cells) than serum-free medium (MF(-) cells). In HeLa cells, the levels of mRNA and protein of the 16-kDa, 21-kDa or 70-kDa were clearly suppressed when the corresponding anti-sense oligonucleotides were administered to the culture medium. The growth rate and viability (mostly due to necrosis) of HeLa cells were reduced markedly by the 16-kDa and 21-kDa anti-sense, but little by the 70-kDa anti-sense, and not at all by any sense oligonucleotides. The localization of 16-kDa/21-kDa proteolipid subunits was different from that of the 70-kDa subunit in HeLa cells. CONCLUSION These results suggest that the 16-kDa and 21-kDa proteolipid subunits of the V0 sector play crucial roles in growth and death of cultured human cells. Our results may provide new insights into the mechanism and therapeutic implications for vessel wall hyperplasia and tumorigenesis.
Collapse
Affiliation(s)
- Hong Zhan
- Department of Dynamic Physiology, Graduate School of Natural Science and Technology, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Nishi T, Kawasaki-Nishi S, Forgac M. The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function. J Biol Chem 2003; 278:5821-7. [PMID: 12482875 DOI: 10.1074/jbc.m209875200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast vacuolar ATPase (V-ATPase) contains three proteolipid subunits: c (Vma3p), c' (Vma11p), and c" (Vma16p). Each subunit contains a buried glutamate residue that is essential for function, and these subunits are not able to substitute for each other in supporting activity. Subunits c and c' each contain four putative transmembrane segments (TM1-4), whereas subunit c" is predicted to contain five. To determine whether TM1 of subunit c" serves an essential function, a deletion mutant of Vma16p was constructed lacking TM1 (Vma16p-Delta TM1). Although this construct does not complement the loss of Vma3p or Vma11p, it does complement the loss of full-length Vma16p. Vacuoles isolated from the strain expressing Vma16p-Delta TM1 showed V-ATPase activity and proton transport greater than 80% relative to wild type and displayed wild type levels of subunits A and a, suggesting normal assembly of the V-ATPase complex. These results suggest that TM1 of Vma16p is dispensable for both activity and assembly of the V-ATPase. To obtain information about the topology of Vma16p, labeling of single cysteine-containing mutants using the membrane-permeable reagent 3-(N-maleimidylpropionyl)biocytin (MPB) and the -impermeable reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS) was tested. Both the Cys-less form of Vma16p and eight single cysteine-containing mutants retained greater than 80% of wild type levels of activity. Of the eight mutants tested, two (S5C and S178C) were labeled by MPB. MPB-labeling of S5C was blocked by AMS in intact vacuoles, whereas S178C was blocked by AMS only in the presence of permeabilizing concentrations of detergent. In addition, a hemagglutinin epitope tag introduced into the C terminus of Vma16p was recognized by an anti-hemagglutinin antibody in intact vacuolar membranes, suggesting a cytoplasmic orientation for the C terminus. These results suggest that subunit c" contains four rather than five transmembrane segments with both the N and C terminus on the cytoplasmic side of the membrane.
Collapse
Affiliation(s)
- Tsuyoshi Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
47
|
Arata Y, Baleja JD, Forgac M. Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Biochemistry 2002; 41:11301-7. [PMID: 12220197 DOI: 10.1021/bi0262449] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.
Collapse
Affiliation(s)
- Yoichiro Arata
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
48
|
Domgall I, Venzke D, Lüttge U, Ratajczak R, Böttcher B. Three-dimensional map of a plant V-ATPase based on electron microscopy. J Biol Chem 2002; 277:13115-21. [PMID: 11815621 DOI: 10.1074/jbc.m112011200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases pump protons into the interior of various subcellular compartments at the expense of ATP. Previous studies have shown that these pumps comprise a membrane-integrated, proton-translocating (V(0)), and a soluble catalytic (V(1)) subcomplex connected to one another by a thin stalk region. We present two three-dimensional maps derived from electron microscopic images of the complete V-ATPase complex from the plant Kalanchoë daigremontiana at a resolution of 2.2 nm. In the presence of a non-hydrolyzable ATP analogue, the details of the stalk region between V(0) and V(1) were revealed for the first time in their three-dimensional organization. A central stalk was surrounded by three peripheral stalks of different sizes and shapes. In the absence of the ATP analogue, the tilt of V(0) changed with respect to V(1), and the stalk region was less clearly defined, perhaps due to increased flexibility and partial detachment of some of the peripheral stalks. These structural changes corresponded to decreased stability of the complex and might be the initial step in a controlled disassembly.
