1
|
Tarnita RM, Wilkie AR, DeCaprio JA. Contribution of DNA Replication to the FAM111A-Mediated Simian Virus 40 Host Range Phenotype. J Virol 2019; 93:e01330-18. [PMID: 30333173 PMCID: PMC6288344 DOI: 10.1128/jvi.01330-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023] Open
Abstract
Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCE SV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.
Collapse
Affiliation(s)
- Roxana M Tarnita
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrian R Wilkie
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Triad of human cellular proteins, IRF2, FAM111A, and RFC3, restrict replication of orthopoxvirus SPI-1 host-range mutants. Proc Natl Acad Sci U S A 2017; 114:3720-3725. [PMID: 28320935 PMCID: PMC5389286 DOI: 10.1073/pnas.1700678114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Viruses and their hosts can reach balanced states of evolution ensuring mutual survival, which makes it difficult to appreciate the underlying dynamics. To uncover hidden interactions, virus mutants that have lost defense genes may be used. Deletion of the gene that encodes serine protease inhibitor 1 (SPI-1) of rabbitpox virus and vaccinia virus, two closely related orthopoxviruses, prevents their efficient replication in human cells, whereas certain other mammalian cells remain fully permissive. Our high-throughput genome-wide siRNA screen identified host factors that prevent reproduction and spread of the mutant viruses in human cells. More than 20,000 genes were interrogated with individual siRNAs and those that prominently increased replication of the SPI-1 deletion mutant were subjected to a secondary screen. The top hits based on the combined data-replication factor C3 (RFC3), FAM111A, and interferon regulatory factor 2 (IRF2)-were confirmed by custom assays. The siRNAs to RFC1, RFC2, RFC4, and RFC5 mRNAs also enhanced spread of the mutant virus, strengthening the biological significance of the RFC complex as a host restriction factor for poxviruses. Whereas association with proliferating cell nuclear antigen and participation in processive genome replication are common features of FAM111A and RFC, IRF2 is a transcriptional regulator. Microarray analysis, quantitative RT-PCR, and immunoblotting revealed that IRF2 regulated the basal level expression of FAM111A, suggesting that the enhancing effect of depleting IRF2 on replication of the SPI-1 mutant was indirect. Thus, the viral SPI-1 protein and the host IRF2, FAM111A, and RFC complex likely form an interaction network that influences the ability of poxviruses to replicate in human cells.
Collapse
|
3
|
Fine DA, Rozenblatt-Rosen O, Padi M, Korkhin A, James RL, Adelmant G, Yoon R, Guo L, Berrios C, Zhang Y, Calderwood MA, Velmurgan S, Cheng J, Marto JA, Hill DE, Cusick ME, Vidal M, Florens L, Washburn MP, Litovchick L, DeCaprio JA. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog 2012; 8:e1002949. [PMID: 23093934 PMCID: PMC3475652 DOI: 10.1371/journal.ppat.1002949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. Viruses have evolved numerous mechanisms to counteract host cell defenses to facilitate productive infection. Simian Virus 40 (SV40) replication depends on specific interactions between large T antigen (LT) and a wide variety of host cell proteins. Although the LT C-terminal region has no evident enzymatic activity, mutations or deletions of this region significantly reduce the ability of the virus to replicate in restrictive cell types. Here, we identified host proteins that bind to LT and determined that the LT C-terminal region binds specifically to FAM111A. This physical interaction was required for efficient viral replication and sustained viral gene expression in restrictive cell types. In addition, RNAi-mediated knockdown of FAM111A levels in restrictive cells restored lytic infection of SV40 host range mutants and human adenovirus. These results indicate that FAM111A plays an important role in viral host range restriction. Our study provides insights into the viral-host perturbations caused by SV40 LT and the interaction of viruses with host restriction factors.
