1
|
Hifumi E, Taguchi H, Kato R, Uda T. Role of the constant region domain in the structural diversity of human antibody light chains. FASEB J 2017; 31:1668-1677. [PMID: 28096233 DOI: 10.1096/fj.201600819r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
Abstract
Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM-1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Promotion Institute, Oita University, Oita, Japan;
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Ryuichi Kato
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Taizo Uda
- Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; and.,Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies, Fukuoka, Japan
| |
Collapse
|
2
|
Hifumi E, Matsumoto S, Nakashima H, Itonaga S, Arakawa M, Katayama Y, Kato R, Uda T. A novel method of preparing the monoform structure of catalytic antibody light chain. FASEB J 2015; 30:895-908. [PMID: 26527062 DOI: 10.1096/fj.15-276394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Along with the development of antibody drugs and catalytic antibodies, the structural diversity (heterogeneity) of antibodies has been given attention. For >20 yr, detailed studies on the subject have not been conducted, because the phenomenon presents many difficult and complex problems. Structural diversity provides some (or many) isoforms of an antibody distinguished by different charges, different molecular sizes, and modifications of amino acid residues. For practical use, the antibody and the subunits must have a defined structure. In recent work, we have found that the copper (Cu) ion plays a substantial role in solving the diversity problem. In the current study, we used several catalytic antibody light chains to examine the effect of the Cu ion. In all cases, the different electrical charges of the molecule converged to a single charge, giving 1 peak in cation-exchange chromatography, as well as a single spot in 2-dimensional gel electrophoresis. The Cu-binding site was investigated by using mutagenesis, ultraviolet-visible spectroscopy, atomic force microscope analysis, and molecular modeling, which suggested that histidine and cysteine residues close to the C-terminus are involved with the binding site. The constant region domain of the antibody light chain played an important role in the heterogeneity of the light chain. Our findings may be a significant tool for preparing a single defined, not multiple, isoform structure.
Collapse
Affiliation(s)
- Emi Hifumi
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shingo Matsumoto
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Hiroki Nakashima
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Shogo Itonaga
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Mitsue Arakawa
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Yoshiki Katayama
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Ryuichi Kato
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| | - Taizo Uda
- *Research Promotion Institute and Department of Applied Chemistry, Faculty of Engineering, Oita University, Oita, Japan; Nanotechnology Laboratory, Institute of Systems, Information Technologies, and Nanotechnologies (ISIT), Fukuoka, Japan; Graduate School of System Life Science, Kyushu University, Fukuoka, Japan; Tottori College of Nursing, Tottori, Japan; and High Energy Accelerator Research Organization, Tsukuba, Japan
| |
Collapse
|
3
|
Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, Roterman I, Rybarska J, Stopa B, Zemanek G. Intramolecular immunological signal hypothesis revived--structural background of signalling revealed by using Congo Red as a specific tool. Mini Rev Med Chem 2015; 14:1104-13. [PMID: 25429660 PMCID: PMC4440395 DOI: 10.2174/1389557514666141127150803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/11/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Micellar structures formed by self-assembling Congo red molecules bind to proteins penetrating into functionrelated
unstable packing areas. Here, we have used Congo red - a supramolecular protein ligand to investigate how the
intramolecular structural changes that take place in antibodies following antigen binding lead to complement activation.
According to our findings, Congo red binding significantly enhances the formation of antigen-antibody complexes. As a
result, even low-affinity transiently binding antibodies can participate in immune complexes in the presence of Congo
red, although immune complexes formed by these antibodies fail to trigger the complement cascade. This indicates that
binding of antibodies to the antigen may not, by itself, fulfill the necessary conditions to generate the signal which
triggers effector activity. These findings, together with the results of molecular dynamics simulation studies, enable us to
conclude that, apart from the necessary assembling of antibodies, intramolecular structural changes generated by
strains which associate high- affinity bivalent antibody fitting to antigen determinants are also required to cross the
complement activation threshold.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - G Zemanek
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31- 530 Krakow, Poland..