Collapse
Affiliation(s)
- Ines Domgall
- Structural and Computational Biology Programme, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Bowman BJ, Bowman EJ. Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem 2002; 277:3965-72. [PMID: 11724795 DOI: 10.1074/jbc.m109756200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bafilomycin A1, a potent inhibitor of vacuolar H(+)-ATPases (V-ATPase), inhibited growth of Neurospora crassa in medium adjusted to alkaline pH. Ninety-eight mutant strains were selected for growth on medium (pH 7.2) containing 0.3 or 1.0 microm bafilomycin. Three criteria suggested that 11 mutant strains were altered in the V-ATPase: 1) these strains accumulated high amounts of arginine when grown at pH 5.8 in the presence of bafilomycin, 2) the mutation mapped to the locus of vma-3, which encodes the proteolipid subunit c of the V-ATPase, and 3) V-ATPase activity in purified vacuolar membranes was resistant to bafilomycin. Sequencing of the genomic DNA encoding vma-3 identified the following mutations: T32I (two strains), F136L (two strains), Y143H (two strains), and Y143N (five strains). Characterization of V-ATPase activity in the four kinds of mutant strains showed that the enzyme was resistant to bafilomycin in vitro, with half-maximal inhibition obtained at 80-400 nm compared with 6.3 nm for the wild-type enzyme. Surprisingly, the mutant enzymes showed only weak resistance to concanamycin. Interestingly, the positions of two mutations corresponded to positions of oligomycin-resistant mutations in the c subunit of F(1)F(0)-ATP synthases (F-ATPases), suggesting that bafilomycin and oligomycin utilize a similar binding site and mechanism of inhibition in the related F- and V-ATPases.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
50
|
Arata Y, Baleja JD, Forgac M. Cysteine-directed cross-linking to subunit B suggests that subunit E forms part of the peripheral stalk of the vacuolar H+-ATPase. J Biol Chem 2002; 277:3357-63. [PMID: 11724797 DOI: 10.1074/jbc.m109967200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have employed a combination of site-directed mutagenesis and covalent cross-linking to identify subunits in close proximity to subunit B in the vacuolar H(+)-ATPase (V-ATPase) complex. Unique cysteine residues were introduced into a Cys-less form of subunit B, and the V-ATPase complex in isolated vacuolar membranes from each mutant strain was reacted with the bifunctional, photoactivable maleimide reagent 4-(N-maleimido)benzophenone. Photoactivation resulted in cross-linking of the unique sulfhydryl groups on subunit B with other subunits in the complex. Four of the eight mutants constructed containing a unique cysteine residue at Ala(15), Lys(45), Glu(494), or Thr(501) resulted in the formation of cross-linked products, which were recognized by Western blot analysis using antibodies against both subunits B and E. These products had a molecular mass of 84 kDa, consistent with a cross-linked product of subunits B and E. Molecular modeling of subunit B places Ala(15) and Lys(45) near the top of the V(1) structure (i.e. farthest from the membrane), whereas Glu(494) and Thr(501) are predicted to reside near the bottom of V(1), with all four residues predicted to be oriented toward the external surface of the complex. A model incorporating these and previous data is presented in which subunit E exists in an extended conformation on the outer surface of the A(3)B(3) hexamer that forms the core of the V(1) domain. This location for subunit E suggests that this subunit forms part of the peripheral stalk of the V-ATPase that links the V(1) and V(0) domains.
Collapse
Affiliation(s)
- Yoichiro Arata
- Departments of Physiology and Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|