Collapse
Affiliation(s)
- Debrah A. Fine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Orit Rozenblatt-Rosen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Megha Padi
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Anna Korkhin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Robert L. James
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Guillaume Adelmant
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosa Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
| | - Luxuan Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael A. Calderwood
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soundarapandian Velmurgan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarrod A. Marto
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Hill
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael E. Cusick
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc Vidal
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larisa Litovchick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Poulin DL, DeCaprio JA. The carboxyl-terminal domain of large T antigen rescues SV40 host range activity in trans independent of acetylation. Virology 2006; 349:212-21. [PMID: 16510165 DOI: 10.1016/j.virol.2006.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/01/2005] [Accepted: 01/31/2006] [Indexed: 11/18/2022]
Abstract
The host range activity of SV40 has been described as the inability of mutant viruses with deletions in the C terminal region of large T Ag to replicate in certain types of African green monkey kidney cells. We constructed new mutant viruses expressing truncated T Ag proteins and found that these mutant viruses exhibited the host range phenotype. The host range phenotype was independent of acetylation of T Ag at lysine 697. Co-expression of the C terminal domain of T Ag (aa 627-708) in trans increased both T Ag and VP1 mRNA as well as protein levels for host range mutant viruses in the restrictive cell type. In addition, the T Ag 627-708 fragment promoted the productive lytic infection of host range mutant viruses in the nonpermissive cell type. The carboxyl-terminal region of T Ag contains a biological function essential for the SV40 viral life cycle.
Collapse
Affiliation(s)
- Danielle L Poulin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
Khalili K, White MK, Sawa H, Nagashima K, Safak M. The agnoprotein of polyomaviruses: a multifunctional auxiliary protein. J Cell Physiol 2004; 204:1-7. [PMID: 15573377 DOI: 10.1002/jcp.20266] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The late region of the three primate polyomaviruses (JCV, BKV, and SV40) encodes a small, highly basic protein known as agnoprotein. While much attention during the last two decades has focused on the transforming proteins encoded by the early region (small and large T-antigens), it has become increasingly evident that agnoprotein has a critical role in the regulation of viral gene expression and replication, and in the modulation of certain important host cell functions including cell cycle progression and DNA repair. The importance of agnoprotein is underscored by its expression during lytic infection of glial cells by JCV that occurs in progressive multifocal leukoencephalopathy (PML), and also in some JCV-associated human neural tumors particularly medulloblastoma. In this review, we will discuss the structure and function of agnoprotein in the viral life cycle during the course of lytic infection and the consequences of agnoprotein expression for the host cell.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The possible role of eucaryotic viruses in the development of cancer has been the subject of intense investigation during the past 50 years. Thus far, a strong link between some RNA and DNA viruses and various cancers in humans has been established and the transforming activity of several of the viruses in cell culture and their oncogenecity in experimental animals has been well documented. Perhaps, one of the most common themes among the oncogenic viruses rests in the ability of one or more of the viral proteins to deregulate pathways involved in the control of cell proliferation. For example, inactivation of tumor suppressors through their association with viral transforming proteins, and/or impairment of signal transduction pathways upon viral infection and expression of viral proteins are among the key biological events that can either trigger and/or contribute to the process of cancer. In recent years, more attention has been paid to human polyomaviruses, particularly JC virus (JCV), which infects greater than 80% of the human population, due to the ability of this virus to induce a fatal demyelinating disease in the brain, its presence in various tumors of central nervous system (CNS) and non-CNS origin, and the oncogenic potential of this virus in several laboratory animal models. Here, we will focus our attention on JCV and describe several pathways employed by the virus to contribute to and/or accelerate cancer development.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
7
|
Darbinyan A, Darbinian N, Safak M, Radhakrishnan S, Giordano A, Khalili K. Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene 2002; 21:5574-81. [PMID: 12165856 DOI: 10.1038/sj.onc.1205744] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 05/03/2002] [Accepted: 06/07/2002] [Indexed: 11/08/2022]
Abstract
The late region of the human neurotropic JC virus encodes a 71 amino acid protein, named Agnoprotein, whose biological function remains elusive. Here we demonstrate that in the absence of other viral proteins, expression of Agnoprotein can inhibit cell growth by deregulating cell progression through the cell cycle stages. Cells with constitutive expression of Agnoprotein were largely accumulated at the G2/M stage and that decline in the activity of cyclins A and B is observed in these cells. Agnoprotein showed the ability to augment p21 promoter activity in transient transfection assay and a noticeable increase in the level of p21 is detected in cells continuously expressing Agnoprotein. Results from binding studies revealed the interaction of Agnoprotein with p53 through the N-terminal of the Agnoprotein spanning residues 1-36. Co-expression of p53 and Agnoprotein further stimulated transcription of the p21 promoter. Thus, the interaction of p53 and Agnoprotein can lead to a higher level of p21 expression and suppression of cell cycle progression during the cell cycle.
