1
|
Liu Y, Li S, Wang K, Wang Y, Wang Y, Zhang C, Wu H, Wang G, Qin F, Song Z, Tao Y. Unveiling the HSP90 inhibitor mediated effects on endoplasmic reticulum stress and redox signaling:from a cancer inhibitor to retinal degeneration catalyst. Free Radic Biol Med 2025:S0891-5849(25)00697-5. [PMID: 40414464 DOI: 10.1016/j.freeradbiomed.2025.05.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Retinal degeneration (RD) is a class of polygenic blind eye disease characterized by photoreceptors loss and dysfunction of retinal pigment epithelium. Thus far, there is no effective treatment to save the declining vision in RD patients. Animal models are highly precious tools for studying the pathological mechanisms of RD, and for screening potential therapeutics. AUY922 is a heat shock protein 90 inhibitor that exhibits potent anti-cancer effects. However, it causes adverse ocular reactions such as reduced visual acuity and night blindness. This study intends to explore the pathological mechanism underlying the AUY922 induced RD. In vitro study, AUY922 induced cytotoxic effects on the 661W cells, which are ascribed to endoplasmic reticulum (ER) stress and oxidative damages. ER stress inhibitor 4-PBA alleviated 661W cells apoptosis and oxidative stress. Subsequently, AUY922 was delivered into the vitreous cavity of mouse and induced selective photoreceptor death and visual impairments. Overactivation of neuroglial and retinal remodeling occurred during the degenerative process. Moreover, enhanced CHOP expression was tied to profound disturbances in redox homeostasis, which readied photoreceptors for apoptosis. The underlying mechanism should be attributed to the activation of the PERK-eIF2α-ATF4-CHOP pathway. AUY922 can compensate for the high toxicity and instability of traditional inducers in RD modeling. These results not only enrich our understanding of the toxicology of AUY922 but also provide clues for establishing reliable RD models.
Collapse
Affiliation(s)
- Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yiwen Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Chenxu Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Hao Wu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Gang Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Ma Y, Hossen MM, Huang JJ, Yin Z, Du J, Ye Z, Zeng M, Huang Z. Growth arrest and DNA damage-inducible 45: a new player on inflammatory diseases. Front Immunol 2025; 16:1513069. [PMID: 40083548 PMCID: PMC11903704 DOI: 10.3389/fimmu.2025.1513069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) proteins are critical stress sensors rapidly induced in response to genotoxic/physiological stress and regulate many cellular functions. Even though the primary function of the proteins is to block the cell cycle, inhibit cell proliferation, promote cell apoptosis, and repair DNA damage to cope with the damage caused by internal and external stress on the body, evidence has shown that GADD45 also has the function to modulate innate and adaptive immunity and plays a broader role in inflammatory and autoimmune diseases. In this review, we focus on the immunomodulatory role of GADD45 in inflammatory and autoimmune diseases. First, we describe the regulatory factors that affect the expression of GADD45. Then, we introduce its immunoregulatory roles on immune cells and the critical signaling pathways mediated by GADD45. Finally, we discuss its immunomodulatory effects in various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yanmei Ma
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Md Munnaf Hossen
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zhihua Yin
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhizhong Ye
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Miaoyu Zeng
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
3
|
Ni R, Cao T, Ji X, Peng A, Zhang Z, Fan GC, Stathopulos P, Chakrabarti S, Su Z, Peng T. DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis. Cell Death Differ 2025; 32:306-319. [PMID: 39362992 PMCID: PMC11802725 DOI: 10.1038/s41418-024-01385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) is a well-known transcription factor that regulates the expression of apoptosis-related genes for promoting apoptosis during endoplasmic reticulum stress. Here, we report an unrecognized role of DDIT3 in facilitating necroptosis. DDIT3 directly binds and competitively prevents the p38 MAPK-MK2 interaction and thereby blocking MK2 activation while stimulating p38 MAPK activation. This blockage of MK2 activation initially prevents RIPK1 phosphorylation at Ser320 (inactivation), subsequently relieving its suppression of RIPK1 activation. Consequently, p38 MAPK facilitates RIPK1 phosphorylation at Ser166 (activation) through DDIT3 phosphorylation-related mechanisms, leading to necroptosis. Mechanistically, a 10-amino acid segment (Glu19-Val28) within DDIT3's N-terminus is identified to account for its pro-necroptotic function. In vivo studies demonstrate that forced expression of DDIT3 induces necroptosis, whereas deletion of DDIT3 alleviates necroptosis in mouse hearts under stress. These findings shed light on a novel regulatory mechanism by which DDIT3 promotes RIPK1 activation and subsequent necroptosis.
Collapse
Affiliation(s)
- Rui Ni
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Ting Cao
- Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Angel Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Peter Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON, N6A 5C1, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
4
|
Schmitt-Ulms G, Wang X, Watts J, Booth S, Wille H, Zhao W. A unified model for the origins of spongiform degeneration and other neuropathological features in prion diseases. ARXIV 2025:arXiv:2412.16678v2. [PMID: 39876936 PMCID: PMC11774453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event. Having surveyed the neuropathological record and other distant literature niches, we propose a model in which pathogenic forms of the prion protein poison raft domains, including essential Na+, K+-ATPases (NKAs) embedded within them, thereby triggering an ER-centered cellular rescue program coordinated by the unfolded protein response (UPR). The execution of this program stalls general protein synthesis, causing the deterioration of synaptic spines. As the disease progresses, cells selectively increase sterol biosynthesis, along with ribosome and ER biogenesis. These adaptive rescue attempts cause morphological changes to the ER which manifest as ER dilation or ER hypertrophy in a manner that is influenced by Ca2+ influx into the cell. The nuclear-to-cytoplasmic transport of mRNAs and tRNAs interrupts in late stage disease, thereby depriving ribosomes of supplies and inducing them to aggregate into a paracrystalline form. In support of this model, we share previously reported data, whose features are consistent with the interpretation that 1) the phenotype of ER dilation is observed in major prion diseases, 2) varicose tubules and oval bodies represent ER hypertrophy, and 3) virus-like dense particles are paracrystalline aggregates of inactive ribosomes.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Joel Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Stephanie Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Edmonton, Edmonton, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
6
|
Palomer X, Salvador JM, Griñán-Ferré C, Barroso E, Pallàs M, Vázquez-Carrera M. GADD45A: With or without you. Med Res Rev 2024; 44:1375-1403. [PMID: 38264852 DOI: 10.1002/med.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Humayun A, Lin LYT, Li HH, Fornace AJ. FAILLA MEMORIAL LECTURE How We Got Here: One Laboratory's Odyssey in the Field of Radiation-Inducible Genes. Radiat Res 2024; 201:617-627. [PMID: 38573158 DOI: 10.1667/rade-23-00205.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
This review focuses on early discoveries that contributed to our understanding and the scope of transcriptional responses after radiation damage. Before the development of modern approaches to assess overall global transcriptomic responses, the idea that mammalian cells could respond to DNA-damaging agents in a manner analogous to bacteria was not generally accepted. To investigate this possibility, the development of technology to identify differentially expressed low-abundance transcripts substantially facilitated our appreciation that DNA damaging agents like UV radiation and subsequently ionizing radiation did in fact produce robust transcriptional responses. Here we focus on our identification and characterization of radiation-inducible genes, and how even early studies on stress gene signaling highlighted the broad scope of transcriptional responses to radiation damage. Since then, the central role of transcriptional responses to radiation injury in maintaining genome integrity has been highlighted in many processes, including cell cycle checkpoint control, resistance to cancer by p53 and other key factors, cell senescence, and metabolism.