| |
Collapse
|
4
|
Hoffmann T, Krackhardt AM, Antes I. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. PLoS Comput Biol 2015; 11:e1004244. [PMID: 26185983 PMCID: PMC4505886 DOI: 10.1371/journal.pcbi.1004244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 02/01/2023] Open
Abstract
T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. The recognition of antigenic peptides by cytotoxic T-cells is one of the crucial steps during the adaptive immune response. Thus a detailed understanding of this process is not only important for elucidating the mechanism behind T-cell signaling, but also for various emerging new medical applications like T-cell based immunotherapies and designed bio-therapeutics. However, despite the fast growing interest in this field, the mechanistic basis of the immune response is still largely unknown. Previous qualitative studies suggested that the T-cell receptor (TCR) Vα/Vβ-interdomain angle plays a crucial role in epitope recognition as it predetermines the relative position of its antigen-recognizing CDR1-3 loops and thus TCR specificity. In the manuscript we present a systematic bioinformatic analysis of the structural characteristics of bound and unbound TCR molecules focusing on the Vα/Vβ-angle. Our results demonstrate the importance of this angle for signaling, as several distinct Vα/Vβ-angle based structural clusters could be observed and larger angle flexibilities exist for unbound TCRs than for bound TCRs, providing quantitative proof for a two-step locking mechanism upon epitope recognition. In this context, we could identify a unique rotational point, which allows a quantitative, yet intuitive description of all observed angle variations and the structural changes upon epitope binding.
Collapse
MESH Headings
- Binding Sites
- Computer Simulation
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/ultrastructure
- Models, Chemical
- Models, Immunological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
| | - Angela M. Krackhardt
- Medizinische Klinik III, Innere Medizin mit Schwerpunkt Hämatologie und Onkologie, Technische Universität München, Munich, Germany
- Clinical Cooperation Group, Antigen specific T cell therapy, Helmholtz Zentrum München (GmbH), German Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
5
|
Bax HJ, Keeble AH, Gould HJ. Cytokinergic IgE Action in Mast Cell Activation. Front Immunol 2012; 3:229. [PMID: 22888332 PMCID: PMC3412263 DOI: 10.3389/fimmu.2012.00229] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/14/2012] [Indexed: 12/20/2022] Open
Abstract
Some 10 years ago it emerged that at sufficiently high concentrations certain monoclonal mouse IgEs exert previously unsuspected effects on mast cells. Thus they can both promote survival and induce activation of mast cells without the requirement for antigens. This was a wake up call that appears to have been missed (or dismissed) by the majority of immunologists. The structural attributes responsible for the potency of the so-called “highly cytokinergic” or HC IgEs have not yet been determined, but the events that ensue when such IgEs bind to the high-affinity receptor, FcεRI, on mast cells have been thoroughly studied, and are strikingly similar to those engendered by antigens when they form cross-linked complexes with the receptors. We review the evidence for the cytokinergic activity of IgE, and the structural features and known properties of immunoglobulins, and of IgE in particular, most likely to be implicated in the phenomenon. We suggest that IgEs with cytokinergic activity may be generated by local germinal center reactions in the target organs of allergy. We consider also the important implications that the existence of cytokinergic IgE may have for a fuller understanding of adaptive immunity and of the action of IgE in asthma and other diseases.
Collapse
Affiliation(s)
- Heather J Bax
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | | | | |
Collapse
|
6
|
From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway. Proc Natl Acad Sci U S A 2010; 107:5118-23. [PMID: 20190183 DOI: 10.1073/pnas.0915146107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a tyrosine kinase, is central to human tumorigenesis. Typically, three classes of drugs inhibit tyrosine kinase pathways: blocking antibodies, small kinase inhibitors, and soluble ligand receptor traps/decoys. Only the first two types of EGFR-binding inhibitory drugs are clinically available; notably, no EGFR decoy has yet been developed. Here we identify small molecules mimicking EGFR and that functionally behave as soluble decoys for EGF and TGFalpha, ligands that would otherwise activate downstream signaling. After combinatorial library selection on EGFR ligands, a panel of binding peptides was narrowed by structure-function analysis. The most active motif was CVRAC (EGFR 283-287), which is necessary and sufficient for specific EGFR ligand binding. Finally, a synthetic retro-inverted derivative, (D)(CARVC), became our preclinical prototype of choice. This study reveals an EGFR-decoy drug candidate with translational potential.
