1
|
Hu Y, Yan S, Yan H, Su J, Cui Z, Li J, Wang S, Sun Y, Li W, Gao S. PacBio full-length transcriptome analysis reveals the role of tRNA-like structures in RNA processing. Cell Signal 2024; 125:111515. [PMID: 39571702 DOI: 10.1016/j.cellsig.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) are distinct from nuclear DNA (nuDNA) in a eukaryotic cell. Animal mitochondria transcribe a single primary transcript that carries all genes from a DNA strand; In contrast, plant mitochondria and chloroplasts produce multiple primary transcripts, with each transcript carrying several genes. How primary transcripts of plant mtDNA and cpDNA are processed into mature RNAs is still unknown. RESULTS In the present study, we employed PacBio's full-length transcriptome data to characterize the transcription of Arabidopsis thaliana mtDNA, providing a more comprehensive and precise understanding. The primary findings included 20 novel mitochondrial (mt) RNAs of A. thaliana, transcripts carrying single introns or exons, long mt and chloroplast (cp) tRNAs with intricate secondary structures, and the role of tRNA-like structures in RNA processing. The gene of No. 20 novel mt RNA and its paralog on chromosome 2 of A. thaliana were assigned locus IDs ATMG01335 and AT2G07811. CONCLUSIONS According to our upgraded "mitochondrial cleavage" model, tRNA-like structures serve as "punctuation" marks for RNA processing, akin to the role of tRNAs. Both tRNA-like structures and tRNAs collaborate for RNA processing in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Yanping Hu
- College of Life Sciences, Nankai University, Tianjin 300071, China; Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Haohao Yan
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingping Su
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Junling Li
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shengjun Wang
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wenjing Li
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Almeida-Silva MA, Braga-Ferreira RS, Targueta CP, Corvalán LCJ, Silva-Neto CM, Franceschinelli EV, Sobreiro MB, Nunes R, Telles MPC. Chloroplast genomes of Simarouba Aubl., molecular evolution and comparative analyses within Sapindales. Sci Rep 2024; 14:21358. [PMID: 39266625 PMCID: PMC11393331 DOI: 10.1038/s41598-024-71956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Simarouba, a neotropical genus in the family Simaroubaceae, currently lacks comprehensive genomic data in existing databases. This study aims to fill this gap by providing genomic resources for three Simarouba species, S. amara, S. versicolor, and S. glauca. It also aims to perform comparative molecular evolutionary analyses in relation to other species within the order Sapindales. The analysis of these three Simarouba species revealed the presence of the typical quadripartite structure expected in plastomes. However, some pseudogenization events were identified in the psbC, infA, rpl22, and ycf1 genes. In particular, the CDS of the psbC gene in S. amara was reduced from 1422 bp to 584 bp due to a premature stop codon. Nucleotide diversity data pointed to gene and intergenic regions as promising candidates for species and family discrimination within the group, specifically matK, ycf1, ndhF, rpl32, petA-psbJ, and trnS-trnG. Selection signal analyses showed strong evidence for positive selection on the rpl23 gene. Phylogenetic analyses indicated that S. versicolor and S. glauca have a closer phylogenetic relationship than S. amara. We provide chloroplast genomes of three Simaruba species and use them to elucidate plastome evolution, highlight the presence of pseudogenization, and identify potential DNA barcode regions.
Collapse
Affiliation(s)
- Marla A Almeida-Silva
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Estadual do Piauí, Campus Prof. Ariston Dias Lima, São Raimundo Nonato, PI, Brazil
| | - Ramilla S Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Cíntia P Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leonardo C J Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
| | - Carlos M Silva-Neto
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil
| | | | - Mariane B Sobreiro
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Laboratório Estadual de Saúde Pública Dr. Giovanni Cysneiros - LACEN-GO, Goiânia, GO, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil.
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil.
| | - Mariana P C Telles
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Goiânia, GO, Brazil
| |
Collapse
|
3
|
Wang W, Xu T, Lu H, Li G, Gao L, Liu D, Han B, Yi S. Chloroplast genome of Justicia procumbens: genomic features, comparative analysis, and phylogenetic relationships among Justicieae species. J Appl Genet 2024; 65:31-46. [PMID: 38133708 DOI: 10.1007/s13353-023-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Justicia procumbens L. is a traditional medicinal plant that is widely distributed in China. However, little is known about the genetic diversity and evolution of this genus, and no genomic studies have been carried out on J. procumbens previously. In this study, we aimed to assemble and annotate the first complete chloroplast genome (cpDNA) of J. procumbens and compare it with all previously published cpDNAs within the tribe Justicieae. Genome structure and comparative and phylogenetic analyses were performed. The 150,454 bp-long J. procumbens cpDNA has a circular and quadripartite structure consisting of a large single copy, a small single copy, and two inverted repeat regions. It contains 133 genes, of which 88 are protein-coding genes, 37 are tRNA genes, and eight are rRNA genes. Twenty-four simple sequence repeats (SSRs) and 81 repeat sequences were identified. Comparative analyses with other Justicieae species revealed that the non-coding regions of J. procumbens cpDNA showed greater variation than did the coding regions. Moreover, phylogenetic analysis based on 14 cpDNA sequences from Justicieae species showed that J. procumbens and J. flava were most closely related. This study provides valuable genetic information to support further research on the genetic diversity and evolutionary development of the tribe Justicieae.
Collapse
Affiliation(s)
- Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Tao Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Haibo Lu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Dong Liu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| |
Collapse
|
4
|
Caycho E, La Torre R, Orjeda G. Assembly, annotation and analysis of the chloroplast genome of the Algarrobo tree Neltuma pallida (subfamily: Caesalpinioideae). BMC PLANT BIOLOGY 2023; 23:570. [PMID: 37974117 PMCID: PMC10652460 DOI: 10.1186/s12870-023-04581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Neltuma pallida is a tree that grows in arid soils in northwestern Peru. As a predominant species of the Equatorial Dry Forest ecoregion, it holds significant economic and ecological value for both people and environment. Despite this, the species is severely threatened and there is a lack of genetic and genomic research, hindering the proposal of evidence-based conservation strategies. RESULTS In this work, we conducted the assembly, annotation, analysis and comparison of the chloroplast genome of a N. pallida specimen with those of related species. The assembled chloroplast genome has a length of 162,381 bp with a typical quadripartite structure (LSC-IRA-SSC-IRB). The calculated GC content was 35.97%. However, this is variable between regions, with a higher GC content observed in the IRs. A total of 132 genes were annotated, of which 19 were duplicates and 22 contained at least one intron in their sequence. A substantial number of repetitive sequences of different types were identified in the assembled genome, predominantly tandem repeats (> 300). In particular, 142 microsatellites (SSR) markers were identified. The phylogenetic reconstruction showed that N. pallida grouped with the other Neltuma species and with Prosopis cineraria. The analysis of sequence divergence between the chloroplast genome sequences of N. pallida, N. juliflora, P. farcta and Strombocarpa tamarugo revealed a high degree of similarity. CONCLUSIONS The N. pallida chloroplast genome was found to be similar to those of closely related species. With a size of 162,831 bp, it had the classical chloroplast quadripartite structure and GC content of 35.97%. Most of the 132 identified genes were protein-coding genes. Additionally, over 800 repetitive sequences were identified, including 142 SSR markers. In the phylogenetic analysis, N. pallida grouped with other Neltuma spp. and P. cineraria. Furthermore, N. pallida chloroplast was highly conserved when compared with genomes of closely related species. These findings can be of great potential for further diversity studies and genetic improvement of N. pallida.