Collapse
Affiliation(s)
- Arslon Humayun
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | | | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
8
|
Corre M, Lebreton A. Regulation of cold-inducible RNA-binding protein (CIRBP) in response to cellular stresses. Biochimie 2024; 217:3-9. [PMID: 37037339 DOI: 10.1016/j.biochi.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Cold-inducible RNA-Binding Protein (CIRBP) is a general stress-response factor in vertebrates harboring two domains: an RNA-recognition motif and a regulatory domain rich in RG/RGG motifs. CIRBP has been described to bind mRNAs upon various stress conditions (cold, infections, UV, hypoxia …) and regulate their stability and translation. The proteins encoded by its targets are involved in key stress-responsive cellular pathways including apoptosis, inflammation, cell proliferation or translation, thus allowing their coordination. Due to its role in regulating central cellular functions, the expression of CIRBP is tightly controlled. We review here current understanding of the multiple mechanistic layers affecting CIRBP expression and function. Beyond transcriptional regulation by cold-responsive elements and the use of alternative promoters and transcription start sites, CIRBP undergoes various alternative splicing (AS) events which, depending on conditions, modulate the stability of CIRBP transcripts and/or impact the sequence of the encoded polypeptide. Typically, whilst CIRBP expression is induced in the context of hypothermia or viral infection, AS events preferentially address alternative isoforms towards mRNA degradation pathways in response to heat stress or to bacterial-secreted pore forming toxins. Post-translational modifications of CIRBP, mostly in its RGG domain, also condition CIRBP subcellular localization and access to its targets, thereby promoting or inhibiting their expression. For instance, phosphorylation and methylation events gate CIRBP nuclear to cytoplasmic translocation and control its recruitment to stress granules. Considering the therapeutic potential of modulating the expression and function of this central player in stress responses, a fine understanding of CIRBP regulation mechanisms deserves further attention.
Collapse
Affiliation(s)
- Morgane Corre
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Alice Lebreton
- Institut de biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France; INRAE, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Lujan DA, Ochoa JL, Beswick EJ, Howard TA, Hathaway HJ, Perrone-Bizzozero NI, Hartley RS. Cold-Inducible RNA Binding Protein Impedes Breast Tumor Growth in the PyMT Murine Model for Breast Cancer. Biomedicines 2024; 12:340. [PMID: 38397942 PMCID: PMC10886683 DOI: 10.3390/biomedicines12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.
Collapse
Affiliation(s)
- Daniel A. Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Joey L. Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Ellen J. Beswick
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA;
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Helen J. Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Rebecca S. Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| |
Collapse
|
10
|
Asano S, Yamazaki K, Mori K, Hashimoto Y, Kawana S, Sato H, Naito H, Shikano K, Sogame Y, Kashimura M. C/EBP homogenous protein-induced Apoptosis in Endoplasmic Reticulum stress has been implicated in Kikuchi-Fujimoto Disease. J Clin Exp Hematop 2023; 63:270-274. [PMID: 37899238 PMCID: PMC10861369 DOI: 10.3960/jslrt.23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
|
11
|
Zeng LP, Qin YQ, Lu XM, Feng ZB, Fang XL. Identify GADD45G as a potential target of 4-methoxydalbergione in treatment of liver cancer: bioinformatics analysis and in vivo experiment. World J Surg Oncol 2023; 21:324. [PMID: 37833694 PMCID: PMC10571512 DOI: 10.1186/s12957-023-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The growth arrest and DNA damage-inducible gene gamma (GADD45G), an important member of GADD45 family, has been connected to the development of certain human cancers. Our previous studies have confirmed that GADD45G expression could be upregulated by 4-methoxydalbergione (4MOD) in liver cancer cells, but its potential pathological role in hepatocellular carcinoma (HCC) has not been fully understood. This study aimed to determine potential role of GADD45G in HCC, and the effects of 4-methoxydalbergione (4MOD) on the regulation of GADD45G expression in vivo were also analyzed. METHODS Publicly available data and in-house immunohistochemistry (IHC) experiments were utilized to explore the expression profiles and clinical significance of GADD45G in HCC samples. Functional enrichment analysis based on GADD45G co-expression genes was used to excavate the molecular mechanism of GADD45G in HCC. We also conducted in vivo experiment on BALB/c nude mice to excavate the inhibitory effect of 4MOD on HCC and to evaluate the differences in the expression of GADD45G in xenograft tissues between the 4MOD-treated and untreated groups. RESULTS GADD45G displayed significant low expression in HCC tissues. Downregulated expression of GADD45G was positively correlated with some high risk factors in HCC patients and predicted worse prognosis of HCC patients. There was a close association of GADD45G mRNA expression and immune cells, including neutrophils, NK cells, CD8 T cells, and macrophages. Co-expressed genes of GADD45G were involved in several pathways including cell cycle, carbon metabolism, and peroxisome. 4MOD could significantly suppress the growth of HCC in vivo, and this inhibitory effect was dependent on the upregulation of GADD45G expression. CONCLUSION GADD45G expression can be used as a new clinical biomarker for HCC and GADD45G may be a potential target for the anti-cancer effect of 4MOD in liver cancer.
Collapse
Affiliation(s)
- Li-Ping Zeng
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yu-Qi Qin
- Department of Pathology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xiao-Min Lu
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Xian-Lei Fang
- Department of Pathology, Hunan University of Medicine, 492 Jinxinan RD, Huaihua, Hunan, 418000, People's Republic of China.
| |
Collapse
|
12
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
13
|
McLeod A, Wolf P, Chapkin RS, Davidson LA, Ivanov I, Berbaum M, Williams LR, Gaskins HR, Ridlon J, Sanchez-Flack J, Blumstein L, Schiffer L, Hamm A, Cares K, Antonic M, Bernabe BP, Fitzgibbon M, Tussing-Humphreys L. Design of the Building Research in CRC prevention (BRIDGE-CRC) trial: a 6-month, parallel group Mediterranean diet and weight loss randomized controlled lifestyle intervention targeting the bile acid-gut microbiome axis to reduce colorectal cancer risk among African American/Black adults with obesity. Trials 2023; 24:113. [PMID: 36793105 PMCID: PMC9930092 DOI: 10.1186/s13063-023-07115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.