Collapse
|
7
|
Kuroda D, Shirai H, Kobori M, Nakamura H. Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins 2008; 73:608-20. [PMID: 18473362 DOI: 10.1002/prot.22087] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among the six complementarity-determining regions (CDRs) in the variable domains of an antibody, the third CDR of the heavy chain (CDR-H3), which lies in the center of the antigen-binding site, plays a particularly important role in antigen recognition. CDR-H3 shows significant variability in its length, sequence, and structure. Although difficult, model building of this segment is the most critical step in antibody modeling. Since our first proposal of the "H3-rules," which classify CDR-H3 structure based on amino acid sequence, the number of experimentally determined antibody structures has increased. Here, we revise these H3-rules and propose an improved classification scheme for CDR-H3 structure modeling. In addition, we determine the common features of CDR-H3 in antibody drugs as well as discuss the concept of "antibody druggability," which can be applied as an indicator of antibody evaluation during drug discovery.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
8
|
Paul S, Johnson DR, Massey R. Binding and multiple hydrolytic sites in epitopes recognized by catalytic anti-peptide antibodies. CIBA FOUNDATION SYMPOSIUM 2007; 159:156-67; discussion 167-73. [PMID: 1720373 DOI: 10.1002/9780470514108.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoantibodies purified from humans catalyse the hydrolysis of the neurotransmitter, vasoactive intestinal peptide (VIP). Evidence that the hydrolysis of VIP is due to antibodies includes: the antibody preparations are free of detectable non-immunoglobulin (non-Ig) contamination; the hydrolytic activity is removed by precipitation with anti-human IgG antibody; human B lymphoblastoid cells transformed with Epstein-Barr virus secrete hydrolytic antibodies in culture; the Fab fragments of the antibodies exhibit VIP hydrolysis; and affinity chromatography on immobilized VIP permits purification of specific antibodies with greatly enriched hydrolytic and binding activities. One of the catalytic antibody preparations hydrolyses the Gln-16-Met-17 bond. Studies with synthetic VIP fragments showed that the epitope recognized by this antibody is formed by VIP(15-28). Important binding interactions are contributed by VIP(22-28), a sequence four residues distant from the scissile bond. Antibodies from a second subject hydrolyse six peptide bonds in VIP, clustered between residues 14 and 22. These bonds link amino acids of different charge, size and hydrophobicity, suggesting that the hydrolytic repertoire of the antibodies is considerable. The antibodies do not hydrolyse peptides unrelated in sequence to VIP. Cleavage of several peptide bonds in VIP by polyclonal antibody preparations may be due to several antibodies, each with a unique cleavage specificity. Alternatively, a single antibody may make catalytically productive contact at multiple peptide bonds in the substrate, because of conformational flexibility of VIP or of the antibody active site. Purified light chains from the catalytic antibodies hydrolysed VIP more rapidly than did intact antibodies. The residues constituting the catalytic site of an antibody may be encoded in germline V-region genes or may arise during maturation of the antibody response.
Collapse
Affiliation(s)
- S Paul
- Department of Pharmacology, University of Nebraska Medical Center, Omaha, 68198
| | | | | |
Collapse
|
9
|
Król M, Roterman I, Piekarska B, Konieczny L, Rybarska J, Stopa B. Local and long-range structural effects caused by the removal of the N-terminal polypeptide fragment from immunoglobulin L chain lambda. Biopolymers 2003; 69:189-200. [PMID: 12767122 DOI: 10.1002/bip.10355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the N-terminal polypeptide fragment of the immunoglobulin l-chain in V domain packing stability, and the flexibility of the whole chain was approached by molecular dynamics simulation. The observations were supported by experimental analysis. The N-terminal polypeptide fragment appeared to be the low-stability packing element in the V domain. At moderately elevated temperature it may be replaced at its packing locus by Congo red and then removed by proteolysis. After removal of Congo red by adsorption to (diethylamino)ethyl (DEAE) cellulose, the stability of complete L chain and of L chain devoid of the N-terminal polypeptide fragment were compared. The results indicated that the N-terminal polypeptide fragment plays an essential role in the stability of the V domain. Its removal makes the domain accessible for ANS and Congo red dye binding without heating. The decreased domain stability was registered in particular as increased root mean square (RMS) fluctuation and higher susceptibility to proteolytic attack. The long-range effect was most clearly manifested at 340 K as independent V and C domain fluctuation in the l-chain devoid of the N-terminal polypeptide fragment. This is likely due to the lack of direct connections between the N- and C-termini of the V domain polypeptide. In a complete V domain the connection involves residues 8-12 and 106-110 in particular. Partial or complete disruption of this connection increases the freedom of V domain rotation, while its increased cohesion strengthens the coupling of the V and C domains, making the whole L chain less flexible.
