1
|
Kiyonari H, Kaneko M, Abe T, Shiraishi A, Yoshimi R, Inoue KI, Furuta Y. Targeted gene disruption in a marsupial, Monodelphis domestica, by CRISPR/Cas9 genome editing. Curr Biol 2021; 31:3956-3963.e4. [PMID: 34293331 DOI: 10.1016/j.cub.2021.06.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Marsupials represent one of three extant mammalian subclasses with very unique characteristics not shared by other mammals. Most notably, much of the development of neonates immaturely born after a relatively short gestation takes place in the external environment. Among marsupials, the gray short-tailed opossum (Monodelphis domestica; hereafter "the opossum") is one of very few established laboratory models. Due to many biologically unique characteristics and experimentally advantageous features, the opossum is used as a prototype species for basic research on marsupial biology.1,2 However, in vivo studies of gene function in the opossum, and thus marsupials in general, lag far behind those of eutherian mammals due to the lack of reliable means to manipulate their genomes. In this study, we describe the successful generation of genome edited opossums by a combination of refined methodologies in reproductive biology and embryo manipulation. We took advantage of the opossum's resemblance to popular rodent models, such as the mouse and rat, in body size and breeding characteristics. First, we established a tractable pipeline of reproductive technologies, from induction of ovulation, timed copulation, and zygote collection to embryo transfer to pseudopregnant females, that warrant an essential platform to manipulate opossum zygotes. Further, we successfully demonstrated the generation of gene knockout opossums at the Tyr locus by microinjection of pronuclear stage zygotes using CRISPR/Cas9 genome editing, along with germline transmission of the edited alleles to the F1 generation. This study provides a critical foundation for venues to expand mammalian reverse genetics into the metatherian subclass.
Collapse
Affiliation(s)
- Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan.
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Riko Yoshimi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan; Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| |
Collapse
|
2
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
3
|
Abstract
Due to the lack of germline transmitting pluripotent stem cells (PSCs) cell lines and the extreme difficulty of somatic cell nuclear transfer (SCNT) in rabbit, the gene targeting technology in rabbit was lagging far behind those in rodents and in farm animals. As a result, the development and application of genetically engineered rabbit model are much limited. With the advent of gene editing nucleases, including ZFN, TALEN, and CRISPR/Cas9, it is now possible to produce gene targeting (i.e., knockout, knockin) rabbits with high success rates. In this chapter, we describe a comprehensive, step-by-step protocol for rabbit genome editing based on gene editing nucleases with specific emphasis of CRISPR/Cas9.
Collapse
|
4
|
Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Sci Rep 2016; 6:25161. [PMID: 27117226 PMCID: PMC4846827 DOI: 10.1038/srep25161] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
The laboratory rabbit has been a valuable model system for human disease studies. To make the rabbit model more amendable to targeted gene knockin and stable gene over-expression, we identified a rabbit orthologue of the mouse Rosa26 locus through genomic sequence homology analysis. Real-time PCR and 5′ RACE and 3′ RACE experiments revealed that this locus encodes two transcript variants of a long noncoding RNA (lncRNA) (rbRosaV1 and rbRosaV2). Both variants are expressed ubiquitously and stably in different tissues. We next targeted the rabbit Rosa26 (rbRosa26) locus using CRISPR/Cas9 and produced two lines of knock-in rabbits (rbRosa26-EGFP, and rbRosa26-Cre-reporter). In both lines, all the founders and their offspring appear healthy and reproduce normally. In F1 generation animals, the rbRosa26-EGFP rabbits express EGFP, and the rbRosa26-Cre-reporter rabbits express tdTomato ubiquitously in all the tissues examined. Furthermore, disruption of rbRosa26 locus does not adversely impact the animal health and reproduction. Therefore, our work establishes rbRosa26 as a safe harbor suitable for nuclease mediated gene targeting. The addition of rbRosa26 to the tool box of transgenic research is expected to allow diverse genetic manipulations, including gain-of function, conditional knock out and lineage-tracing studies in rabbits.