Collapse
Affiliation(s)
- Andrew McLeod
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Patricia Wolf
- grid.169077.e0000 0004 1937 2197Department of Nutrition Science, Purdue University, West Lafayette, IN USA
| | - Robert S. Chapkin
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Laurie A. Davidson
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Ivan Ivanov
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Veterinary Physiology & Pharmacology, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Michael Berbaum
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Lauren R. Williams
- grid.185648.60000 0001 2175 0319Mile Square Health Center, University of Illinois Chicago, Chicago, IL USA
| | - H. Rex Gaskins
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jason Ridlon
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jen Sanchez-Flack
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA ,grid.185648.60000 0001 2175 0319Department of Pediatrics, University of Illinois Chicago, Chicago, IL USA ,grid.185648.60000 0001 2175 0319University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL USA
| | - Lara Blumstein
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Linda Schiffer
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Alyshia Hamm
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Kate Cares
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Mirjana Antonic
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Beatriz Penalver Bernabe
- grid.185648.60000 0001 2175 0319Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,Department of Pediatrics, University of Illinois Chicago, Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA.
| | - Lisa Tussing-Humphreys
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA. .,Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Liu J, Wei Q, Jin Y, Jin Y, Jiang Y. Cold-Induced RNA-Binding Protein and RNA-Binding Motif Protein 3: Two RNA Molecular Chaperones Closely Related to Reproductive Development and Reproductive System Diseases. Protein Pept Lett 2023; 30:2-12. [PMID: 36424802 DOI: 10.2174/0929866530666221124122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Cold-induced RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) have recently been reported to be involved in cold stress in mammals. These proteins are expressed at low levels in various normal cells, tissues, and organs but can be upregulated upon stimulation by multiple stressors. Studies have shown that CIRP and RBM3 are multifunctional RNA molecular chaperones with different biological functions in various physiological and pathophysiological processes, such as reproductive development, the inflammatory response, the immune response, nerve injury regulation, and tumorigenesis. This paper reviews recent studies on the structure, localization and correlation of CIRP and RBM3 with reproductive development and reproductive system diseases.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin Province, China
| | - Qinqin Wei
- Department of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin Province, China
| | - Yingji Jin
- Dermatology Department, Affiliated Hospital of Yanbian University, Yanbian City, Jilin Province, China
| | - Yuji Jin
- Department of Medicine, Jilin Medical University, Jilin City, Jilin Province, China
| | - Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, Jilin City, Jilin Province, China
| |
Collapse
|
15
|
Komuczki D, Stadermann A, Bentele M, Unsoeld A, Grillari J, Mueller MM, Paul A, Fischer S. High cysteine concentrations in cell culture media lead to oxidative stress and reduced bioprocess performance of recombinant CHO cells. Biotechnol J 2022; 17:e2200029. [PMID: 35876277 DOI: 10.1002/biot.202200029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Cysteine is considered an essential amino acid in the cultivation of Chinese hamster ovary (CHO) cells. An optimized cysteine supply during fed-batch cultivation supports the protein production capacity of recombinant CHO cell lines. However, we observed that CHO production cell lines seeded at low cell densities in chemically defined media enriched with, cysteine greater than 2.5 mM resulted in markedly reduced cell growth during passaging, hampering seed train performance and scale-up. To investigate the underlying mechanism, seeding cell densities and initial cysteine concentrations ranging from low to high cysteine concentrations were varied followed by an analysis of cell culture performance. Additionally, cell cycle analysis, intracellular quantification of reactive oxygen species (ROS) as well as transcriptomic analyses by next-generation sequencing were carried out. Our results demonstrate that CHO cells seeded at low cell densities at high initial cysteine concentrations encountered increased oxidative stress leading to a p21-mediated cell cycle arrest in the G1/S phase. The resulting oxidative stress caused redox imbalance in the endoplasmic reticulum and activation of the unfolded protein response as well as the major antioxidant nuclear factor-like 2 response pathways. We were able to identify potential signature genes related to oxidative stress and the inhibition of the pentose phosphate pathway. Finally, we present that seeding cells at a higher concentration counteract oxidative stress in cysteine-enriched cell culture media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daniel Komuczki
- Institute of Bioprocess Sciences and Engineering (IBSE), University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria.,Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Maximilian Bentele
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Andreas Unsoeld
- Cell Culture Media Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, AT-1190, Austria.,Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, AT-1200, Austria
| | - Markus M Mueller
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Albert Paul
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| |
Collapse
|
16
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Humayun A, Fornace AJ. GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:1-22. [PMID: 35505159 DOI: 10.1007/978-3-030-94804-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GADD45 is a gene family consisting of GADD45A, GADD45B, and GADD45G that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. Many of these roles are carried out via signaling mediated by p38 mitogen-activated protein kinases (MAPKs). The GADD45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction, as well as suppression of p38 activity in certain cases. In vivo, there are important tissue and cell type specific differences in the roles for GADD45 in MAPK signaling. In addition to being p53-regulated, GADD45A has also been found to contribute to p53 activation via p38. Like other stress and signaling proteins, GADD45 proteins show complex regulation and numerous effectors. More recently, aberrant GADD45 expression has been found in several human cancers, but the mechanisms behind these findings largely remain to be understood.
Collapse
Affiliation(s)
- Arslon Humayun
- Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Washington, DC, USA.
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
19
|
Wang S, Ma X, Guo J, Li F, Chen T, Ma W, He C, Wang H, He H. DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway. Virulence 2022; 13:514-529. [PMID: 35259065 PMCID: PMC8920142 DOI: 10.1080/21505594.2022.2044667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3), a transcription factor, is typically involved in virus replication control. We are the first to report that DDIT3 promotes the replication of bovine viral diarrhea virus, an RNA virus, by inhibiting innate immunity. However, whether the DDIT3 gene participates in DNA virus replication by regulating innate immunity remains unclear. This study reported that DDIT3 suppressed the innate immune response caused by DNA viruses to promote bovine herpesvirus 1 (BoHV-1) replication. After BoHV-1 infection of Madin-Darby bovine kidney (MDBK) cells, upregulated expression of DDIT3 induced SQSTM1-mediated autophagy and promoted STING degradation. Overexpression of the SQSTM1 protein effectively reduced STING protein levels, whereas SQSTM1 knockdown increased STING protein levels. Coimmunoprecipitation experiments and confocal laser scanning microscopy revealed that the SQSTM1 protein interacts with and colocalizes with STING. Knockdown of SQSTM1 expression in DDIT3-overexpressing cell lines restored STING protein levels. Moreover, a dual-luciferase reporter assay revealed that DDIT3 directly binds to the bovine SQSTM1 promoter and induces SQSTM1 transcription. Overexpression of SQSTM1 promoted BoHV-1 replication by inhibiting IFN-β and IFN-stimulated genes (ISGs) production; silencing of SQSTM1 promoted the expression of IFN-β and ISGs to inhibit BoHV-1 replication. In conclusion, DDIT3 targets STING via SQSTM1-mediated autophagy to promote BoHV-1 replication. These results suggest a novel mechanism by which DDIT3 regulates DNA virus replication by targeting innate immunity. DDIT3 antagonizes the innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jin Guo
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianhua Chen