Collapse
Affiliation(s)
- Marcin Król
- Department of Biostatistics and Medical Informatics, Collegium Medicum, Jagiellonian University, 17 Kopernika St, Kraków, 31-501 Poland
| | | | | | | | | | | |
Collapse
|
10
|
Vargas-Madrazo E, Paz-García E. An improved model of association for VH-VL immunoglobulin domains: asymmetries between VH and VL in the packing of some interface residues. J Mol Recognit 2003; 16:113-20. [PMID: 12833565 DOI: 10.1002/jmr.613] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The antibody-binding site is formed as a result of the association between VH and VL domains. Several studies have shown that this association plays an important role in the mechanism of antigen-antibody interaction (Stanfield et al. Structure 1: 83-93, 1993). Considering this, we propose that variations in the VH-VL association are part of the diversification strategy of the antibody repertoires. Previously, a model of association for VH-VL domains based on geometrical characteristics of the packing at the interface was developed by Chothia et al. (J. Mol. Biol. 186: 61-663, 1985). This model includes a common association form for antibodies and a three-layer structure for the interface. In the present work, a complementary model is introduced to account for the general geometrical restrictions of the VH-VL interface, and particular arrangements related to the chemical properties or the side-chain orientations of participating residues. Groups of residues assume common side-chain orientations, which are apparently related to particular functions of different interface zones. Analyses of amino acid usage and network are in agreement with the side-chain orientation patterns. Based on these observations, a three-zone model has evolved to illuminate geometrical and functional restrictions acting over the VH-VL interface. Additionally, this study has revealed the asymmetrical relationships between VH and VL residues important for the association of the two domains.
Collapse
Affiliation(s)
- Enrique Vargas-Madrazo
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, México.
| | | |
Collapse
|
11
|
Affiliation(s)
- Jefferson Foote
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Holmes MA, Buss TN, Foote J. Conformational correction mechanisms aiding antigen recognition by a humanized antibody. J Exp Med 1998; 187:479-85. [PMID: 9463398 PMCID: PMC2212146 DOI: 10.1084/jem.187.4.479] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The crystal structure of the complex between hen egg lysozyme and the Fv fragment of a humanized antilysozyme antibody was determined to 2.7-A resolution. The structure of the antigen combining site in the complex is nearly identical to that of the complexed form of the parent mouse antibody, D1.3. In contrast, the combining sites of the unliganded mouse and humanized antilysozymes show moderate conformational differences. This disparity suggests that a conformational readjustment process linked to antigen binding reverses adverse conformations in the complementarity determining regions that had been introduced by engineering these segments next to human framework regions in the humanized antibody.
Collapse
Affiliation(s)
- M A Holmes
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | |
Collapse
|
13
|
|
14
|
Huang DB, Ainsworth CF, Stevens FJ, Schiffer M. Three quaternary structures for a single protein. Proc Natl Acad Sci U S A 1996; 93:7017-21. [PMID: 8692936 PMCID: PMC38927 DOI: 10.1073/pnas.93.14.7017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The structure of a multisubunit protein (immunoglobulin light chain) was solved in three crystal forms, differing only in the solvent of crystallization. The three structures were obtained at high ionic strength and low pH, high ionic strength and high pH, and low ionic strength and neutral pH. The three resulting "snapshots" of possible structures show that their variable-domain interactions differ, reflecting their stabilities under specific solvent conditions. In the three crystal forms, the variable domains had different rotational and translational relationships, whereas no alteration of the constant domains was found. The critical residues involved in the observed effect of the solvent are tryptophans and histidines located between the two variable domains in the dimeric structure. Tryptophan residues are commonly found in interfaces between proteins and their subunits, and histidines have been implicated in pH-dependent conformation changes. The quaternary structure observed for a multisubunit protein or protein complex in a crystal may be influenced by the interactions of the constituents within the molecule or complex and/or by crystal packing interactions. The comparison of buried surface areas and hydrogen bonds between the domains forming the molecule and between the molecules forming the crystals suggest that, for this system, the interactions within the molecule are most likely the determining factors.