Collapse
Affiliation(s)
- Esteban Caycho
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Renato La Torre
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Gisella Orjeda
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru.
| |
Collapse
|
5
|
Darshetkar AM, Godbole RC, Pable AA, Singh S, Nadaf AB, Barvkar VT. Chloroplast genome sequence of Nothapodytes nimmoniana (Icacinaceae), a vulnerable reservoir of camptothecin from Western Ghats. Gene 2023; 883:147674. [PMID: 37516285 DOI: 10.1016/j.gene.2023.147674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Nothapodytes nimmoniana belongs to family Icacinaceae and is a major source of compound Camptothecin. The global demand for Camptothecin has caused large-scale exploitation of N. nimmoniana from its wild habitat in Western Ghats of India, thereby making it vulnerable. The species is known to exhibit genetic diversity among the populations in Western Ghats. In this study, we report plastome sequence of N. nimmoniana, first for the genus. For the study, the species was collected from Western Ghats of Maharashtra. The plastome of N. nimmoniana was 150,726 bp in length and exhibited typical quadripartite structure with 83,771 bp LSC, 18,513 bp SSC and 24,221 IR region. The plastome was characterized by presence of 124 unique genes, 87 protein coding genes, 29 tRNA genes and four rRNA genes. Further, the plastome was compared with the available basal lamiid plastomes for gene order and composition. N. nimmoniana plastome exhibited SSC region in an inverted configuration. Phylogenomic study placed N. nimmoniana sister to Mappia mexicana. The SSR markers identified in this study, might help to distinguish genetically diverse populations, prioritizing the populations which need immediate conservation effects as well as for checking adulteration.
Collapse
Affiliation(s)
| | - Rucha C Godbole
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Sudhir Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
6
|
Corvalán LCJ, Sobreiro MB, Carvalho LR, Dias RO, Braga-Ferreira RS, Targueta CP, Silva-Neto CME, Berton BW, Pereira AMS, Diniz-filho JAF, Telles MPC, Nunes R. Chloroplast genome assembly of Serjania erecta Raldk: comparative analysis reveals gene number variation and selection in protein-coding plastid genes of Sapindaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1258794. [PMID: 37822334 PMCID: PMC10562606 DOI: 10.3389/fpls.2023.1258794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Serjania erecta Raldk is an essential genetic resource due to its anti-inflammatory, gastric protection, and anti-Alzheimer properties. However, the genetic and evolutionary aspects of the species remain poorly known. Here, we sequenced and assembled the complete chloroplast genome of S. erecta and used it in a comparative analysis within the Sapindaceae family. S. erecta has a chloroplast genome (cpDNA) of 159,297 bp, divided into a Large Single Copy region (LSC) of 84,556 bp and a Small Single Copy region (SSC) of 18,057 bp that are surrounded by two Inverted Repeat regions (IRa and IRb) of 28,342 bp. Among the 12 species used in the comparative analysis, S. erecta has the fewest long and microsatellite repeats. The genome structure of Sapindaceae species is relatively conserved; the number of genes varies from 128 to 132 genes, and this variation is associated with three main factors: (1) Expansion and retraction events in the size of the IRs, resulting in variations in the number of rpl22, rps19, and rps3 genes; (2) Pseudogenization of the rps2 gene; and (3) Loss or duplication of genes encoding tRNAs, associated with the duplication of trnH-GUG in X. sorbifolium and the absence of trnT-CGU in the Dodonaeoideae subfamily. We identified 10 and 11 mutational hotspots for Sapindaceae and Sapindoideae, respectively, and identified six highly diverse regions (tRNA-Lys - rps16, ndhC - tRNA-Val, petA - psbJ, ndhF, rpl32 - ccsA, and ycf1) are found in both groups, which show potential for the development of DNA barcode markers for molecular taxonomic identification of Serjania. We identified that the psaI gene evolves under neutrality in Sapindaceae, while all other chloroplast genes are under strong negative selection. However, local positive selection exists in the ndhF, rpoC2, ycf1, and ycf2 genes. The genes ndhF and ycf1 also present high nucleotide diversity and local positive selection, demonstrating significant potential as markers. Our findings include providing the first chloroplast genome of a member of the Paullinieae tribe. Furthermore, we identified patterns in variations in the number of genes and selection in genes possibly associated with the family's evolutionary history.
Collapse
Affiliation(s)
| | - Mariane B. Sobreiro
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Larissa R. Carvalho
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renata O. Dias
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ramilla S. Braga-Ferreira
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Cintia P. Targueta
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | | | - José A. F. Diniz-filho
- Laboratório de Ecologia Teórica e Síntese, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mariana P. C. Telles
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Rhewter Nunes
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Brazil
- Instituto Federal de Goiás, Goiás, Brazil
| |
Collapse
|
7
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14:1179510. [PMID: 37396648 PMCID: PMC10313135 DOI: 10.3389/fpls.2023.1179510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine-cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elijah Mbandi Mkala
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Wyclif Ochieng Odago
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Sara Getachew Amenu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elizabeth Syowai Mutinda
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Wamburu Muthui
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Xiong Ding
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14. [DOI: https:/doi.org/10.3389/fpls.2023.1179510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine–cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
|
9
|
Castro AA, Nunes R, Carvalho LR, Targueta CP, Dos Santos Braga-Ferreira R, de Melo-Ximenes AA, Corvalán LCJ, Bertoni BW, Pereira AMS, de Campos Telles MP. Chloroplast genome characterization of Uncaria guianensis and Uncaria tomentosa and evolutive dynamics of the Cinchonoideae subfamily. Sci Rep 2023; 13:8390. [PMID: 37225737 DOI: 10.1038/s41598-023-34334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Uncaria species are used in traditional medicine and are considered of high therapeutic value and economic importance. This work describes the assembly and annotation of the chloroplast genomes of U. guianensis and U. tomentosa, as well as a comparative analysis. The genomes were sequenced on MiSeq Illumina, assembled with NovoPlasty, and annotated using CHLOROBOX GeSeq. Addictionaly, comparative analysis were performed with six species from NCBI databases and primers were designed in Primer3 for hypervariable regions based on the consensus sequence of 16 species of the Rubiaceae family and validated on an in-silico PCR in OpenPrimeR. The genome size of U. guianensis and U. tomentosa was 155,505 bp and 156,390 bp, respectively. Both Species have 131 genes and GC content of 37.50%. The regions rpl32-ccsA, ycf1, and ndhF-ccsA showed the three highest values of nucleotide diversity within the species of the Rubiaceae family and within the Uncaria genus, these regions were trnH-psbA, psbM-trnY, and rps16-psbK. Our results indicates that the primer of the region ndhA had an amplification success for all species tested and can be promising for usage in the Rubiaceae family. The phylogenetic analysis recovered a congruent topology to APG IV. The gene content and the chloroplast genome structure of the analyzed species are conserved and most of the genes are under negative selection. We provide the cpDNA of Neotropical Uncaria species, an important genomic resource for evolutionary studies of the group.
Collapse
Affiliation(s)
- Andrezza Arantes Castro
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil.
- Instituto Federal de Goiás - Campus Cidade de Goiás (IFG), Goiás, GO, 74600-000, Brazil.
| | - Larissa Resende Carvalho
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Cíntia Pelegrineti Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Ramilla Dos Santos Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Amanda Alves de Melo-Ximenes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Leonardo Carlos Jeronimo Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | | | | | - Mariana Pires de Campos Telles
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC - GO), Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
10
|
Koenemann DM, Kistler L, Burke JM. A plastome phylogeny of Rumex (Polygonaceae) illuminates the divergent evolutionary histories of docks and sorrels. Mol Phylogenet Evol 2023; 182:107755. [PMID: 36906194 DOI: 10.1016/j.ympev.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The genus Rumex L. (Polygonaceae) provides a unique system for investigating the evolutionary development of sex determination and molecular rate evolution. Historically, Rumex has been divided, both taxonomically and colloquially into two groups: 'docks' and 'sorrels'. A well-resolved phylogeny can help evaluate a genetic basis for this division. Here we present a plastome phylogeny for 34 species of Rumex, inferred using maximum likelihood criteria. The historical 'docks' (Rumex subgenus Rumex) were resolved as monophyletic. The historical 'sorrels' (Rumex subgenera Acetosa and Acetosella) were resolved together, though not monophyletic due to the inclusion of R. bucephalophorus (Rumex subgenus Platypodium). Emex is supported as its own subgenus within Rumex, instead of resolved as sister taxa. We found remarkably low nucleotide diversity among the docks, consistent with recent diversification in that group, especially as compared to the sorrels. Fossil calibration of the phylogeny suggested that the common ancestor for Rumex (including Emex) has origins in the lower Miocene (22.13 MYA). The sorrels appear to have subsequently diversified at a relatively constant rate. The origin of the docks, however, was placed in the upper Miocene, but with most speciation occurring in the Plio-Pleistocene.