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengqiang He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Brito DV, Kupke J, Gulmez Karaca K, Oliveira AM. Regulation of neuronal plasticity by the DNA repair associated Gadd45 proteins. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100031. [PMID: 36685757 PMCID: PMC9846468 DOI: 10.1016/j.crneur.2022.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces de novo synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories. Nonetheless, it is still not fully understood how the coupling between different stimuli and the activity of constitutively and/or de novo expressed proteins gate neuronal plasticity. Here, we discuss the molecular functions of the Growth Arrest and DNA Damage 45 (Gadd45) family of proteins in neuronal adaptation. We highlight recent findings that indicate that Gadd45 family members regulate this function through multiple cellular processes (e.g., DNA demethylation, gene expression, RNA stability, MAPK signaling). We then summarize the regulation of Gadd45 expression in neurons and put forward the hypothesis that the constitutive and neuronal activity-induced pools of Gadd45 proteins have distinct and complementary roles in modulating neuronal plasticity. Therefore, we propose that Gadd45 proteins are essential for brain function and their dysfunction might underlie pathophysiological conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- David V.C. Brito
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Kapittelweg 29, 6525, EN Nijmegen, the Netherlands
| | - Ana M.M. Oliveira
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Corresponding author. Institute of Neurobiology, Interdisciplinary Center for Neurosciences (IZN) Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Zheng X, Xu L, Ye M, Gu T, Yao YL, Lv LB, Yu D, Yao YG. Characterizing the role of Tupaia DNA damage inducible transcript 3 (DDIT3) gene in viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104307. [PMID: 34748795 DOI: 10.1016/j.dci.2021.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain. Phylogenetic analysis of DDIT3 protein sequences of tree shrew and related mammals indicated a closer genetic affinity between tree shrew and primates than between tree shrew and rodents. Three positively selected sites (PSSs: Glu83, Pro93, and Ser172) were identified in tDDIT3 based on the branch-site model. Expression analysis of tDDIT3 showed a constitutively expressed level in different tissues and a significantly increased level in tree shrew cells upon herpes simplex virus type 1 (HSV-1) and Newcastle disease virus (NDV) infections. Overexpression of tDDIT3 significantly increased the production of HSV-1 and vesicular stomatitis virus (VSV) in tree shrew primary renal cells (TSPRCs), whereas tDDIT3 knockout in tree shrew stable cell line (TSR6 cells) had an inhibitory effect on virus production. The enhanced effect on viral infection by tDDIT3 was not associated with the three PSSs. Mechanistically, tDDIT3 overexpression inhibited type I IFN signaling. tDDIT3 interacted with tMAVS through CARD and PRR domains, but not with other immune-related factors such as tMDA5, tSTING and tTBK1. Collectively, our results revealed tDDIT3 as a negative regulator for virus infection.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
22
|
Abstract
PURPOSE This article will briefly review the origins and evolution of functional genomics, first describing the experimental technology, and then some of the approaches applied to data analysis and visualization. It will emphasize application of functional genomics to radiation biology, using examples from the author's work to illustrate several key types of analysis. It concludes with a look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some of the innovative areas that may help to shape future research in radiation biology and oncology. CONCLUSIONS Transcriptomic approaches have provided insight into many areas of radiation biology and medicine, and innovations in technology and data analysis approaches promise continued contributions to radiation science in the future.
Collapse
|
23
|
Smaldone G, Caruso D, Sandomenico A, Iaccarino E, Focà A, Ruggiero A, Ruvo M, Vitagliano L. Members of the GADD45 Protein Family Show Distinct Propensities to form Toxic Amyloid-Like Aggregates in Physiological Conditions. Int J Mol Sci 2021; 22:10700. [PMID: 34639041 PMCID: PMC8509203 DOI: 10.3390/ijms221910700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
The three members (GADD45α, GADD45β, and GADD45γ) of the growth arrest and DNA damage-inducible 45 (GADD45) protein family are involved in a myriad of diversified cellular functions. With the aim of unravelling analogies and differences, we performed comparative biochemical and biophysical analyses on the three proteins. The characterization and quantification of their binding to the MKK7 kinase, a validated functional partner of GADD45β, indicate that GADD45α and GADD45γ are strong interactors of the kinase. Despite their remarkable sequence similarity, the three proteins present rather distinct biophysical properties. Indeed, while GADD45β and GADD45γ are marginally stable at physiological temperatures, GADD45α presents the Tm value expected for a protein isolated from a mesophilic organism. Surprisingly, GADD45α and GADD45β, when heated, form high-molecular weight species that exhibit features (ThT binding and intrinsic label-free UV/visible fluorescence) proper of amyloid-like aggregates. Cell viability studies demonstrate that they are endowed with a remarkable toxicity against SHSY-5Y and HepG2 cells. The very uncommon property of GADD45β to form cytotoxic species in near-physiological conditions represents a puzzling finding with potential functional implications. Finally, the low stability and/or the propensity to form toxic species of GADD45 proteins constitute important features that should be considered in interpreting their many functions.
Collapse
Affiliation(s)
| | - Daniela Caruso
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Annalia Focà
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, C.N.R., Via Mezzocannone 16, 80134 Napoli, Italy; (D.C.); (A.S.); (E.I.); (A.F.); (A.R.)
| |
Collapse
|
24
|
Ehmsen JT, Kawaguchi R, Kaval D, Johnson AE, Nachun D, Coppola G, Höke A. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight 2021; 6:e149381. [PMID: 34128833 PMCID: PMC8410074 DOI: 10.1172/jci.insight.149381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurogenic muscle atrophy is the loss of skeletal muscle mass and function that occurs with nerve injury and in denervating diseases, such as amyotrophic lateral sclerosis. Aside from prompt restoration of innervation and exercise where feasible, there are currently no effective strategies for maintaining skeletal muscle mass in the setting of denervation. We conducted a longitudinal analysis of gene expression changes occurring in atrophying skeletal muscle and identified growth arrest and DNA damage-inducible A (Gadd45a) as a gene that shows one of the earliest and most sustained increases in expression in skeletal muscle after denervation. We evaluated the role of this induction using genetic mouse models and found that mice lacking GADD45A showed accelerated and exacerbated neurogenic muscle atrophy, as well as loss of fiber type identity. Our genetic analyses demonstrate that, rather than directly contributing to muscle atrophy as proposed in earlier studies, GADD45A induction likely represents a protective negative feedback response to denervation. Establishing the downstream effectors that mediate this protective effect and the pathways they participate in may yield new opportunities to modify the course of muscle atrophy.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Riki Kawaguchi
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Damlanur Kaval
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna E Johnson
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel Nachun
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ahmet Höke
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
26
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
27
|
Kim HL, Kim YJ, Kee NG, Koedrith P, Seo YR. Novel mechanism of base excision repair inhibition by low-dose nickel(II): interference of p53-mediated APE1 function. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Knockdown of GINS2 inhibits proliferation and promotes apoptosis through the p53/GADD45A pathway in non-small-cell lung cancer. Biosci Rep 2021; 40:222398. [PMID: 32181475 PMCID: PMC7133113 DOI: 10.1042/bsr20193949] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is a malignant tumour type with the highest morbidity and mortality, and non-small-cell lung cancer (NSCLC) is the most common pathological type. GINS complex subunit 2 (GINS2) is a member of the GINS family and is closely related to DNA replication and damage, participates in cell cycle regulation and plays a key role in cell proliferation and apoptosis. In the present study, we aimed to explore the role and underlying molecular mechanism of GINS2 in the development of NSCLC. The results showed that GINS2 is significantly increased in NSCLC tissues and cell lines. Knockdown of GINS2 significantly decreases cell proliferation, causing G2/M phase cell cycle arrest. Knockdown of GINS2 reverses the effect of nocodazole on the levels of cyclin-dependent kinase 1 (CDK1) and cyclin-B1. Meanwhile, knockdown of GINS2 significantly elevates the apoptosis rate and apoptosis-related protein Bax and decreases Bcl-2. In addition, GINS2 knockdown induces an increase in the levels of p53 and growth arrest and DNA damage 45A (GADD45A). Co-transfection with GINS2-siRNA and siRNA against p53 (p53-siRNA) or co-transfection with GINS2-siRNA and siRNA against GADD45A (GADD45A-siRNA) partially reverses the effects of GINS2 knockdown on cell proliferation and apoptosis. Taken together, these results indicate that GINS2 knockdown down-regulates cell proliferation, induces G2/M phase cell cycle arrest and increases apoptosis, possibly through the p53/GADD45A pathway.