Collapse
Affiliation(s)
- Armine Darbinyan
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Philadelphia, Pennsylvania, PA 19122, USA
| | | | | | | | | | | |
Collapse
|
8
|
Farrell ML, Mertz JE. Hormone response element in SV40 late promoter directly affects synthesis of early as well as late viral RNAs. Virology 2002; 297:307-18. [PMID: 12083829 DOI: 10.1006/viro.2002.1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that the presence of a hormone response element surrounding the transcription initiation site of the SV40 major late promoter (+1 HRE) confers a replication advantage to the virus in a cell-type-specific manner. We determine here the mechanism by which the +1 HRE confers this advantage by analyzing in detail the various stages of the viral life cycle of wild-type versus a +1 HRE mutant in MA-134 cells. We show that the mutant overexpresses late genes at the expense of early genes at early times after infection. This initial underproduction of early RNA leads, subsequently, to an underproduction of large T-antigen, viral DNA, and infectious virions. We conclude that the +1 HRE is necessary for the proper initial regulation of transcription from the early as well as late promoter so the cascade of subsequent events can be executed for the optimal production of virions.
Collapse
Affiliation(s)
- Michael L Farrell
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706-1599, USA
| | | |
Collapse
|
9
|
Safak M, Barrucco R, Darbinyan A, Okada Y, Nagashima K, Khalili K. Interaction of JC virus agno protein with T antigen modulates transcription and replication of the viral genome in glial cells. J Virol 2001; 75:1476-86. [PMID: 11152520 PMCID: PMC114053 DOI: 10.1128/jvi.75.3.1476-1486.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to encoding the structural and regulatory proteins, many viruses encode auxiliary proteins, some of which have been shown to play important roles in lytic and latent states of the viruses. The human neurotropic JC virus (JCV) genome encodes an auxiliary protein called Agno whose function remains unknown. Here, we investigated the functional role of JCV Agno protein on transcription and replication of the viral genome in glial cells. Results from transfection of human glial cells showed that Agno protein suppresses both T-antigen-mediated transcription of the viral late gene promoter and T-antigen-induced replication of viral DNA. Affinity chromatography and coimmunoprecipitation assays demonstrated that the Agno protein and T antigen physically interact with each other. Through the use of a series of deletion mutants, we demonstrated that the T-antigen-interacting region of Agno protein is localized to its amino-terminal half and the Agno-interacting domain of T antigen maps to its central portion. Furthermore, utilizing various Agno deletion mutants in functional studies, we confirmed the importance of the Agno-T antigen interaction in the observed down-modulation of T antigen function upon viral gene transcription and DNA replication by Agno protein. Taken together these data suggest that the Agno protein of JCV, which is produced late during the late phase of the lytic cycle, can physically and functionally interact with the viral early protein, T antigen, and downregulate viral gene expression and DNA replication. The importance of these observations in the lytic cycle of JCV is discussed.
Collapse
Affiliation(s)
- M Safak
- Laboratory of Molecular Neurovirology, Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
DNA replication is a complicated process that is largely regulated during stages of initiation. The Siman Virus 40 in vitro replication system has served as an excellent model for studies of the initiation of DNA replication, and its regulation, in eukaryotes. Initiation of SV40 replication requires a single viral protein termed T-antigen, all other proteins are supplied by the host. The recent determination of the solution structure of the T-antigen domain that recognizes the SV40 origin has provided significant insights into the initiation process. For example, it has afforded a clearer understanding of origin recognition, T-antigen oligomerization, and DNA unwinding. Furthermore, the Simian virus 40 in vitro replication system has been used to study nascent DNA formation in the vicinity of the viral origin of replication. Among the conclusions drawn from these experiments is that nascent DNA synthesis does not initiate in the core origin in vitro and that Okazaki fragment formation is complex. These and related studies demonstrate that significant progress has been made in understanding the initiation of DNA synthesis at the molecular level.
Collapse
Affiliation(s)
- P A Bullock
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
11
|
Rencic A, Gordon J, Otte J, Curtis M, Kovatich A, Zoltick P, Khalili K, Andrews D. Detection of JC virus DNA sequence and expression of the viral oncoprotein, tumor antigen, in brain of immunocompetent patient with oligoastrocytoma. Proc Natl Acad Sci U S A 1996; 93:7352-7. [PMID: 8692997 PMCID: PMC38988 DOI: 10.1073/pnas.93.14.7352] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.