Collapse
Affiliation(s)
- Daniel M Koenemann
- Claflin University, Department of Biology, 400 Magnolia Street, Orangeburg, SC 29115, USA.
| | - Logan Kistler
- National Museum of Natural History, Anthropology Department, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA.
| | - Janelle M Burke
- Howard University, Department of Biology, EE Just Hall, 415 College Street NW, Washington, DC 20059, USA.
| |
Collapse
|
11
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Koo H, Shin AY, Hong S, Kim YM. The complete chloroplast genome of Hibiscus syriacus using long-read sequencing: Comparative analysis to examine the evolution of the tribe Hibisceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1111968. [PMID: 36818825 PMCID: PMC9931742 DOI: 10.3389/fpls.2023.1111968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Hibiscus syriacus, a member of the tribe Hibisceae, is considered an important ornamental and medicinal plant in east Asian countries. Here, we sequenced and assembled the complete chloroplast genome of H. syriacus var. Baekdansim using the PacBio long-read sequencing platform. A quadripartite structure with 161,026 base pairs was obtained, consisting of a pair of inverted repeats (IRA and IRB) with 25,745 base pairs, separated by a large single-copy region of 89,705 base pairs and a short single-copy region of 19,831 base pairs. This chloroplast genome had 79 protein-coding genes, 30 transfer RNA genes, 4 ribosomal RNA genes, and 109 simple sequence repeat regions. Among them, ndhD and rpoC1, containing traces of RNA-editing events associated with adaptive evolution, were identified by analysis of putative RNA-editing sites. Codon usage analysis revealed a preference for A/U-terminated codons. Furthermore, the codon usage pattern had a clustering tendency similar to that of the phylogenetic analysis of the tribe Hibisceae. This study provides clues for understanding the relationships and refining the taxonomy of the tribe Hibisceae.
Collapse
Affiliation(s)
- Hyunjin Koo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seongmin Hong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong-Min Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Digital Biotech Innovation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
13
|
Park JH, Lee M, Lee Y, Lee J. The complete chloroplast genome of Viola grypoceras (Violaceae). Mitochondrial DNA B Resour 2023; 8:42-44. [PMID: 36620316 PMCID: PMC9815259 DOI: 10.1080/23802359.2022.2160216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We constructed and characterized the chloroplast genome of Viola grypoceras via de novo assembly of Illumina data. The complete circular chloroplast genome is 158,357 bp long and contains four parts: a large single-copy (LSC) region of 86,764 bp, a small single-copy (SSC) region of 17,345 bp, and two inverted-repeat regions (IRa and IRb) of 27,124 bp each. Genome annotation predicted that this genome harbors 111 genes, comprising 77 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Phylogenetic analysis demonstrated that V. grypoceras shares a close systematic relationship with V. mirabilis and V. websteri by forming a basal clade in the genus Viola.
Collapse
Affiliation(s)
- Jin Hee Park
- Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea,CONTACT Jin Hee Park Nakdonggang National Institute of Biological Resources, Sangju37242, Republic of Korea
| | - Minjee Lee
- Green Plant Institute, Yongin, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jungho Lee
- Green Plant Institute, Yongin, Republic of Korea,Jungho Lee Green Plant Institute, Yongin16954, Republic of Korea
| |
Collapse
|
14
|
Kang JS, Kim BY, Yoo KO. The complete plastid genome sequence of Chloranthus fortunei (A. Gray) Solms-Laub. in Chloranthaceae. Mitochondrial DNA B Resour 2022; 7:1829-1833. [PMID: 36325282 PMCID: PMC9621198 DOI: 10.1080/23802359.2022.2132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chloranthus fortunei (A. Gray) Solms-Laub. is a perennial herb in a basal angiosperm family Chloranthaceae. Here, we reported the complete plastid genome of C. fortunei using Illumina short-read data. The total genome size was 157,063 bp in length, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The gene content and order were consistent with previously reported Chloranthus plastid genomes. The overall GC content of the C. fortunei plastid genome was 39.0%. In the phylogenetic result, genus Chloranthus was monophyletic and divided into two subclades: C. japonicus+C. angustifolius+C. fortunei, and C. henryi+C. spicatus+C. erectus. Our phylogenetic result was consistent with previous phylogenetic studies, and was supported by a previously proposed infrageneric classification of the genus Chloranthus.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Bo-Yun Kim
- Plant Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Oug Yoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea,CONTACT Ki-Oug Yoo Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
15
|
Zheng C, Fan J, Caraballo-Ortiz MA, Liu Y, Liu T, Fu G, Zhang Y, Yang P, Su X. The complete chloroplast genome and phylogenetic relationship of Apocynum pictum (Apocynaceae), a Central Asian shrub and second-class national protected species of western China. Gene X 2022; 830:146517. [PMID: 35452705 DOI: 10.1016/j.gene.2022.146517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Apocynum pictum of the dogbane family, Apocynaceae, is a perennial semi-shrub species of ecological, medicinal, and economic value. It is mainly distributed in semi-arid, saline-alkaline, and desert regions of Xinjiang, Qinghai, and Gansu of western China and adjacent regions from Kazakhstan and Mongolia. Here, we reported the complete chloroplast (cp) genome of A. pictum for the first time, and we found that it had a circular structure with an estimated length of 150,749 bp and a GC content of 38.3%. The cp genome was composed of a large single copy (LSC), a single small single copy (SSC), and two inverted repeat (IR) regions, which were 81,888 bp, 17,251 bp and 25,805 bp long, respectively. The cp genome of A. pictum encoded 134 genes and contained 66 simple sequence repeats (SSRs). A comparative analysis with other cp genomes from Apocynaceae indicated that the cp genome of A. pictum was very conserved, except for subtle differences occurring in the protein-coding genes accD, ndhF, rpl22, rpl32, rpoC2, ycf1 and ycf2. A phylogenetic reconstruction showed that A. pictum and A. venetum were sister species, forming a strongly supported clade with Trachelospermum. Interestingly, nucleotide substitution ratios (Ka/Ks) between A. pictum and A. venetum on accD and ndhF were >1.0, suggesting positive selective pressure on these genes. Our result enriches the genomic resources for the diverse dogbane family and provides critical molecular resources to develop future studies on ecological adaptation to desert habitats in Apocynum.
Collapse
Affiliation(s)
- Changyuan Zheng
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Jianping Fan
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Marcos A Caraballo-Ortiz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Liu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Gui Fu
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yu Zhang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Ping Yang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China; Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, Qinghai Normal University, Xining 810008, China.
| |
Collapse
|
16
|
Amenu SG, Wei N, Wu L, Oyebanji O, Hu G, Zhou Y, Wang Q. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution. BMC PLANT BIOLOGY 2022; 22:88. [PMID: 35219317 PMCID: PMC8881883 DOI: 10.1186/s12870-022-03480-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/15/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The large and diverse Coffeeae alliance clade of subfamily Ixoroideae (Rubiaceae) consists of 10 tribes, > 90 genera, and > 2000 species. Previous molecular phylogenetics using limited numbers of markers were often unable to fully resolve the phylogenetic relationships at tribal and generic levels. Also, the structural variations of plastomes (PSVs) within the Coffeeae alliance tribes have been poorly investigated in previous studies. To fully understand the phylogenetic relationships and PSVs within the clade, highly reliable and sufficient sampling with superior next-generation analysis techniques is required. In this study, 71 plastomes (40 newly sequenced and assembled and the rest from the GenBank) were comparatively analyzed to decipher the PSVs and resolve the phylogenetic relationships of the Coffeeae alliance using four molecular data matrices. RESULTS All plastomes are typically quadripartite with the size ranging from 153,055 to 155,908 bp and contained 111 unique genes. The inverted repeat (IR) regions experienced multiple contraction and expansion; five repeat types were detected but the most abundant was SSR. The size of the Coffeeae alliance clade plastomes and its elements are affected by the IR boundary shifts and the repeat types. However, the emerging PSVs had no taxonomic and phylogenetic implications. Eight highly divergent regions were identified within the plastome regions ndhF, ccsA, ndhD, ndhA, ndhH, ycf1, rps16-trnQ-UUG, and psbM-trnD. These highly variable regions may be potential molecular markers for further species delimitation and population genetic analyses for the clade. Our plastome phylogenomic analyses yielded a well-resolved phylogeny tree with well-support at the tribal and generic levels within the Coffeeae alliance. CONCLUSIONS Plastome data could be indispensable in resolving the phylogenetic relationships of the Coffeeae alliance tribes. Therefore, this study provides deep insights into the PSVs and phylogenetic relationships of the Coffeeae alliance and the Rubiaceae family as a whole.