Collapse
|
29
|
Solano-Gonzalez E, Coburn KM, Yu W, Wilson GM, Nurmemmedov E, Kesari S, Chang ET, MacKerell AD, Weber DJ, Carrier F. Small molecules inhibitors of the heterogeneous ribonuclear protein A18 (hnRNP A18): a regulator of protein translation and an immune checkpoint. Nucleic Acids Res 2021; 49:1235-1246. [PMID: 33398344 PMCID: PMC7897483 DOI: 10.1093/nar/gkaa1254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/01/2022] Open
Abstract
We have identified chemical probes that simultaneously inhibit cancer cell progression and an immune checkpoint. Using the computational Site Identification by Ligand Competitive Saturation (SILCS) technology, structural biology and cell-based assays, we identify small molecules that directly and selectively bind to the RNA Recognition Motif (RRM) of hnRNP A18, a regulator of protein translation in cancer cells. hnRNP A18 recognizes a specific RNA signature motif in the 3′UTR of transcripts associated with cancer cell progression (Trx, VEGF, RPA) and, as shown here, a tumor immune checkpoint (CTLA-4). Post-transcriptional regulation of immune checkpoints is a potential therapeutic strategy that remains to be exploited. The probes target hnRNP A18 RRM in vitro and in cells as evaluated by cellular target engagement. As single agents, the probes specifically disrupt hnRNP A18–RNA interactions, downregulate Trx and CTLA-4 protein levels and inhibit proliferation of several cancer cell lines without affecting the viability of normal epithelial cells. These first-in-class chemical probes will greatly facilitate the elucidation of the underexplored biological function of RNA Binding Proteins (RBPs) in cancer cells, including their effects on proliferation and immune checkpoint activation.
Collapse
Affiliation(s)
- Eduardo Solano-Gonzalez
- University of Maryland, Baltimore, School of Medicine, Department of Radiation Oncology, 655 West Baltimore, Street, Baltimore, MD 21201, USA
| | - Katherine M Coburn
- University of Maryland, Baltimore, School of Medicine, Department of Biochemistry and Molecular Biology, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore MD 21201, USA.,Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Wilson
- University of Maryland, Baltimore, School of Medicine, Department of Biochemistry and Molecular Biology, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Elizabeth T Chang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore MD 21201, USA.,Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J Weber
- University of Maryland, Baltimore, School of Medicine, Department of Biochemistry and Molecular Biology, 108 N. Greene Street, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.,Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - France Carrier
- University of Maryland, Baltimore, School of Medicine, Department of Radiation Oncology, 655 West Baltimore, Street, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
DDIT3 Targets Innate Immunity via the DDIT3-OTUD1-MAVS Pathway To Promote Bovine Viral Diarrhea Virus Replication. J Virol 2021; 95:JVI.02351-20. [PMID: 33361422 DOI: 10.1128/jvi.02351-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.
Collapse
|
31
|
Tezerjani MD, Kalantar SM. Unraveling the dark matter, long non-coding RNAs, in male reproductive diseases: A narrative review. Int J Reprod Biomed 2020; 18:921-934. [PMID: 33349800 PMCID: PMC7749978 DOI: 10.18502/ijrm.v13i11.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/10/2020] [Accepted: 06/28/2020] [Indexed: 12/09/2022] Open
Abstract
Recent advances in human transcriptome have revealed the fundamental and functional roles of long non-coding RNA in the susceptibility to diverse diseases and pathological conditions. They participate in wide range of biological processes such as the modulating of chromatin structure, transcription, translation, and post-translation modification. In addition, based on their unique expression profiles and their association with clinical abnormalities such as those of related to male reproductive diseases, they can be used to develop therapeutic methods and biomarkers for screening of the diseases. In this study, we will review the identified lncRNAs and their molecular functions in the pathogenesis of male reproductive diseases such as prostate cancer, benign prostatic hyperplasia, prostatitis, testicular cancer, varicocele, and sperm abnormalities.
Collapse
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
32
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
33
|
Nomura Y, Sylvester CF, Nguyen LO, Kandeel M, Hirata Y, Mungrue IN, Oh-Hashi K. Characterization of the 5'-flanking region of the human and mouse CHAC1 genes. Biochem Biophys Rep 2020; 24:100834. [PMID: 33102815 PMCID: PMC7573368 DOI: 10.1016/j.bbrep.2020.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The Unfolded Protein Response pathway is a conserved signaling mechanism having important roles in cellular physiology and is perturbed accompanying disease. We previously identified the novel UPR target gene CHAC1, a direct target of ATF4, downstream of PERK-EIF2A and activated by the UPR pathway. CHAC1 enzyme directs catalysis of γ-linked glutamate bonds within specific molecular targets. CHAC1 is the first enzyme characterized that can catalyze intracellular glutathione degradation in eukaryotes, having implications for regulation of oxidative stress. DDIT3 (CHOP) is a terminal UPR transcription factor, regulated by ATF4 and an output promoting cell death signaling. Herein we examine the relationship of CHOP controlling CHAC1 transcription in humans and mice. We note parallel induction of CHOP and CHAC1 in human cells after agonist induced UPR. Expanding upon previous reports, we define transcriptional induction of CHAC1 in humans and mice driven by ATF4 through a synergistic relationship with conserved ATF/CRE and CARE DNA sequences of the CHAC1 promoter. Using this system, we also tested effects of CHOP on CHAC1 transcription, and binding at the CHAC1 ATF/CRE using IM-EMSA. These data indicate a novel inhibitory effect of CHOP on CHAC1 transcription, which was ablated in the absence of the ATF/CRE control element. While direct binding of ATF4 to CHAC1 promoter sequences was confirmed, binding of CHOP to the CHAC1 ATF/CRE was not evident at baseline or after UPR induction. These data reveal CHAC1 as a novel CHOP inhibited target gene, acting through an upstream ATF/CRE motif via an indirect mechanism.