Collapse
|
5
|
Yeramilli VA, Knight KL. Requirement for BAFF and APRIL during B cell development in GALT. THE JOURNAL OF IMMUNOLOGY 2010; 184:5527-36. [PMID: 20400696 DOI: 10.4049/jimmunol.1000146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effects of B cell-activating factor belonging to the TNF family (BAFF) on B cell maturation and survival in the mouse are relatively well understood. In contrast, little is known about the role of BAFF in B cell development in other mammals, such as rabbits, that use GALT to develop and maintain the B cell compartment. We examined the expression and requirement of BAFF and a proliferation-inducing ligand (APRIL) during peripheral B cell development in young rabbits. By neutralizing BAFF and APRIL in neonates with a soluble decoy receptor, transmembrane activator calcium modulator and cyclophilin ligand interactor-Fc, we found a marked reduction in the number of peripheral B cells, but found no change in the bone marrow (BM) compartment. In the appendix, the size and number of proliferating B cell follicles were greatly reduced, demonstrating that although BAFF/APRIL is dispensable for B cell development in BM, it is required for B cell development in GALT. We found that all rabbit B cells expressed BAFF receptor 3, but did not bind rBAFF, suggesting that the BAFF-binding receptors (BBRs) are bound by endogenous soluble BAFF. Further, we found that B cells themselves express BAFF, suggesting that the soluble BAFF bound to BBRs may be endogenously produced and stimulate B cells in an autocrine fashion. Additionally, we propose that this chronic occupancy of BBRs on B cells may provide a tonic and/or survival signal for the maintenance of peripheral B cells in adults after B lymphopoiesis is arrested in BM.
Collapse
Affiliation(s)
- Venkata A Yeramilli
- Department of Microbiology and Immunology, Strich School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
6
|
Li QY, Hou J, Chen YF, An XR. Full-term development of rabbit embryos produced by ICSI with sperm frozen in liquid nitrogen without cryoprotectants. Reprod Domest Anim 2009; 45:717-22. [PMID: 19416491 DOI: 10.1111/j.1439-0531.2009.01340.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to establish the technology of intracytoplasmic sperm injection (ICSI) in rabbit by using the sperm frozen without cryoprotectants. Observation under an electron microscope revealed that the rabbit spermatozoa frozen without cryoprotectants had severe damage especially in the plasma membrane and junction between head and tail. However, after being injected into the oocytes, the sperm frozen without cryoprotectants retained the capability of supporting the cleavage and development of the ICSI oocytes, with no significant difference from that of fresh sperm, although the development of ICSI embryos derived from either frozen sperm or fresh sperm is much lower than that of in vivo-fertilized zygotes. When additional artificial activation was applied following ICSI, the rates of cleavage and blastocyst formation of ICSI oocytes were significantly increased when compared with the oocytes without additional activation. Yet, the cell numbers in blastocysts were not significantly different between the activation and non-activation group. After embryo transfer, four offspring were obtained from the oocytes microinjected with the sperm frozen without cryoprotectants. The technology established by this study may facilitate exploring the ICSI-based transgenic method in rabbit and broaden the application of ICSI technique in related field.
Collapse
Affiliation(s)
- Q Y Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
7
|
Jasper PJ, Rhee KJ, Kalis SL, Sethupathi P, Yam PC, Zhai SK, Knight KL. B lymphocyte deficiency in IgH-transgenic rabbits. Eur J Immunol 2007; 37:2290-9. [PMID: 17628859 DOI: 10.1002/eji.200737191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We developed IgH-transgenic rabbits carrying a productive VDJ-Cmu Tg and found the rabbits were B cell-deficient, with a 50-100% reduction in serum IgM and IgG levels. The bone marrow of newborn Tg rabbits contained severely reduced levels of preB cells and almost no B cells. The few preB cells present in the bone marrow were large, cycling cells that expressed the VDJ-Cmu Tg, indicating that the block in B cell development likely occurred at or before the transition from large (early) preB to small (late) preB cells. By immunoprecipitation, the Tg mu-chain paired with VpreB and lambda5, suggesting that the B cell deficiency is not due to an inability to form a preB cell receptor. Despite the block in B cell development, a few B cells, expressing predominantly endogenous mu-chains, began the second stage of development in GALT. B cells were localized in and beneath the follicle-associated epithelium of GALT prior to B cell follicle formation, suggesting to us that B cell follicle formation is initiated near the follicle-associated epithelium, possibly through contact with intestinal microbiota. These IgH-Tg rabbits should provide a useful model for studies of B cell development both in bone marrow and in GALT.