Collapse
Affiliation(s)
- A Rencic
- Molecular Neurovirology, Jefferson Institute of Molecular Medicine, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The simian virus 40 (SV40) T antigen host range mutants dl1066 and dl1140 display a postreplicative block to plaque formation which suggests a novel role for T antigen late in the viral life cycle. The host range mutants dl1066 and dl1140 are able to grow in and plaque on BSC but not on CV1 monkey kidney cells, a normally permissive host. Previous work showed that in CV1 cells infected with dl1066 and dl1140, levels of viral DNA replication and of late capsid protein accumulation were only slightly reduced and the failure to accumulate agnoprotein was not likely to be the major factor responsible for the mutants' growth defect. Here we show that the host range mutants are defective in the assembly of viral particles. SV40 assembly proceeds as the progressive conversion of 75S viral chromatin complexes to 200S-240S assembled virions. When virus-infected cell extracts are separated on 5 to 40% sucrose gradients, wild-type extracts show the greatest accumulation of viral late protein in the 200S-240S fractions corresponding to the assembled virus peak and lesser amounts in the 75S-150S fractions corresponding to immature assembly intermediates. The host range mutants dl1066 and dl1140 grown in nonpermissive CV1 cells, however, failed to assemble any appreciable amounts of mature 200S-240S virions and accumulate 75S intermediates, whereas in permissive BSC cells, levels of assembly were more slightly reduced than those of the wild type. Analysis of the protein composition of gradient fractions suggests that SV40 assembly proceeds by a mechanism similar to that proposed for polyomavirus and suggests that the host range blockage may result from a failure of such mutants to add VP1 to 75S assembly intermediates.
Collapse
Affiliation(s)
- S L Spence
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
13
|
Ilyinskii PO, Daniel MD, Horvath CJ, Desrosiers RC. Genetic analysis of simian virus 40 from brains and kidneys of macaque monkeys. J Virol 1992; 66:6353-60. [PMID: 1328671 PMCID: PMC240127 DOI: 10.1128/jvi.66.11.6353-6360.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Simian virus 40 (SV40) was isolated from the brains of three rhesus monkeys and the kidneys of two other rhesus monkeys with simian immunodeficiency virus-induced immunodeficiency. A striking feature of these five cases was the tissue specificity of the SV40 replication. SV40 was also isolated from the kidney of a Taiwanese rock macaque with immunodeficiency probably caused by type D retrovirus infection. Multiple full-length clones were derived from all six fresh SV40 isolates, and two separate regions of their genomes were sequenced: the origin (ori)-enhancer region and the coding region for the carboxy terminus of T antigen (T-ag). None of the 23 clones analyzed had two 72-bp enhancer elements as are present in the commonly used laboratory strain 776 of SV40; 22 of these 23 clones were identical in their ori-enhancer sequences, and these had only a single 72-bp enhancer element. We found no evidence for differences in ori-enhancer sequences associated with tissue-specific SV40 replication. The T-ag coding sequence that was analyzed was identical in all clones from kidney. However, significant variation was observed in the carboxy-terminal region of T-ag in SV40 isolated from brain tissues. This sequence variation was located in a region previously reported to be responsible for SV40 host range in cultured cell lines. Thus, SV40 appears to be an opportunistic pathogen in the setting of simian immunodeficiency virus-induced immunodeficiency, similarly to JC virus in human immunodeficiency virus-infected humans, the enhancer sequence organization generally attributed to SV40 is not representative of natural SV40 isolates, and sequence variation near the carboxy terminus of T-ag may play a role in tissue-specific replication of SV40.