Collapse
Affiliation(s)
- Yuki Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Charity F Sylvester
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Lisa O Nguyen
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
34
|
Li T, Xu L, Teng J, Ma Y, Liu W, Wang Y, Chi X, Shao S, Dong Y, Zhan Q, Liu X. GADD45G Interacts with E-cadherin to Suppress the Migration and Invasion of Esophageal Squamous Cell Carcinoma. Dig Dis Sci 2020; 65:1032-1041. [PMID: 31562612 DOI: 10.1007/s10620-019-05836-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers with poor prognosis. Metastasis is the leading cause of cancer-related deaths. The growth arrest and DNA damage-inducible 45 gamma (GADD45G) has been reported to correlate with survival, invasion, and metastasis of ESCC. This study was aimed to investigate the role and mechanism of GADD45G in ESCC cell migration and invasion. METHODS Both the effects of GADD45G and its need for E-cadherin to function on ESCC cell migration and invasion were determined through loss- and gain-of-function approaches via Transwell assays. The interaction between GADD45G and E-cadherin was detected by GST-pull down and IP assays. The expression of E-cadherin upon GADD45G overexpression was evaluated by RT-qPCR and western blot. The level of E-cadherin in cytoplasmic, nuclear, and membrane fractions was examined by western blot following subcellular fractionation. RESULTS Knockdown of GADD45G increased the migration and invasion abilities of KYSE150 cells, while overexpression of GADD45G showed the opposite effects on YES2 and KYSE30 cells. GADD45G could interact with E-cadherin and enhanced its membrane level. Knockdown of E-cadherin abolished the inhibitory effects of GADD45G on ESCC cell migration and invasion. Intriguingly, dimer-dissociating mutant of GADD45G could not interact with E-cadherin and almost lost its ability to suppress the ESCC cell migration and invasion. CONCLUSIONS This study reveals a novel role for GADD45G in inhibiting the ESCC cell migration and invasion, which will provide a new insight in understanding the ESCC metastatic mechanism.
Collapse
Affiliation(s)
- Tongtong Li
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Lele Xu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jinglei Teng
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yunping Ma
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Wenzhong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xinming Chi
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Shujuan Shao
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qimin Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, No. 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
35
|
Abstract
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Collapse
|
36
|
Li K, Zhao S, Long J, Su J, Wu L, Tao J, Zhou J, Zhang J, Chen X, Peng C. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int 2020; 20:36. [PMID: 32021565 PMCID: PMC6993520 DOI: 10.1186/s12935-020-1114-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Melanoma is one of the most aggressive tumors with the remarkable characteristic of resistance to traditional chemotherapy and radiotherapy. Although targeted therapy and immunotherapy benefit advanced melanoma patient treatment, BRAFi (BRAF inhibitor) resistance and the lower response rates or severe side effects of immunotherapy have been observed, therefore, it is necessary to develop novel inhibitors for melanoma treatment. Methods We detected the cell proliferation of lj-1-59 in different melanoma cells by CCK 8 and colony formation assay. To further explore the mechanisms of lj-1-59 in melanoma, we performed RNA sequencing to discover the pathway of differential gene enrichment. Western blot and Q-RT-PCR were confirmed to study the function of lj-1-59 in melanoma. Results We found that lj-1-59 inhibits melanoma cell proliferation in vitro and in vivo, induces cell cycle arrest at the G2/M phase and promotes apoptosis in melanoma cell lines. Furthermore, RNA-Seq was performed to study alterations in gene expression profiles after treatment with lj-1-59 in melanoma cells, revealing that this compound regulates various pathways, such as DNA replication, P53, apoptosis and the cell cycle. Additionally, we validated the effect of lj-1-59 on key gene expression alterations by Q-RT-PCR. Our findings showed that lj-1-59 significantly increases ROS (reactive oxygen species) products, leading to DNA toxicity in melanoma cell lines. Moreover, lj-1-59 increases ROS levels in BRAFi -resistant melanoma cells, leading to DNA damage, which caused G2/M phase arrest and apoptosis. Conclusions Taken together, we found that lj-1-59 treatment inhibits melanoma cell growth by inducing apoptosis and DNA damage through increased ROS levels, suggesting that this compound is a potential therapeutic drug for melanoma treatment.
Collapse
Affiliation(s)
- Keke Li
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Shuang Zhao
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jing Long
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Su
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Lisha Wu
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Juan Tao
- 4Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- 5Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - JiangLin Zhang
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xiang Chen
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Cong Peng
- 1The Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan China.,2Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan China.,3Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
37
|
Li HH, Yauk CL, Chen R, Hyduke DR, Williams A, Frötschl R, Ellinger-Ziegelbauer H, Pettit S, Aubrecht J, Fornace AJ. TGx-DDI, a Transcriptomic Biomarker for Genotoxicity Hazard Assessment of Pharmaceuticals and Environmental Chemicals. Front Big Data 2019; 2:36. [PMID: 33693359 PMCID: PMC7931968 DOI: 10.3389/fdata.2019.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/17/2019] [Indexed: 01/27/2023] Open
Abstract
Genotoxicity testing is an essential component of the safety assessment paradigm required by regulatory agencies world-wide for analysis of drug candidates, and environmental and industrial chemicals. Current genotoxicity testing batteries feature a high incidence of irrelevant positive findings—particularly for in vitro chromosomal damage (CD) assays. The risk management of compounds with positive in vitro findings is a major challenge and requires complex, time consuming, and costly follow-up strategies including animal testing. Thus, regulators are urgently in need of new testing approaches to meet legislated mandates. Using machine learning, we identified a set of transcripts that responds predictably to DNA-damage in human cells that we refer to as the TGx-DDI biomarker, which was originally referred to as TGx-28.65. We proposed to use this biomarker in conjunction with current genotoxicity testing batteries to differentiate compounds with irrelevant “false” positive findings in the in vitro CD assays from true DNA damaging agents (i.e., for de-risking agents that are clastogenic in vitro but not in vivo). We validated the performance of the TGx-DDI biomarker to identify true DNA damaging agents, assessed intra- and inter- laboratory reproducibility, and cross-platform performance. Recently, to augment the application of this biomarker, we developed a high-throughput cell-based genotoxicity testing system using the NanoString nCounter® technology. Here, we review the status of TGx-DDI development, its integration in the genotoxicity testing paradigm, and progress to date in its qualification at the US Food and Drug Administration (FDA) as a drug development tool. If successfully validated and implemented, the TGx-DDI biomarker assay is expected to significantly augment the current strategy for the assessment of genotoxic hazards for drugs and chemicals.
Collapse
Affiliation(s)
- Heng-Hong Li
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Renxiang Chen
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States.,Amelia Technologies LLC, Rockville, MD, United States
| | - Daniel R Hyduke
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jiri Aubrecht
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Albert J Fornace
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
38
|
Elaileh A, Saharia A, Potter L, Baio F, Ghafel A, Abdelrahim M, Heyne K. Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. Am J Cancer Res 2019; 9:1871-1888. [PMID: 31598392 PMCID: PMC6780661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer mortality among men and women in the United States. Its incidence has been on the rise, with a projected two-fold increase by 2030. PDAC carries a poor prognosis due to a lack of effective screening tools, limited understanding of pathophysiology, and ineffective treatment modalities. Recently, there has been a revolution in the world of oncology with the advent of novel treatments to combat this disease. However, the 5-year survival of PDAC remains unchanged at a dismal 8%. The aim of this review is to bring together several studies and identify various recent modalities that have been promising in treating PDAC.