Collapse
Affiliation(s)
- Sara Getachew Amenu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Wu
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Oyetola Oyebanji
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
- Sino-Africa Joint Research Center (SAJOREC), Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China
| | - Yadong Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
- Sino-Africa Joint Research Center (SAJOREC), Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
- Sino-Africa Joint Research Center (SAJOREC), Chinese Academy of Sciences, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Mascarello M, Amalfi M, Asselman P, Smets E, Hardy OJ, Beeckman H, Janssens SB. Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species. PLoS One 2021; 16:e0251655. [PMID: 34115787 PMCID: PMC8195358 DOI: 10.1371/journal.pone.0251655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Tropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics. Several laws and regulations have been set up to combat illegal timber trade. Despite significant enforcement efforts of these regulations, illegal logging continues to be a serious problem and impacts for the functioning of the forest ecosystem and global biodiversity in the tropics. Microscopic analysis of wood samples and the use of conventional plant DNA barcodes often do not allow to distinguish closely-related species. The use of novel molecular technologies could make an important contribution for the identification of tree species. In this study, we used high-throughput sequencing technologies and bioinformatics tools to obtain the complete de-novo chloroplast genome of 62 commercial African timber species using the genome skimming method. Then, we performed a comparative genomic analysis that revealed new candidate genetic regions for the discrimination of closely-related species. We concluded that genome skimming is a promising method for the development of plant genetic markers to combat illegal logging activities supporting CITES, FLEGT and the EU Timber Regulation.
Collapse
Affiliation(s)
- Maurizio Mascarello
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Mario Amalfi
- Meise Botanic Garden, Meise, Belgium
- Fédération Wallonie–Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Brussels, Belgium
| | - Pieter Asselman
- Mycology & Systematic and Evolutionary Botany, Department of Biology, Ghent University, Ghent, Belgium
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Olivier J. Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Hans Beeckman
- Wood Biology, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Steven B. Janssens
- Meise Botanic Garden, Meise, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Yudina SV, Schelkunov MI, Nauheimer L, Crayn D, Chantanaorrapint S, Hroneš M, Sochor M, Dančák M, Mar SS, Luu HT, Nuraliev MS, Logacheva MD. Comparative Analysis of Plastid Genomes in the Non-photosynthetic Genus Thismia Reveals Ongoing Gene Set Reduction. FRONTIERS IN PLANT SCIENCE 2021; 12:602598. [PMID: 33796122 PMCID: PMC8009136 DOI: 10.3389/fpls.2021.602598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 05/14/2023]
Abstract
Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus Thismia, represents the mycoheterotrophic monocot family Thismiaceae, a group that may have experienced a very ancient (60-80 mya) transition to heterotrophy. In all 18 species examined, the plastome is reduced to 14-18 kb and is highly AT-biased. The most complete observed gene set includes accD, seven ribosomal protein genes, three rRNA, and two tRNA genes. Different clades of Thismia have undergone further gene loss (complete absence or pseudogenization) compared to this set: in particular, we report two independent losses of rps2 and rps18.
Collapse
Affiliation(s)
- Sophia V. Yudina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Sahut Chantanaorrapint
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Michal Hroneš
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia
| | - Martin Dančák
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | | | - Hong Truong Luu
- Southern Institute of Ecology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Maxim S. Nuraliev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
19
|
Zhai Y, Yu X, Zhou J, Li J, Tian Z, Wang P, Meng Y, Zhao Q, Lou Q, Du S, Chen J. Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis. Genome 2021; 64:627-638. [PMID: 33460340 DOI: 10.1139/gen-2020-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.
Collapse
Affiliation(s)
- Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ya Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| |
Collapse
|
20
|
Sobreiro MB, Vieira LD, Nunes R, Novaes E, Coissac E, Silva-Junior OB, Grattapaglia D, Collevatti RG. Chloroplast genome assembly of Handroanthus impetiginosus: comparative analysis and molecular evolution in Bignoniaceae. PLANTA 2020; 252:91. [PMID: 33098500 DOI: 10.1007/s00425-020-03498-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Bignoniaceae species have conserved chloroplast structure, with hotspots of nucleotide diversity. Several genes are under positive selection, and can be targets for evolutionary studies. Bignoniaceae is one of the most species-rich family of woody plants in Neotropical seasonally dry forests. Here we report the assembly of Handroanthus impetiginosus chloroplast genome and evolutionary comparative analyses of ten Bignoniaceae species representing the genera for which whole-genome chloroplast sequences were available. The chloroplast genome of H. impetiginosus is 159,462 bp in size and has a similar structure compared to the other nine species. The total number of genes was slightly variable amongst the Bignoniaceae, ranging from 124 in H. impetiginosus to 144 in Anemopaegma acutifolium. The inverted repeat (IR) size was variable, ranging from 24,657 bp (Tecomaria capensis) to 40,481 bp (A. acutifolium), due to the contraction and retraction at its boundaries. However, gene boundaries were very similar among the ten species. We found 98 forward and palindromic dispersed repeats, and 85 simple sequence repeats (SSRs). In general, chloroplast sequences were highly conserved, with few nucleotide diversity hotspots in the genes accD, clpP, rpoA, ycf1, ycf2. The phylogenetic analysis based on 77 coding genes was highly consistent with Angiosperm Phylogeny Group (APG) IV. Our results also indicate that most genes are under negative selection or neutral evolution. We found no evidence of branch-site selection, implying that H. impetiginosus is not evolving faster than the other species analyzed, notwithstanding we found site positive selection signal in several genes. These genes can provide targets for evolutionary studies in Bignoniaceae and Lamiales species.
Collapse
Affiliation(s)
- Mariane B Sobreiro
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rhewter Nunes
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Evandro Novaes
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil
| | - Eric Coissac
- Laboratoire d'Écologie Alpine (LECA), University Grenoble-Alpes, Grenoble, Switzerland
| | | | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil
| | - Rosane Garcia Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
21
|
Alzahrani DA, Yaradua SS, Albokhari EJ, Abba A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics 2020; 21:393. [PMID: 32532210 PMCID: PMC7291470 DOI: 10.1186/s12864-020-06798-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The plastome of medicinal and endangered species in Kingdom of Saudi Arabia, Barleria prionitis was sequenced. The plastome was compared with that of seven Acanthoideae species in order to describe the plastome, spot the microsatellite, assess the dissimilarities within the sampled plastomes and to infer their phylogenetic relationships. RESULTS The plastome of B. prionitis was 152,217 bp in length with Guanine-Cytosine and Adenine-Thymine content of 38.3 and 61.7% respectively. It is circular and quadripartite in structure and constitute of a large single copy (LSC, 83, 772 bp), small single copy (SSC, 17, 803 bp) and a pair of inverted repeat (IRa and IRb 25, 321 bp each). 131 genes were identified in the plastome out of which 113 are unique and 18 were repeated in IR region. The genome consists of 4 rRNA, 30 tRNA and 80 protein-coding genes. The analysis of long repeat showed all types of repeats were present in the plastome and palindromic has the highest frequency. A total number of 98 SSR were also identified of which mostly were mononucleotide Adenine-Thymine and are located at the non coding regions. Comparative genomic analysis among the plastomes revealed that the pair of the inverted repeat is more conserved than the single copy region. In addition high variation is observed in the intergenic spacer region than the coding region. The genes, ycf1and ndhF and are located at the border junction of the small single copy region and IRb region of all the plastome. The analysis of sequence divergence in the protein coding genes indicates that the following genes undergo positive selection (atpF, petD, psbZ, rpl20, petB, rpl16, rps16, rpoC, rps7, rpl32 and ycf3). Phylogenetic analysis indicated sister relationship between Ruellieae and Justcieae. In addition, Barleria, Justicia and Ruellia are paraphyletic, suggesting that Justiceae, Ruellieae, Andrographideae and Barlerieae should be treated as tribes. CONCLUSIONS This study sequenced and assembled the first plastome of the taxon Barleria and reported the basics resources for evolutionary studies of B. prionitis and tools for phylogenetic relationship studies within the core Acanthaceae.