Collapse
Affiliation(s)
- D B Huang
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, IL 60439-4833, USA
| | | | | | | |
Collapse
|
15
|
Miklasz SD, Gulliver GA, Voss EW. High-affinity rat anti-fluorescein monoclonal antibody with unique fine specificity properties including differential recognition of dynamic ligand analogues. J Mol Recognit 1995; 8:258-69. [PMID: 8588943 DOI: 10.1002/jmr.300080404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of antibodies to specifically select and stabilize through binding one or more isomers of highly dynamic ligands remains a relatively unexplored immunochemical problem. The experimental strategy employed in this study was to elicit homogeneous antibodies to polyaromatic fluorescein which exists in one isomeric form. The binding properties of a monoclonal rat antifluorescein antibody specific to a given isomer were quantitatively studied to determine the capacity to bind dynamic analogues of fluorescein which exists in multiple isomers. To generate monoclonal anti-fluorescein antibodies that reacted with specific dynamic analogues of fluorescein possessing unconjugated aromatic ring systems, immune spleenocytes from Lou/M rats immunized with FITC(I)-KLH were fused with Balb/c SP2/0-Ag14 murine myeloma cells forming rat-mouse hybridomas. Cell line P2A12-1-C8 was selected for further characterization from the original 23 stable rat hybrids, since it produced a monoclonal antibody with a binding affinity 2.0 x 10(10)/M for fluorescein based on dissociation rate measurements. P2A12-1-C8 exhibited significant reactivity with HPF and phenol red, which are dynamic structural analogues of the homologous fluorescein ligand. No reactivity was demonstrated with phenolphthalein, which based on relative chemical structures was expected to be more reactive than phenol red. Computer-based molecular modeling and energy minimization studies of fluorescein, HPF, phenol red, and phenolphthalein showed that in terms of the most energetically favorable orientation of the three aromatic rings, phenol red more closely simulated fluorescein than phenolphthalein. The results were analyzed in terms of the mechanisms of dynamic ligand stabilization and binding involving accommodation of specific ligand isomers by energetically permissible conformational states exhibited by an antibody active site. Thus, antibody reactivity of an anti-fluorescein antibody with phenol red and phenolphthalein was dictated more by ligand dynamics and aromatic orientation than by chemical structure similarities.
Collapse
Affiliation(s)
- S D Miklasz
- Immunology Resource Center, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
16
|
Abstract
The fact that one cell encodes a single antibody sequence does not necessarily mean that the resulting antibody folds into a single structure, although this is a common assumption. Here we challenge this view and suggest that many antibodies do not have a single conformation at the combining site. The basis for this proposal comes from the kinetic analysis of a set of murine hybridomas derived from defined stages of the immune response to 2-phenyl-5-oxazolone (Ox). Among them we have identified three antibodies that exhibit complex hapten-binding kinetics. We observed biphasic or triphasic reactions in stopped-flow fluorescence experiments, indicating that ligand binding involved isomerization, as well as associative steps. The existence of an equilibrium between at least two antibody conformations, with ligands binding preferentially to one form, was deduced from the variation with hapten concentration of the apparent rate of each phase.