Collapse
Affiliation(s)
- Ahmed Elaileh
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Ashish Saharia
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Lucy Potter
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Flavio Baio
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Afnan Ghafel
- Department of Radiology, The University of JordanAmman, Jordan
| | - Maen Abdelrahim
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| | - Kirk Heyne
- Department of General Surgery, Houston Methodist HospitalHouston, Texas, USA
| |
Collapse
|
39
|
Silva E, Ideker T. Transcriptional responses to DNA damage. DNA Repair (Amst) 2019; 79:40-49. [PMID: 31102970 PMCID: PMC6570417 DOI: 10.1016/j.dnarep.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
In response to the threat of DNA damage, cells exhibit a dramatic and multi-factorial response spanning from transcriptional changes to protein modifications, collectively known as the DNA damage response (DDR). Here, we review the literature surrounding the transcriptional response to DNA damage. We review differences in observed transcriptional responses as a function of cell cycle stage and emphasize the importance of experimental design in these transcriptional response studies. We additionally consider topics including structural challenges in the transcriptional response to DNA damage as well as the connection between transcription and protein abundance.
Collapse
Affiliation(s)
- Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Biomedical Sciences Program, University of California San Diego, La Jolla, California, USA; Program in Bioinformatics, University of California San Diego, La Jolla, California, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
40
|
Zhang DG, Cheng J, Tai ZP, Luo Z. Identification of five genes in endoplasmic reticulum (ER) stress-apoptosis pathways in yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to dietary lipid levels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1117-1127. [PMID: 30847627 DOI: 10.1007/s10695-019-00627-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The activating transcription factor 4 (ATF4), DNA damage-inducible transcript 3 (DDIT3), growth arrest, and DNA damage-inducible protein 34 (GADD34), endoplasmic reticulum oxidoreductin 1α (ERO1α), and tumor necrosis factor receptor associated factor 2 (TRAF2) cDNAs were first characterized from yellow catfish Pelteobagrus fulvidraco. Compared to corresponding genes of mammals, all of these proteins shared similar conserved domains. Their mRNAs were widely expressed in various tissues, but at variable levels. Dietary lipid levels did not significantly influence ATF4 mRNA expression. mRNA expression of DDIT3 and GADD34 was highest for fish fed the low-lipid diets and lowest for fish fed middle-lipid diets. The mRNA levels of ERO1α and TRAF2 declined with increasing dietary lipid levels. For the first time, we characterized the full-length cDNA sequences of ATF4, DDIT3, GADD34, ERO1α, and TRAF2 and determined their tissue expression profiles and transcriptional responses to dietary lipid levels, which would contribute to our exploration into their biological functions, and providing new insights on relations between ER stress and lipid metabolism in fish.
Collapse
Affiliation(s)
- Dian-Guang Zhang
- Fishery College, Huazhong Agricultural University, Wuhan, 43000, China
| | - Jie Cheng
- Fishery College, Huazhong Agricultural University, Wuhan, 43000, China
| | - Zhi-Peng Tai
- Fishery College, Huazhong Agricultural University, Wuhan, 43000, China
| | - Zhi Luo
- Fishery College, Huazhong Agricultural University, Wuhan, 43000, China.
| |
Collapse
|
41
|
Camilleri-Robles C, Serras F, Corominas M. Role of D-GADD45 in JNK-Dependent Apoptosis and Regeneration in Drosophila. Genes (Basel) 2019; 10:378. [PMID: 31109086 PMCID: PMC6562583 DOI: 10.3390/genes10050378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
The GADD45 proteins are induced in response to stress and have been implicated in the regulation of several cellular functions, including DNA repair, cell cycle control, senescence, and apoptosis. In this study, we investigate the role of D-GADD45 during Drosophila development and regeneration of the wing imaginal discs. We find that higher expression of D-GADD45 results in JNK-dependent apoptosis, while its temporary expression does not have harmful effects. Moreover, D-GADD45 is required for proper regeneration of wing imaginal discs. Our findings demonstrate that a tight regulation of D-GADD45 levels is required for its correct function both, in development and during the stress response after cell death.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
42
|
Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 2019; 9:3083. [PMID: 30662442 PMCID: PMC6328441 DOI: 10.3389/fimmu.2018.03083] [Citation(s) in RCA: 764] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hai Hu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
43
|
Cheng G, Ke D, Rao M, Hu S, Wang Y, Zhou F, Liu H, Zhu C, Xia W. Effects of cold-inducible RNA-binding protein on the proliferation and apoptosis of spermatogenic cells in vitro following heat stress. Reprod Fertil Dev 2019; 31:953-961. [DOI: 10.1071/rd18469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRBP) is reduced by scrotal hyperthermia in cryptorchidism, varicocoele and heat treatment, but there is no direct evidence clarifying the relationship between CIRBP and spermatogenesis. The aim of this study was to investigate the expression of CIRBP in GC2-spd cells (a mouse spermatocyte cell line) before and after heat treatment, and to determine the effects of the downregulation or overexpression of CIRBP on spermatocyte cell proliferation and apoptosis. GC2-spd cells overexpressing CIRBP and GC2-spd cells in CIRBP was knocked down were constructed to investigate the function of CIRBP in cell proliferation and apoptosis using a cell counting kit-8 and flow cytometry respectively. In addition, proliferation and apoptosis were evaluated in GC2-spd cells that had been heated for 30 or 60min, and were analysed 12, 24, and 48h after heat treatment. Heat treatment clearly suppressed the proliferation of GC2-spd cells, and upregulation of CIRBP expression in GC2-spd cells promoted cell proliferation and decreased apoptosis before and after heat stress; in contrast, downregulation of CIRBP expression inhibited cell proliferation and increased apoptosis. These findings suggest that CIRBP exerts a protective effect against spermatogenic injury caused by heat stress.
Collapse
|
44
|
Wu X, Li G, Gao P, Luo K, Zhou H, He Y, Yuan H. Multiple functions of cold-inducible RNA-binding protein in biological systems. VASCULAR INVESTIGATION AND THERAPY 2019. [DOI: 10.4103/vit.vit_13_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 654] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
46
|
Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol 2018; 25:101047. [PMID: 30470534 PMCID: PMC6859529 DOI: 10.1016/j.redox.2018.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle orchestrating the folding and post-translational maturation of almost all membrane proteins and most secreted proteins. These proteins synthesized in the ER, need to form disulfide bridge to acquire specific three-dimensional structures for function. The formation of disulfide bridge is mediated via protein disulfide isomerase (PDI) family and other oxidoreductases, which contribute to reactive oxygen species (ROS) generation and consumption in the ER. Therefore, redox regulation of ER is delicate and sensitive to perturbation. Deregulation in ER homeostasis, usually called ER stress, can provoke unfolded protein response (UPR) pathways with an aim to initially restore homeostasis by activating genes involved in protein folding and antioxidative machinery. Over time, however, activated UPR involves a variety of cellular signaling pathways which determine the state and fate of cell in large part (like autophagy, apoptosis, ferroptosis, inflammation, senescence, stemness, and cell cycle, etc.). This review will describe the regulation of UPR from the redox perspective in controlling the cell survival or death, emphasizing the redox modifications of UPR sensors/transducers in the ER.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Lu Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Li Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China.