Collapse
Affiliation(s)
- Paul J Jasper
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Volgina V, Yam PC, Knight KL. A negative regulatory element in the rabbit 3′IgH chromosomal region. Int Immunol 2005; 17:973-82. [PMID: 16000331 DOI: 10.1093/intimm/dxh280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse and human IgH loci contain several 3'IgH enhancers. In rabbit, a single hs1,2 enhancer is located 3' of the distal germ line Calpha gene, Calpha13. We searched for additional regulatory elements in this region by using a luciferase reporter assay and nucleotide sequence analysis. Within 8 kb 3' of Calpha13, we identified a 1-kb fragment that negatively regulated the hs1,2 enhancement of the Ialpha promoter. This negative regulatory element, Calpha-NRE, contains a conserved 300-bp region that is associated with 8 of the 13 germ line Calpha genes. This conserved region contains an E box that, by electrophoretic mobility shift assay, binds an E47-like protein. At the 5' end, Calpha-NRE also includes a 270-bp region with 20-bp repeats nearly identical to those 3' of mouse and human Calpha genes, and these repeats bind unidentified nuclear protein(s). Calpha-NRE appears to be a novel regulatory element that may contribute to the regulation of IgH gene expression.
Collapse
Affiliation(s)
- Veronica Volgina
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
9
|
Bosze Z, Hiripi L, Carnwath JW, Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 2004; 12:541-53. [PMID: 14601653 DOI: 10.1023/a:1025816809372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Until recently, transgenic rabbits were produced exclusively by pronuclear microinjection which results in additive random insertional transgenesis; however, progress in somatic cell cloning based on nuclear transfer will soon make it possible to produce rabbits with modifications to specific genes by the combination of homologous recombination and subsequent prescreening of nuclear donor cells. Transgenic rabbits have been found to be excellent animal models for inherited and acquired human diseases including hypertrophic cardiomyopathy, perturbed lipoprotein metabolism and atherosclerosis. Transgenic rabbits have also proved to be suitable bioreactors for the production of recombinant protein both on an experimental and a commercial scale. This review summarizes recent research based on the transgenic rabbit model.
Collapse
Affiliation(s)
- Zs Bosze
- Department of Animal Biology, Agricultural Biotechnology Center Gödöllo, Hungary.
| | | | | | | |
Collapse
|
10
|
Abstract
Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | |
Collapse
|
11
|
Liu CT, Chen CH, Cheng SP, Ju JC. Parthenogenesis of rabbit oocytes activated by different stimuli. Anim Reprod Sci 2002; 70:267-76. [PMID: 11943496 DOI: 10.1016/s0378-4320(01)00185-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oocyte activation is one of the essential elements determining the success of nuclear transfer and the subsequent development of cloned embryos both in vitro and in vivo. Experiments were conducted to optimize the protocol for oocyte activation in a regular nuclear transfer study. In vivo derived oocytes were collected at 14-15 h from New Zealand white rabbits after ovulation treatment and were activated +18 h post-ovulation treatment. Single activation agents including calcium ionophore (A23187, 5 microM, 5 min), ethanol (Eth, 7%, 7 min), and thimerosal (200 microM, 10 min) were tested. Cleavage rates were highest in the ethanol-treated group (37%) compared to other treatments (19-25%). Very low blastocyst rates (2-3%) resulted which were not significantly different among treatments (P>0.05). Combined single agent treatment (calcium stimulators) with protein kinase inhibitor, 6-DMAP were used to achieve a full oocyte activation. Both pronuclear and blastocyst formation rates were significantly higher (P<0.05) in the Eth+6-DMAP treatment group (38 and 27%) than in the other groups (16-21 and 7-9%, respectively, P<0.05). Low (0.2mM) and high (2.5mM) concentrations of 6-DMAP treatments with different treatment lengths (1.5 and 3.5h) in the combined groups were also compared. Blastocyst formation and cleavage rates were greater in the high concentration with less treatment time groups (36% versus 4-20%, P<0.05). In conclusion, single activation agents, either Ca2+ stimulators or protein kinase inhibitors, could not fully activate mature rabbit oocytes. The best activation procedure obtained in this study was the Eth+6-DMAP combined treatment, which may be incorporated into regular nuclear transfer or cloning protocols.