Collapse
Affiliation(s)
- Dhafer A Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaila S Yaradua
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Biology, Umaru Musa Yaradua University, Centre for Biodiversity and Conservation, Katsina, Nigeria.
| | - Enas J Albokhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abidina Abba
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Gruenstaeudl M, Jenke N. PACVr: plastome assembly coverage visualization in R. BMC Bioinformatics 2020; 21:207. [PMID: 32448146 PMCID: PMC7245912 DOI: 10.1186/s12859-020-3475-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plastid genomes typically display a circular, quadripartite structure with two inverted repeat regions, which challenges automatic assembly procedures. The correct assembly of plastid genomes is a prerequisite for the validity of subsequent analyses on genome structure and evolution. The average coverage depth of a genome assembly is often used as an indicator of assembly quality. Visualizing coverage depth across a draft genome is a critical step, which allows users to inspect the quality of the assembly and, where applicable, identify regions of reduced assembly confidence. Despite the interplay between genome structure and assembly quality, no contemporary, user-friendly software tool can visualize the coverage depth of a plastid genome assembly while taking its quadripartite genome structure into account. A software tool is needed that fills this void. RESULTS We introduce 'PACVr', an R package that visualizes the coverage depth of a plastid genome assembly in relation to the circular, quadripartite structure of the genome as well as the individual plastome genes. By using a variable window approach, the tool allows visualizations on different calculation scales. It also confirms sequence equality of, as well as visualizes gene synteny between, the inverted repeat regions of the input genome. As a tool for plastid genomics, PACVr provides the functionality to identify regions of coverage depth above or below user-defined threshold values and helps to identify non-identical IR regions. To allow easy integration into bioinformatic workflows, PACVr can be invoked from a Unix shell, facilitating its use in automated quality control. We illustrate the application of PACVr on four empirical datasets and compare visualizations generated by PACVr with those of alternative software tools. CONCLUSIONS PACVr provides a user-friendly tool to visualize (a) the coverage depth of a plastid genome assembly on a circular, quadripartite plastome map and in relation to individual plastome genes, and (b) gene synteny across the inverted repeat regions. It contributes to optimizing plastid genome assemblies and increasing the reliability of publicly available plastome sequences. The software, example datasets, technical documentation, and a tutorial are available with the package at https://cran.r-project.org/package=PACVr.
Collapse
Affiliation(s)
- Michael Gruenstaeudl
- Institut für Biologie, Systematische Botanik und Pflanzengeographie, Freie Universität Berlin, Berlin, 14195 Germany
| | - Nils Jenke
- Institut für Bioinformatik, Freie Universität Berlin, Berlin, 14195 Germany
| |
Collapse
|
23
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
24
|
Barthet MM, Pierpont CL, Tavernier E. Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision. PLANT DIRECT 2020; 4:e00208. [PMID: 32185246 PMCID: PMC7068846 DOI: 10.1002/pld3.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
Maturases are prokaryotic enzymes that aid self-excision of introns in precursor RNAs and have evolutionary ties to the nuclear spliceosome. Both the mitochondria and chloroplast, due to their prokaryotic origin, encode a single intron maturase, MatR for the mitochondria and MatK for the chloroplast. MatK is proposed to aid excision of seven different chloroplast group IIA introns that reside within precursor RNAs for essential elements of chloroplast function. We have developed an in vitro activity assay to test chloroplast group IIA intron excision. Using this assay, we demonstrate self-excision of the group IIA intron of the second intron of rps12 and the group IIA intron of rpl2. We further show that the addition of heterologously expressed MatK protein increases efficiency of group IIA intron self-splicing for the second intron of rps12 but not the group IIA intron of rpl2. These data, to our knowledge, provide the first direct evidence of MatK's maturase activity.
Collapse
Affiliation(s)
| | - Christopher L. Pierpont
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - Emilie‐Katherine Tavernier
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
25
|
Gichira AW, Avoga S, Li Z, Hu G, Wang Q, Chen J. Comparative genomics of 11 complete chloroplast genomes of Senecioneae (Asteraceae) species: DNA barcodes and phylogenetics. BOTANICAL STUDIES 2019; 60:17. [PMID: 31440866 PMCID: PMC6706487 DOI: 10.1186/s40529-019-0265-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Majority of the species within Senecioneae are classified in Senecio, making it the tribe's largest genus. Certain intergeneric relationships within the tribe are vaguely defined, with the genus Senecio being partly linked to this ambiguity. Infrageneric relationships within Senecio remain largely unknown and consequently, the genus has undergone continuous expansion and contraction over the recent past due to addition and removal of taxa. Dendrosenecio, an endemic genus in Africa, is one of its segregate genera. To heighten the understanding of species divergence and phylogeny within the tribe, the complete chloroplast genomes of the first five Senecio and six Dendrosenecio species were sequenced and analyzed in this study. RESULTS The entire length of the complete chloroplast genomes was ~ 150 kb and ~ 151 kb in Dendrosenecio and Senecio respectively. Characterization of the 11 chloroplast genomes revealed a significant degree of similarity particularly in their organization, gene content, repetitive sequence composition and patterns of codon usage. The chloroplast genomes encoded an equal number of unique genes out of which 80 were protein-coding genes, 30 transfer ribonucleic acid, and four ribosomal ribonucleic acid genes. Based on comparative sequence analyses, the level of divergence was lower in Dendrosenecio. A total of 331 and 340 microsatellites were detected in Senecio and Dendrosenecio, respectively. Out of which, 25 and five chloroplast microsatellites (cpSSR) were identified as potentially valuable molecular markers. Also, through whole chloroplast genome comparisons and DNA polymorphism tests, ten divergent hotspots were identified. Potential primers were designed creating genomic tools to further molecular studies within the tribe. Intergeneric relationships within the tribe were firmly resolved using genome-scale dataset in partitioned and unpartitioned schemes. Two main clades, corresponding to two subtribes within the Senecioneae, were formed with the genus Ligularia forming a single clade while the other had Dendrosenecio, Pericallis, Senecio and Jacobaea. A sister relationship was revealed between Dendrosenecio and Pericallis whereas Senecio, and Jacobaea were closely placed in a different clade. CONCLUSION Besides emphasizing on the potential of chloroplast genome data in resolving intergeneric relationships within Senecioneae, this study provides genomic resources to facilitate species identification and phylogenetic reconstructions within the respective genera.