Collapse
Affiliation(s)
- J Foote
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | |
Collapse
|
17
|
Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall'Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A 1994; 91:1089-93. [PMID: 8302837 PMCID: PMC521459 DOI: 10.1073/pnas.91.3.1089] [Citation(s) in RCA: 397] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We report the three-dimensional structures, at 1.8-A resolution, of the Fv fragment of the anti-hen egg white lysozyme antibody D1.3 in its free and antigen-bound forms. These structures reveal a role for solvent molecules in stabilizing the complex and provide a molecular basis for understanding the thermodynamic forces which drive the association reaction. Four water molecules are buried and others form a hydrogen-bonded network around the interface, bridging antigen and antibody. Comparison of the structures of free and bound Fv fragment of D1.3 reveals that several of the ordered water molecules in the free antibody combining site are retained and that additional water molecules link antigen and antibody upon complex formation. This solvation of the complex should weaken the hydrophobic effect, and the resulting large number of solvent-mediated hydrogen bonds, in conjunction with direct protein-protein interactions, should generate a significant enthalpic component. Furthermore, a stabilization of the relative mobilities of the antibody heavy- and light-chain variable domains and of that of the third complementarity-determining loop of the heavy chain seen in the complex should generate a negative entropic contribution opposing the enthalpic and the hydrophobic (solvent entropy) effects. This structural analysis is consistent with measurements of enthalpy and entropy changes by titration calorimetry, which show that enthalpy drives the antigen-antibody reaction. Thus, the main forces stabilizing the complex arise from antigen-antibody hydrogen bonding, van der Waals interactions, enthalpy of hydration, and conformational stabilization rather than solvent entropy (hydrophobic) effects.
Collapse
Affiliation(s)
- T N Bhat
- Centre National de la Recherche Scientifique, Unité Associée 359, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Edmundson AB, Harris DL, Fan ZC, Guddat LW, Schley BT, Hanson BL, Tribbick G, Geysen HM. Principles and pitfalls in designing site-directed peptide ligands. Proteins 1993; 16:246-67. [PMID: 8346191 DOI: 10.1002/prot.340160304] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An immunoglobulin light chain dimer with a large generic binding cavity was used as a host molecule for designing a series of peptide guest ligands. In a screening procedure peptides coupled to solid supports were systematically tested for binding activity by enzyme linked immunosorbent assays (ELISA). Key members of the binding series were synthesized in milligram quantities and diffused into crystals of the host molecule for X-ray analyses. These peptides were incrementally increased in size and affinity until they nearly filled the cavity. Progressive changes in binding patterns were mapped by comparisons of crystallographically refined structures of 14 peptide-protein complexes at 2.7 A resolution. These comparisons led to guidelines for ligand design and also suggested ways to modify previously established binding patterns. By manipulating equilibria involving histidine, for example, it was possible to abolish one important intramolecular interaction of the bound ligand and substitute another. These events triggered a change in conformation of the ligand from a compact to an extended form and a comprehensive change in the mode of binding to the protein. In dipeptides of histidine and proline, protonation of both imidazolium nitrogen atoms was used to program an end-to-end reversal of the direction in which the ligand was inserted into the binding cavity. Peptides cocrystallized with proteins produced complexes somewhat different in structure from those in which ligands were diffused into preexisting crystals. In such a large and malleable cavity, space utilization was thus different when a ligand was introduced before the imposition of crystal packing restraints.
Collapse
|
19
|
Constantine KL, Goldfarb V, Wittekind M, Anthony J, Ng SC, Mueller L. Sequential 1H and 15N NMR assignments and secondary structure of a recombinant anti-digoxin antibody VL domain. Biochemistry 1992; 31:5033-43. [PMID: 1318076 DOI: 10.1021/bi00136a017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A uniformly 15N-labeled recombinant light-chain variable (VL) domain from the anti-digoxin antibody 26-10 has been investigated by heteronuclear two-dimensional (2D) and three-dimensional (3D) NMR spectroscopy. Complementary homonuclear 2D NMR studies of the unlabeled VL domain were also performed. Sequence-specific assignments for 97% of the main-chain and 70% of the side-chain proton resonances have been obtained. Patterns of nuclear Overhauser effects observed in 2D NOESY, 3D NOESY-HSQC, and 3D NOESY-TOCSY-HSQC spectra afford a detailed characterization of the VL domain secondary structure in solution. The observed secondary structure--a nine-stranded antiparallel beta-barrel--corresponds to that observed crystallographically for VL domains involved in quaternary associations. The locations of slowly exchanging amide protons have been discerned from a 2D TOCSY spectrum recorded after dissolving the protein in 2H2O. Strands B, C, E, and F are found to be particularly stable. The possible consequences of these results for domain-domain interactions are discussed.