| | - Canhua Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
47
|
Welihinda AA, Tirasophon W, Kaufman RJ. The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 2018; 7:293-300. [PMID: 10440230 PMCID: PMC6174664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In eukaryotic cells, accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) leads to a stress response. Cells respond to ER stress by upregulating the synthesis of ER resident protein chaperones, thus increasing the folding capacity in this organelle. In addition, this response also activates pathways to induce programmed cell death. The stress-induced chaperone synthesis is regulated at the level of transcription. In Saccharomyces cerevisiae, the transmembrane protein, Ire1p, with both serine/threonine kinase and site-specific endoribonuclease activities is implicated as the sensor of unfolded proteins in the ER that transmits the signal from the ER to activate transcription in the nucleus. Activation of the unfolded protein response (UPR) pathway also requires the bZIP transcription factor, Haclp. Although HACl is transcribed constitutively, the mRNA is poorly translated. Upon accumulation of unfolded proteins, Ire1p generates a new processed form of HACl mRNA that is efficiently translated by removal of a 252 base sequence. Using the yeast-interaction trap system we identified additional components of the UPR. A yeast transcriptional coactivator complex, Gcn5p/Ada, which is composed of Gcn5p, Ada2p, Ada3p, and Ada5p, was identified that interacts with Ire1p and Hac1p. Deletion of GCN5, ADA2, and/or ADA3 reduces, and deletion of ADA5 completely abrogates, the transcriptional induction in response to misfolded protein in the ER. A protein phosphatase, Ptc2p, was also identified as a negative regulator of the UPR that directly interacts with and dephosphorylates activated Ire1p. Recently, two mammalian homologues of Ire1p, IRE1 and IRE2, were identified. hIre1p, is preferentially localized to the nuclear envelope and requires a functional nuclease activity to transmit the UPR. These results indicate that some features of the UPR are conserved from yeast to humans and may be composed of a multicomponent complex that is regulated by phosphorylation status and is associated with the nuclear envelope to regulate processes including transcriptional induction and mRNA processing. We propose that activation of Ire1p induces splicing of HACl mRNA as well as engages and targets the Gcn5/Ada/Hac1 protein complex to genes that are transcriptionally activated in response to unfolded protein in the ER. The transcriptional activation is facilitated by targeting the histone acetylase, Gcn5p in yeast, to promote histone acetylation at chromatin encoding ER stress-responsive genes. In addition, activation of Ire1p leads to increased lipid biosynthesis, thereby allowing ER expansion to accommodate increasing lumenal constituents. Under conditions of more severe stress, cells activate an Ire1p-dependent death pathway that is mediated through induction of GADD153/CHOP.
Collapse
Affiliation(s)
- Ajith A. Welihinda
- *Department of Biological Chemistry, The University of Michigan Medical Center, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650
| | - Witoon Tirasophon
- *Department of Biological Chemistry, The University of Michigan Medical Center, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650
| | - Randal J. Kaufman
- *Department of Biological Chemistry, The University of Michigan Medical Center, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650
- †Howard Hughes Medical Institute, The University of Michigan Medical Center, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650
- Address correspondence to Dr. Randal J. Kaufman, Howard Hughes Medical Institute, The University of Michigan Medical Center, MSRB II Room 4570, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650. Tel: (734) 763-9037; Fax: (734) 763-9323; E-mail:
| |
Collapse
|
48
|
Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T. Gradual and Acute Temperature Rise Induces Crossing Endocrine, Metabolic, and Immunological Pathways in Maraena Whitefish ( Coregonus maraena). Front Genet 2018; 9:241. [PMID: 30073015 PMCID: PMC6060367 DOI: 10.3389/fgene.2018.00241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
The complex and still poorly understood nature of thermoregulation in various fish species complicates the determination of the physiological status on the basis of diagnostic marker genes and indicative molecular pathways. The present study aimed to compare the physiological impacts of both gradual and acute temperature rise from 18 to 24°C on maraena whitefish in aquaculture. Microarray-based transcriptome profiles in the liver, spleen and kidney of heat-stressed maraena whitefish revealed the modulation of a significantly higher number of genes in those groups exposed to gradually rising temperatures compared with the acutely stressed groups, which might reflect early adaptation mechanisms. Moreover, we suggest a common set of 11 differentially expressed genes that indicate thermal stress induced by gradual or acute temperature rise in the three selected tissues. Besides the two pathways regulated in both data sets unfolded protein response and aldosterone signaling in epithelial cells, we identified unique tissue- and stress type-specific pathways reflecting the crossroads between signal transduction, metabolic and immunologic pathways to cope with thermal stress. In addition, comparing lists of differentially regulated genes with meta-analyzed published data sets revealed that “acute temperature rise”-responding genes that encode members of the HSP70, HSP90, and HSP40 families; their functional homologs; co-chaperones and stress-signal transducers are well-conserved across different species, tissues and/or cell types and experimental approaches.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Mareen Nipkow
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Simone Altmann
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Born, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
49
|
Fang Y, Xu XY, Shen Y, Li J. Molecular cloning and functional analysis of Growth arrest and DNA damage-inducible 45 aa and ab (Gadd45aa and Gadd45 ab) in Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2018; 77:187-193. [PMID: 29605506 DOI: 10.1016/j.fsi.2018.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The Gadd45aa and Gadd45 ab genes are members of the Gadd45 family, which are critically involved in immunological and apoptosis functions. In this study, we isolated and characterized Gadd45aa and Gadd45 ab cDNA from grass carp (Ctenopharyngodon idella) (designated CiGadd45aa and CiGadd45 ab). The CiGadd45aa and CiGadd45 ab fragments spanned 1272 bp/1248 bp, which contained 474 bp/480 bp open reading frames encoding 157/159 amino acid proteins. BLAST analysis revealed that CiGadd45aa and CiGadd45 ab shared high similarity with known Gadd45a sequences. qRT-PCR analysis showed widespread and abundant expression of CiGadd45aa in gill, intestine, kidney, brain, blood, skin and fin, but low in liver, spleen, head kidney, heart, and muscle. CiGadd45 ab was expressed highly in liver, spleen and blood but at low levels in gill, intestine, kidney, head kidney, heart, brain, skin, muscle, and fin. Following challenge of grass carp with Aeromonas hydrophila, CiGadd45aa and CiGadd45 ab expression was upregulated. In immune-relevant tissues and MAPK family genes (p38, JNK and ERK) were upregulated by CiGadd45aa and CiGadd45 ab overexpression and partly downregulated by interfered in the CIK grass carp kidney cell line. In addition, transcription of the cytokine-encoding il-8 gene was upregulated/downregulated by CiGadd45aa and CiGadd45 ab overexpression and interference. These results suggest that CiGadd45aa and CiGadd45 ab play roles in innate immune responses against A. hydrophila in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
50
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|