Collapse
Affiliation(s)
- P O Ilyinskii
- New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772
| | | | | | | |
Collapse
|
14
|
Abstract
Although 12 different members of the polyomavirus group have now been identified, only SV40 and PyV have been studied extensively. Whereas each member of the group shows a restricted host range, viruses infecting species from birds to humans have been reported. Although little is known concerning the biology of natural infections in the wild, it is apparent that these viruses exhibit various cell-type tropisms. Some viruses, such as LPV (B lymphocytes) or KV (pulmonary endothelium), are tightly restricted to specific cell types, while others, such as PyV, infect a variety of tissues in the animal. Despite these differences, all polyomaviruses share a common strategy of productive infection, expressing T antigens which act both on cellular targets, preparing cellular metabolism for supporting optimal viral replication, and then on targets within the viral genome, to regulate viral DNA replication, transcription, and assembly. Presumably, this common replication strategy restricts the degree to which the sequences of these viruses can diverge. Thus, sequence motifs conserved among these different viruses may indicate key structural elements essential for biochemical function. In this article I have compared the sequences of all polyomavirus-encoded large and small T antigens sequenced to date. This has led to the following conclusions and speculations. (i) Comparison of the domain organization of different large T antigens reveals that these proteins fall into two structural classes. Members of the SV40 class, which include SV40, JCV, BKV, and SA12, possess a carboxyl-terminal domain, which in SV40 has been shown to be dispensable for viral DNA replication but essential for virion assembly. The PyV class lacks the carboxyl-terminal domain and carries additional amino acids within the amino-terminal domain. When total amino acid identity is examined, members of the SV40 class show the highest degree of conservation (65 to 85%), while sequence identity among the remaining viruses varies from 18 to 55%. (ii) The DNA binding domains of most large T antigens are closely related, with amino acid identities ranging from 35 to 86%. Several residues within this domain are invariant among all T antigens. All of these viruses have multiple copies of the consensus T-antigen-binding pentanucleotide (GAGGC) in their ori region, suggesting that all T antigens recognize this sequence. The single exception is the large T antigen encoded by the avian virus BFDV. The putative DNA binding domain of this protein shows little or no sequence relation to that of other T antigens. Furthermore, the GAGGC motif is not found in the ori region of this virus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
15
|
Zhu JY, Rice PW, Chamberlain M, Cole CN. Mapping the transcriptional transactivation function of simian virus 40 large T antigen. J Virol 1991; 65:2778-90. [PMID: 1851853 PMCID: PMC240892 DOI: 10.1128/jvi.65.6.2778-2790.1991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T antigen. Mutants with alterations at various locations within the N-terminal 85 amino acids transactivated the RSV LTR promoter less well than did wild-type T antigen. Most of these were also partially defective in their ability to transactivate the SV40 late promoter. Two mutants with lesions in the DNA-binding domain that were unable to bind to SV40 DNA were completely defective for transactivation of both promoter, while a third mutant with a lesion in the DNA-binding domain which retained origin-binding activity transactivated both promoters as well as did wild-type T antigen. Only a low level of transactivation was seen with mutant T antigens which had lesions in or near the zinc finger region (amino acids 300 to 350). Mutations which caused defects in ATPase activity, host range/helper function, binding to p53, binding to the retinoblastoma susceptibility protein, or nuclear localization had little or no effect on transactivation. These results suggest that N-terminal portion of T antigen possesses an activation activity. The data are consistent with the idea that the overall conformation of T antigen is important for transactivation and that mutations in other regions that reduce or eliminate transactivation do so by altering the conformation or orientation of the N-terminal region so that its ability to interact with various targets is diminished or abolished.
Collapse
Affiliation(s)
- J Y Zhu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | | | |
Collapse
|
16
|
Spence SL, Tack LC, Wright JH, Carswell S, Pipas JM. Infection of CV1 cells expressing the polyoma virus middle T antigen or the SV40 agnogene product with simian virus 40 host-range mutants. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:604-11. [PMID: 2162817 DOI: 10.1007/bf02624210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SV40 viruses bearing mutations at the carboxy-terminus of large T antigen exhibit a host-range phenotype: such viruses are able to grow in BSC monkey kidney cells at 37 degrees C, but give at least 10,000-fold lower yields than wild type virus in BSC cells at 32 degrees C or in CV1 monkey kidney cells at either temperature. The block to infection in the nonpermissive cell type occurs after the onset of viral DNA replication. Infectious progeny virions are produced at very low efficiency. Although capsid proteins are synthesized at decreased levels, this does not account for the magnitude of the defect. Presumably some step of virion assembly or maturation is affected in these mutants. We have previously reported that the viral agnogene product, a protein thought to be involved in viral assembly or release, fails to accumulate in CV1 cells infected with host-range mutants. In polyoma virus the middle T antigen plays a role in virion maturation by influencing the phosphorylation of capsid proteins. In this communication we show that host-range mutants fail to undergo productive infection of CV1 cells expressing middle T antigen. These mutants do form plaques on an agnoprotein-expressing cell line. However, the agnoprotein does not seem to act by correcting the mutational block but rather increases the efficiency of plaque formation.