Collapse
Affiliation(s)
- Andrew Wanyoike Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Sheila Avoga
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qingfeng Wang
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
26
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
27
|
Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:1989. [PMID: 30687376 PMCID: PMC6335349 DOI: 10.3389/fpls.2018.01989] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 05/28/2023]
Abstract
Among the four species of Echinacanthus (Acanthaceae), one distributed in the West Himalayan region and three restricted to the Sino-Vietnamese karst region. Because of its ecological significance, molecular markers are necessary for proper assessment of its genetic diversity and phylogenetic relationships. Herein, the complete chloroplast genomes of four Echinacanthus species were determined for the first time. The results indicated that all the chloroplast genomes were mapped as a circular structure and each genomes included 113 unique genes, of which 80 were protein-coding, 29 were tRNAs, and 4 were rRNAs. However, the four cp genomes ranged from 151,333 to 152,672 bp in length. Comparison of the four cp genomes showed that the divergence level was greater between geographic groups. We also analyzed IR expansion or contraction in the four cp genomes and the fifth type of the large single copy/inverted repeat region in Lamiales was suggested. Furthermore, based on the analyses of comparison and nucleotide variability, six most divergent sequences (rrn16, ycf1, ndhA, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, and psaA-ycf3) were identified. A total of 37-45 simple sequence repeats were discovered in the four species and 22 SSRs were identified as candidate effective molecular markers for detecting interspecies polymorphisms. These SSRs and hotspot regions could be used as potential molecular markers for future study. Phylogenetic analysis based on Bayesian and parsimony methods did not support the monophyly of Echinacanthus. The phylogenetic relationships among the four species were clearly resolved and the results supported the recognition of the Sino-Vietnamese Echinacanthus species as a new genus. Based on the protein sequence evolution analysis, 12 genes (rpl14, rpl16, rps4, rps15, rps18, rps19, psbK, psbN, ndhC, ndhJ, rpoB, and infA) were detected under positive selection in branch of Sino-Vietnamese Echinacanthus species. These genes will lead to understanding the adaptation of Echinacanthus species to karst environment. The study will help to resolve the phylogenetic relationship and understand the adaptive evolution of Echinacanthus. It will also provide genomic resources and potential markers suitable for future species identification and speciation studies of the genus.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| |
Collapse
|
28
|
Su Y, Huang L, Wang Z, Wang T. Comparative chloroplast genomics between the invasive weed Mikania micrantha and its indigenous congener Mikania cordata: Structure variation, identification of highly divergent regions, divergence time estimation, and phylogenetic analysis. Mol Phylogenet Evol 2018; 126:181-195. [PMID: 29684597 DOI: 10.1016/j.ympev.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/27/2022]
Abstract
Mikania micrantha and Mikania cordata are the only two species in genus Mikania (Asteraceae) in China. They share very similar morphological and life-history characteristics but occupy quite different habitats. Most importantly, they generate totally different ecological consequences. While M. micrantha has become an exotic invasive weed, M. cordata exists as an indigenous species with no harmful effects on native plants or habitats. As a continuous study of our previously reported M. micrantha chloroplast (cp) genome, in this study we have further sequenced the M. cordata cp genome to (1) conduct a comparative genome analysis to gain insights into the mechanism of invasiveness; (2) develop cp markers to examine the population genetic adaptation of M. micrantha; and (3) screen variable genome regions of phylogenetic utility. The M. cordata chloroplast genome is 151,984 bp in length and displays a typical quadripartite structure. The number and distribution of protein coding genes, tRNA genes, and rRNA genes of M. cordata are identical to those of M. micrantha. The main difference lays in that the pseudogenization of ndhF and a 118-bp palindromic repeat only arises in M. cordata. Fourteen highly divergent regions, 235 base substitutions, and 58 indels were identified between the two cp genomes. Phylogenetic inferences revealed a sister relationship between M. micrantha and M. cordata whose divergence was estimated to occur around 1.78 million years ago (MYA). Twelve cpSSR loci were detected to be polymorphic and adopted to survey the genetic adaptation of M. micrantha populations. No cpSSR loci were found to undergo selection. Our results build a foundation to examine the invasive mechanism of Mikania weed.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
29
|
Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS One 2018; 13:e0192966. [PMID: 29596414 PMCID: PMC5875761 DOI: 10.1371/journal.pone.0192966] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species.
Collapse
|
30
|
Coombe L, Warren RL, Jackman SD, Yang C, Vandervalk BP, Moore RA, Pleasance S, Coope RJ, Bohlmann J, Holt RA, Jones SJM, Birol I. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data. PLoS One 2016; 11:e0163059. [PMID: 27632164 PMCID: PMC5025161 DOI: 10.1371/journal.pone.0163059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis). Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly.
Collapse
Affiliation(s)
- Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
- * E-mail: (RW); (IB)
| | - Shaun D. Jackman
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Chen Yang
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Benjamin P. Vandervalk
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Richard A. Moore
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stephen Pleasance
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Robin J. Coope
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
- * E-mail: (RW); (IB)
| |
Collapse
|
31
|
The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae. PLoS One 2016; 11:e0161809. [PMID: 27560965 PMCID: PMC4999192 DOI: 10.1371/journal.pone.0161809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/14/2016] [Indexed: 01/22/2023] Open
Abstract
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild.
Collapse
|
32
|
Liu TJ, Zhang CY, Yan HF, Zhang L, Ge XJ, Hao G. Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus. PeerJ 2016; 4:e2101. [PMID: 27375965 PMCID: PMC4928469 DOI: 10.7717/peerj.2101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022] Open
Abstract
Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.
Collapse
Affiliation(s)
- Tong-Jian Liu
- College of Life Sciences, South China Agricultural University , Guangzhou , China
| | - Cai-Yun Zhang
- College of Life Sciences, South China Agricultural University , Guangzhou , China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China
| | - Lu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , China
| | - Gang Hao
- College of Life Sciences, South China Agricultural University , Guangzhou , China
| |
Collapse
|
33
|
Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohamadi H, Chu J, Raymond A, Pleasance S, Coope R, Wildung MR, Ritland CE, Bousquet J, Jones SJM, Bohlmann J, Birol I. Organellar Genomes of White Spruce (Picea glauca): Assembly and Annotation. Genome Biol Evol 2015; 8:29-41. [PMID: 26645680 PMCID: PMC4758241 DOI: 10.1093/gbe/evv244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genome sequences of the plastid and mitochondrion of white spruce (Picea glauca) were assembled from whole-genome shotgun sequencing data using ABySS. The sequencing data contained reads from both the nuclear and organellar genomes, and reads of the organellar genomes were abundant in the data as each cell harbors hundreds of mitochondria and plastids. Hence, assembly of the 123-kb plastid and 5.9-Mb mitochondrial genomes were accomplished by analyzing data sets primarily representing low coverage of the nuclear genome. The assembled organellar genomes were annotated for their coding genes, ribosomal RNA, and transfer RNA. Transcript abundances of the mitochondrial genes were quantified in three developmental tissues and five mature tissues using data from RNA-seq experiments. C-to-U RNA editing was observed in the majority of mitochondrial genes, and in four genes, editing events were noted to modify ACG codons to create cryptic AUG start codons. The informatics methodology presented in this study should prove useful to assemble organellar genomes of other plant species using whole-genome shotgun sequencing data.
Collapse
Affiliation(s)
- Shaun D Jackman
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ewan A Gibb
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Benjamin P Vandervalk
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Hamid Mohamadi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Justin Chu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Anthony Raymond
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stephen Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Mark R Wildung
- School of Molecular Biosciences, Washington State University
| | - Carol E Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jean Bousquet
- Department of Forest and Environmental Genomics, Université Laval, Québec, QC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Inanç Birol
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada School of Computing Science, Simon Fraser University, Burnaby, BC, Canada Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, Zheng C, Zheng W, Cheng T, Shi J. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. FRONTIERS IN PLANT SCIENCE 2015; 6:447. [PMID: 26136762 PMCID: PMC4468836 DOI: 10.3389/fpls.2015.00447] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 05/03/2023]
Abstract
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.