Collapse
Affiliation(s)
- K L Constantine
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543
| | | | | | | | | | | |
Collapse
|
20
|
Voss EW, Weidner KM, Denzin LK. Importance of dynamic properties of idiotopes in interactions with anti-Id antibodies. Immunol Invest 1992; 21:71-83. [PMID: 1548048 DOI: 10.3109/08820139209069364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The concept of fluctuating conformational substates in equilibrium characterizing variable-regions of immunoglobulin idiotypes is discussed in terms of the dynamic properties of idiotopes and their stabilization upon interactions with anti-idiotope antibodies. Uniquely, polyclonal anti-Id antibodies are viewed in cooperative immobilizing interactions with the idiotopes thereby facilitating formation of stable complexes.
Collapse
Affiliation(s)
- E W Voss
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
21
|
Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature 1990; 347:483-5. [PMID: 2215663 DOI: 10.1038/347483a0] [Citation(s) in RCA: 221] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The potential use of monoclonal antibodies in immunological, chemical and clinical applications has stimulated the protein engineering and expression of Fv fragments, which are heterodimers consisting of the light and heavy chain variable domains (VL and VH) of antibodies. Although Fv fragments exhibit antigen binding specificity and association constants similar to their parent antibodies or Fab moieties, similarity in their interactions with antigen at the level of three-dimensional structure has not been investigated. We have determined the high-resolution crystal structure of the genetically engineered FvD1.3 fragment of the anti-hen egg-white lysozyme (HEL) monoclonal antibody D1.3, and of its complex with HEL. On comparison with the crystallographically refined FabD1.3-HEL complex, we find that FvD1.3 and FabD1.3 make, with minor exceptions, very similar contacts with the antigen. Furthermore, a small but systematic rearrangement of the domains of FvD1.3 occurs on binding HEL, bringing the contacting residues closer to the antigen by a mean value of about 0.7 A for VH (aligning on VL) or of 0.5 A for VL (aligning on VH). This is indicative of an induced fit rather than a 'lock and key' fit to the antigen.
Collapse
Affiliation(s)
- T N Bhat
- Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Isenberg DA, Staines NA. DNA antibody idiotypes. An analysis of their role in health and disease. J Autoimmun 1990; 3:339-55; discussion 355-6. [PMID: 2222743 DOI: 10.1016/s0896-8411(05)80002-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D A Isenberg
- Department of Rheumatology Research, University College and Middlesex School of Medicine, London, UK
| | | |
Collapse
|
23
|
Lascombe MB, Alzari PM, Boulot G, Saludjian P, Tougard P, Berek C, Haba S, Rosen EM, Nisonoff A, Poljak RJ. Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the p-azobenzenearsonate group. Proc Natl Acad Sci U S A 1989; 86:607-11. [PMID: 2911596 PMCID: PMC286521 DOI: 10.1073/pnas.86.2.607] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The crystal structure of Fab R19.9, derived from an anti-p-azobenzenearsonate monoclonal antibody, has been determined and refined to 2.8-A resolution by x-ray crystallographic techniques. Monoclonal antibody R19.9 (IgG2b kappa) shares some idiotopes with a major idiotype (CRIA) associated with A/J anti-p-azobenzenearsonate antibodies. The amino acid sequences of the variable (V) parts of the heavy (VH) and light (VL) polypeptide chains of monoclonal antibody R19.9 were determined through nucleotide sequencing of their mRNAs. The VL region is very similar to that of CRIA-positive anti-p-azobenzenearsonate antibodies as is VH, except for its third complementarity-determining region, which is three amino acids longer; it makes a loop, unique to R19.9, that protrudes into the solvent. A large number of tyrosine residues in the complementarity-determining region of VH and VL, with their side chains pointing towards the solvent, may have an important function in antigen binding.
Collapse
Affiliation(s)
- M B Lascombe
- Département d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|