Collapse
Affiliation(s)
- S L Spence
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | | | | | | | |
Collapse
|
17
|
Wun-Kim K, Simmons DT. Mapping of helicase and helicase substrate-binding domains on simian virus 40 large T antigen. J Virol 1990; 64:2014-20. [PMID: 2157869 PMCID: PMC249356 DOI: 10.1128/jvi.64.5.2014-2020.1990] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.
Collapse
Affiliation(s)
- K Wun-Kim
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | |
Collapse
|
18
|
Stacy T, Chamberlain M, Cole CN. Simian virus 40 host range/helper function mutations cause multiple defects in viral late gene expression. J Virol 1989; 63:5208-15. [PMID: 2555552 PMCID: PMC251185 DOI: 10.1128/jvi.63.12.5208-5215.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simian virus 40 (SV40) deletion mutants dlA2459 and dlA2475 express T antigens that lack the normal carboxy terminus. These mutants are called host range/helper function (hr/hf) mutants because they form plaques at 37 degrees C on BSC-1 and Vero monkey kidney cell lines but not on CV-1p monkey kidney cells. Wild-type SV40 can provide a helper function to permit growth of human adenoviruses in monkey kidney cells; the hr/hf mutants cannot. Progeny yields of hr/hf mutants are also cold sensitive in all cell lines tested. Patterns of viral macromolecular synthesis in three cell lines (Vero, BSC-1, and CV-1) at three temperatures (40, 37, and 32 degrees C) were examined to determine the nature of the growth defect of hr/hf mutants. Mutant viral DNA replication was similar to that of the wild type in all three cell lines, indicating that the mutations affect late events in the viral lytic cycle. In mutant-infected Vero cells, in which viral yields were highest, late mRNA levels were similar to those observed during wild-type infection. Levels of viral late mRNA from mutant-infected CV-1 and BSC-1 cells at 32 and 37 degrees C were reduced relative to those of wild-type-infected cells. The steady-state level of the major viral capsid protein, VP1, in mutant-infected CV-1 cells was reduced to the same extent as was late mRNA. The synthesis of agnoprotein could not be detected in mutant-infected CV-1 cells but was readily detected in CV-1 cells infected by wild-type SV40. Primer extension analyses indicated that most late mRNAs from mutant-infected CV-1 cells utilize start sites downstream from the major wild-type cap site (nucleotide 325) and the agnoprotein initiation codon (nucleotide 335). These results indicate that deletion of the carboxyl-terminal domain of T antigen affects viral late mRNA production, both quantitatively and qualitatively. The agnoprotein is detected late in the wild-type SV40 lytic cycle and is thought to play a role in the assembly or maturation of virions. Reduced hr/hf progeny yields could result from decreased capsid protein synthesis and, in the absence of detectable levels of agnoprotein, from inefficient use of available capsid proteins.
Collapse
Affiliation(s)
- T Stacy
- Molecular Genetics Center, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | |
Collapse
|
19
|
Tavis JE, Walker DL, Gardner SD, Frisque RJ. Nucleotide sequence of the human polyomavirus AS virus, an antigenic variant of BK virus. J Virol 1989; 63:901-11. [PMID: 2536111 PMCID: PMC247764 DOI: 10.1128/jvi.63.2.901-911.1989] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complete DNA sequence of the human polyomavirus AS virus (ASV) is presented. Although ASV can be differentiated antigenically from the other human polyomaviruses (BK and JC viruses), it shares 94.9% homology at the nucleotide level with the Dunlop strain of BK virus. Differences found in ASV relative to BK virus include the absence of tandem repeats in its regulatory region, the deletion of 32 nucleotides in the late mRNA leader region (altering the initiation codon for the agnoprotein), the presence of a cluster of base pair substitutions within the coding region of the major capsid protein, VP1, and the absence of 4 amino acids in the carboxy-terminal region of the early protein, T antigen. The 43 nucleotides deleted in the Dunlop strain of BK virus relative to the Gardner prototype strain of BK virus are present in ASV. Possible reasons for the distinct antigenicity of the ASV capsid, given the high degree of nucleotide homology with BK virus, are discussed. To reflect the high degree of sequence homology between ASV and BK virus, we suggest ASV be renamed BKV(AS).
Collapse
Affiliation(s)
- J E Tavis
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|