Collapse
Affiliation(s)
- Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Liming Yang
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Guangxin Liu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Yu Sheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Chen Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Weiwei Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| |
Collapse
|
35
|
Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 2015; 16:306. [PMID: 25887666 PMCID: PMC4446112 DOI: 10.1186/s12864-015-1498-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. Results Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. Conclusions Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1498-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiliang Hu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Gaurav Sablok
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Bo Wang
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Dong Qu
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy. .,College of Horticulture, Northwest Agricultural and Forest University, 712100, Yangling, Shaanxi, PR China.
| | - Enrico Barbaro
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Roberto Viola
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Mingai Li
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| | - Claudio Varotto
- Ecogenomics Laboratory, Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S, Michele all'Adige (TN), Italy.
| |
Collapse
|
36
|
Wagoner JA, Sun T, Lin L, Hanson MR. Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing. J Biol Chem 2014; 290:2957-68. [PMID: 25512379 DOI: 10.1074/jbc.m114.622084] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In angiosperm organelles, cytidines are converted to uridines by a deamination reaction in the process termed RNA editing. The C targets of editing are recognized by members of the pentatricopeptide repeat (PPR) protein family. Although other members of the editosome have begun to be identified, the enzyme that catalyzes the C-U conversion is still unknown. The DYW motif at the C terminus of many PPR editing factors contains residues conserved with known cytidine deaminase active sites; however, some PPR editing factors lack a DYW motif. Furthermore, in many PPR-DYW editing factors, the truncation of the DYW motif does not affect editing efficiency, so the role of the DYW motif in RNA editing is unclear. Here, a chloroplast PPR-DYW editing factor, quintuple editing factor 1 (QED1), was shown to affect five different plastid editing sites, the greatest number of chloroplast C targets known to be affected by a single PPR protein. Loss of editing at the five sites resulted in stunted growth and accumulation of apparent photodamage. Adding a C-terminal protein tag to QED1 was found to severely inhibit editing function. QED1 and RARE1, another plastid PPR-DYW editing factor, were discovered to require their DYW motifs for efficient editing. To identify specific residues critical for editing, conserved deaminase residues in each PPR protein were mutagenized. The mutant PPR proteins, when expressed in qed1 or rare1 mutant protoplasts, could not complement the editing defect. Therefore, the DYW motif, and specifically, the deaminase residues, of QED1 and RARE1 are required for editing efficiency.
Collapse
Affiliation(s)
- Jessica A Wagoner
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Tao Sun
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Lin Lin
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Maureen R Hanson
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
37
|
Jeong YM, Chung WH, Mun JH, Kim N, Yu HJ. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Gene 2014; 551:39-48. [PMID: 25151309 DOI: 10.1016/j.gene.2014.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
Abstract
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Won-Hyung Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea.
| |
Collapse
|
38
|
Ku C, Hu JM, Kuo CH. Complete plastid genome sequence of the basal asterid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS One 2013; 8:e62548. [PMID: 23638113 PMCID: PMC3640096 DOI: 10.1371/journal.pone.0062548] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Ardisia is a basal asterid genus well known for its medicinal values and has the potential for development of novel phytopharmaceuticals. In this genus of nearly 500 species, many ornamental species are commonly grown worldwide and some have become invasive species that caused ecological problems. As there is no completed plastid genome (plastome) sequence in related taxa, we sequenced and characterized the plastome of Ardisia polysticta to find plastid markers of potential utility for phylogenetic analyses at low taxonomic levels. The complete A. polysticta plastome is 156,506 bp in length and has gene content and organization typical of most asterids and other angiosperms. We identified seven intergenic regions as potentially informative markers with resolution for interspecific relationships. Additionally, we characterized the diversity of asterid plastomes with respect to GC content, plastome organization, gene content, and repetitive sequences through comparative analyses. The results demonstrated that the genome organizations near the boundaries between inverted repeats (IRs) and single-copy regions (SCs) are polymorphic. The boundary organization found in Ardisia appears to be the most common type among asterids, while six other types are also found in various asterid lineages. In general, the repetitive sequences in genic regions tend to be more conserved, whereas those in noncoding regions are usually lineage-specific. Finally, we inferred the whole-plastome phylogeny with the available asterid sequences. With the improvement in taxon sampling of asterid orders and families, our result highlights the uncertainty of the position of Gentianales within euasterids I.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
39
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T. The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. THE PLANT CELL 2012; 24:123-36. [PMID: 22267485 PMCID: PMC3289561 DOI: 10.1105/tpc.111.089441] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/09/2011] [Accepted: 01/02/2012] [Indexed: 05/18/2023]
Abstract
Gene expression in plastids of higher plants is dependent on two different transcription machineries, a plastid-encoded bacterial-type RNA polymerase (PEP) and a nuclear-encoded phage-type RNA polymerase (NEP), which recognize distinct types of promoters. The division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear due to a lack of comprehensive information on promoter usage. Here, we present a thorough investigation into the distribution of PEP and NEP promoters within the plastid genome of barley (Hordeum vulgare). Using a novel differential RNA sequencing approach, which discriminates between primary and processed transcripts, we obtained a genome-wide map of transcription start sites in plastids of mature first leaves. PEP-lacking plastids of the albostrians mutant allowed for the unambiguous identification of NEP promoters. We observed that the chloroplast genome contains many more promoters than genes. According to our data, most genes (including genes coding for photosynthesis proteins) have both PEP and NEP promoters. We also detected numerous transcription start sites within operons, indicating transcriptional uncoupling of genes in polycistronic gene clusters. Moreover, we mapped many transcription start sites in intergenic regions and opposite to annotated genes, demonstrating the existence of numerous noncoding RNA candidates.
Collapse
Affiliation(s)
- Petya Zhelyazkova
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Cynthia M. Sharma
- Research Center for Infectious Diseases, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Konrad U. Förstner
- Research Center for Infectious Diseases, University of Würzburg, D-97080 Wuerzburg, Germany
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Karsten Liere
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Thomas Börner
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
| |
Collapse
|
43
|
Abstract
In eukaryotes, RNA trans-splicing is an important RNA-processing form for the end-to-end ligation of primary transcripts that are derived from separately transcribed exons. So far, three different categories of RNA trans-splicing have been found in organisms as diverse as algae to man. Here, we review one of these categories: the trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. Trans-spliced exons can be predicted from DNA sequences derived from a large number of sequenced organelle genomes. Further molecular genetic analysis of mutants has unravelled proteins, some of which being part of high-molecular-weight complexes that promote the splicing process. Based on data derived from the alga Chlamydomonas reinhardtii, a model is provided which defines the composition of an organelle spliceosome. This will have a general relevance for understanding the function of RNA-processing machineries in eukaryotic organelles.
Collapse
Affiliation(s)
- Stephanie Glanz
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
44
|
Karcher D, Kahlau S, Bock R. Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. RNA (NEW YORK, N.Y.) 2008; 14:217-24. [PMID: 18065714 PMCID: PMC2212248 DOI: 10.1261/rna.823508] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/29/2007] [Indexed: 05/07/2023]
Abstract
RNA editing sites and their site-specific trans-acting recognition factors are thought to have coevolved. Hence, evolutionary loss of an editing site by a genomic mutation is normally followed by the loss of the specific recognition factor for this site, due to the absence of selective pressure for its maintenance. Here, we have tested this scenario for the only tomato-specific plastid RNA editing site. A single C-to-U editing site in the tomato rps12 gene is absent from the tobacco and nightshade plastid genomes, where the presence of a genomic T nucleotide obviates the need for editing of the rps12 mRNA. We have introduced the tomato editing site into the tobacco rps12 gene by plastid transformation and find that, surprisingly, this heterologous site is efficiently edited in the transplastomic plants. This suggests that the trans-acting recognition factor for the rps12 editing site has been maintained, presumably because it serves another function in tobacco plastids. Bioinformatics analyses identified an editing site in the rpoB gene of tobacco and tomato whose sequence context exhibits striking similarity to that of the tomato rps12 editing site. This may suggest that requirement for rpoB editing resulted in maintenance of the rps12 editing activity or, alternatively, the pre-existing rpoB editing activity facilitated the evolution of a novel editing site in rps12.
Collapse
Affiliation(s)
- Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
45
|
Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. THE PLANT CELL 2006; 18:2650-63. [PMID: 17041147 PMCID: PMC1626628 DOI: 10.1105/tpc.106.046110] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/23/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
The pentatricopeptide repeat (PPR) is a degenerate 35-amino acid repeat motif that is widely distributed among eukaryotes. Genetic, biochemical, and bioinformatic data suggest that many PPR proteins influence specific posttranscriptional steps in mitochondrial or chloroplast gene expression and that they may typically bind RNA. However, biological functions have been determined for only a few PPR proteins, and with few exceptions, substrate RNAs are unknown. To gain insight into the functions and substrates of the PPR protein family, we characterized the maize (Zea mays) nuclear gene ppr4, which encodes a chloroplast-targeted protein harboring both a PPR tract and an RNA recognition motif. Microarray analysis of RNA that coimmunoprecipitates with PPR4 showed that PPR4 is associated in vivo with the first intron of the plastid rps12 pre-mRNA, a group II intron that is transcribed in segments and spliced in trans. ppr4 mutants were recovered through a reverse-genetic screen and shown to be defective for rps12 trans-splicing. The observations that PPR4 is associated in vivo with rps12-intron 1 and that it is also required for its splicing demonstrate that PPR4 is an rps12 trans-splicing factor. These findings add trans-splicing to the list of RNA-related functions associated with PPR proteins and suggest that plastid group II trans-splicing is performed by different machineries in vascular plants and algae.
Collapse
|
46
|
Hirose T, Sugiura M. Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs. PLANT & CELL PHYSIOLOGY 2004; 45:114-7. [PMID: 14749493 DOI: 10.1093/pcp/pch002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many of the chloroplast mRNAs possess Shine-Dalgarno (SD)-like sequences (typically GGAGG) in the 5'-untranslated regions, but the position is highly variable. Using a homologous in vitro translation system, we assessed the role for translation of SD-like sequences in four tobacco chloroplast mRNAs. The rbcL mRNA has a typical SD-like sequence at a position similar to the conserved position (-12 to -4 with respect to the start codon) observed in E. coli, and this sequence was found to be essential for translation. This was also the case for the atpE mRNA. However, SD-like sequences in the rps12 mRNA and in the petB mRNA is located far from (-44 to -42) and too close to (-5 to -2) the initiation codon, respectively, and these sequences were not essential for translation. These results indicate that functional SD-like sequences are located around 10 nucleotides upstream from the translational start codon. Competition assays confirmed that a functional SD-like sequence interacts with the 3' terminus of chloroplast 16S rRNA.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602 Japan
| | | |
Collapse
|
47
|
Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:541-9. [PMID: 14617084 DOI: 10.1046/j.1365-313x.2003.01900.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The chloroplast NDH complex, NAD(P)H dehydrogenase, reduces the plastoquinone pool non-photochemically and is involved in cyclic electron flow around photosystem I (PSI). A transient increase in chlorophyll fluorescence after turning off actinic light is a result of NDH activity. We focused on this subtle change in chlorophyll fluorescence to isolate nuclear mutants affected in chloroplast NDH activity in Arabidopsis by using chlorophyll fluorescence imaging. crr2-1 and crr2-2 (chlororespiratory reduction) are recessive mutant alleles in which accumulation of the NDH complex is impaired. Except for the defect in NDH activity, photosynthetic electron transport was unaffected. CRR2 encodes a member of the plant combinatorial and modular protein (PCMP) family consisting of more than 200 genes in Arabidopsis. CRR2 functions in the intergenic processing of chloroplast RNA between rps7 and ndhB, which is possibly essential for ndhB translation. We have determined the function of a PCMP family member, indicating that the family is closely related to pentatrico-peptide PPR proteins involved in the maturation steps of organellar RNA.
Collapse
Affiliation(s)
- Mihoko Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
48
|
Kuroda H, Maliga P. Overexpression of the clpP 5'-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. PLANT PHYSIOLOGY 2002; 129:1600-6. [PMID: 12177472 PMCID: PMC166747 DOI: 10.1104/pp.004986] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 03/27/2002] [Accepted: 04/18/2002] [Indexed: 05/21/2023]
Abstract
The plastid ribosomal RNA (rrn) operon promoter was fused with DNA segments encoding the leader sequence (5'-untranslated region [UTR]) of plastid mRNAs to compare their efficiency in mediating translation of a bacterial protein neomycin phosphotransferase (NPTII) in tobacco (Nicotiana tabacum) chloroplasts. In young leaves, NPTII accumulated at 0.26% and 0.8% of the total soluble leaf protein from genes with the clpP and atpB 5'-UTR, respectively. Interestingly, expression of NPTII from the promoter with the clpP 5'-UTR (0.26% NPTII) caused a mutant (chlorotic) phenotype, whereas plants accumulating approximately 0.8% NPTII from the atpB 5'-UTR were normal green, indicating that the mutant phenotype was independent of NPTII accumulation. Low levels of monocistronic clpP mRNA and accumulation of intron-containing clpP transcripts in the chlorotic leaves suggest competition between the clpP 5'-UTR in the chimeric transcript and the native clpP pre-mRNA (ratio 16:1) for an mRNA maturation factor. Because maturation of 11 other intron-containing mRNAs was unaffected in the chlorotic leaves, it appears that the factor is clpP specific. The mutant phenotype is correlated with reduced levels (approximately 2 times) of the ClpP1 protease subunit, supporting an important role for ClpP1 in chloroplast development.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Waksman Institute, 190 Frelinghuysen Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
49
|
Vogel J, Börner T. Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J 2002; 21:3794-803. [PMID: 12110591 PMCID: PMC126105 DOI: 10.1093/emboj/cdf359] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lariat formation has been studied intensively only with a few self-splicing group II introns, and little is known about how the numerous diverse introns in plant organelles are excised. Several of these introns have branch-points that are not a single bulge but are adjoined by A:A, A:C, A:G and G:G pairs. Using a highly sensitive in vivo approach, we demonstrate that all but one of the barley chloroplast introns splice via the common pathway that produces a branched product. RNA editing does not improve domain 5 and 6 structures of these introns. The conserved branch-point in tobacco rpl16 is chosen even if an adjacent unpaired adenosine is available, suggesting that spatial arrangements in domain 6 determine correct branch-point selection. Lariats were not detected for the chloroplast trnV intron, which lacks an unpaired adenosine in domain 6. Instead, this intron is released as linear molecules that undergo further polyadenylation. trnV, which is conserved throughout plant evolution, constitutes the first example of naturally occurring hydrolytic group II intron splicing in vivo.
Collapse
Affiliation(s)
- Jörg Vogel
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, Husargatan 3, S-751 24 Uppsala, Sweden and
Institute of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany Corresponding author e-mail:
| | - Thomas Börner
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, Husargatan 3, S-751 24 Uppsala, Sweden and
Institute of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany Corresponding author e-mail:
| |
Collapse
|
50
|
Hajdukiewicz PT, Gilbertson L, Staub JM. Multiple pathways for Cre/lox-mediated recombination in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:161-70. [PMID: 11489193 DOI: 10.1046/j.1365-313x.2001.01067.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastid transformation technology involves the insertion by homologous recombination and subsequent amplification of plastid transgenes to approximately 10 000 genome copies per leaf cell. Selection of transformed genomes is achieved using a selectable antibiotic resistance marker that has no subsequent role in the transformed line. We report here a feasibility study in the model plant tobacco, to test the heterologous Cre/lox recombination system for antibiotic marker gene removal from plastids. To study its efficiency, a green fluorescent protein reporter gene activation assay was utilized that allowed visual observation of marker excision after delivery of Cre to plastids. Using a combination of in vivo fluorescence activation and molecular assays, we show that transgene excision occurs completely from all plastid genomes early in plant development. Selectable marker-free transplastomic plants are obtained in the first seed generation, indicating a potential application of the Cre/lox system in plastid transformation technology. In addition to the predicted transgene excision event, two alternative pathways of Cre-mediated recombination were also observed. In one alternative pathway, the presence of Cre in plastids stimulated homologous recombination between a 117 bp transgene expression element and its cognate sequence in the plastid genome. The other alternative pathway uncovered a plastid genome 'hot spot' of recombination composed of multiple direct repeats of a 5 bp sequence motif, which recombined with lox independent of sequence homology. Both recombination pathways result in plastid genome deletions. However, the resultant plastid mutations are silent, and their study provides the first insights into tRNA accumulation and trans-splicing events in higher plant plastids.
Collapse
Affiliation(s)
- P T Hajdukiewicz
- Monsanto Company, Mail Zone BB3G, 700 Chesterfield Village Parkway North, St Louis, MO 63198, USA
| | | | | |
Collapse
|