Collapse
Affiliation(s)
- Chien-Tsung Liu
- Department of Animal Science, National Chung-Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan, ROC
| | | | | | | |
Collapse
|
12
|
Volgina VV, Kingzette M, Zhai SK, Knight KL. A single 3' alpha hs1,2 enhancer in the rabbit IgH locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6400-5. [PMID: 11086078 DOI: 10.4049/jimmunol.165.11.6400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multiple cis-acting elements including the intronic enhancer and the 3'alpha enhancer (3'alphaE) regulate expression of the Ig heavy chain genes during B cell development. A 3'alphaE is composed of DNase I-hypersensitive sites, hs1,2, hs3a,b, and hs4, found 3' of the murine Calpha gene as well as 3' of both human Calpha genes, Calpha1 and Calpha2. Rabbits have 13 Calpha genes, and we tested whether a 3'alphaE is associated with each of these genes. To identify 3'alphaE regions we developed a rabbit hs1,2 probe and used this to search for enhancer homologues of human hs1,2 in a genomic fosmid library. We identified a single hs1,2 fragment 8-kb downstream of Calpha13, the presumed 3'-most Calpha gene. We also identified and partially sequenced a new Calpha gene, Calpha14, located 6 kb upstream of Calpha13. Genomic Southern blot analysis confirmed that the rabbit genome contains only one hs1,2 enhancer region. We tested the enhancer activity of the hs1,2 with the SV40, V(H), and Ialpha promoters using the luciferase reporter gene in transient transfection assays and found that it significantly enhanced the activity of SV40 and V(H) promoters and slightly enhanced an Ialpha promoter. We conclude that the rabbit has a single hs1,2 enhancer that resides at the 3' end of the IgH gene cluster and may constitute one of the cis-elements regulating the expression of IgH genes.
Collapse
Affiliation(s)
- V V Volgina
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
13
|
Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest 1999; 104:1683-92. [PMID: 10606622 PMCID: PMC409884 DOI: 10.1172/jci7956] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1999] [Accepted: 10/29/1999] [Indexed: 01/19/2023] Open
Abstract
Certain mutations in genes for sarcomeric proteins cause hypertrophic cardiomyopathy (HCM). We have developed a transgenic rabbit model for HCM caused by a common point mutation in the beta-myosin heavy chain (MyHC) gene, R400Q. Wild-type and mutant human beta-MyHC cDNAs were cloned 3' to a 7-kb murine beta-MyHC promoter. We injected purified transgenes into fertilized zygotes to generate two lines each of the wild-type and mutant transgenic rabbits. Expression of transgene mRNA and protein were confirmed by Northern blotting and 2-dimensional gel electrophoresis followed by immunoblotting, respectively. Animals carrying the mutant transgene showed substantial myocyte disarray and a 3-fold increase in interstitial collagen expression in their myocardia. Mean septal thicknesses were comparable between rabbits carrying the wild type transgene and their nontransgenic littermates (NLMs) but were significantly increased in the mutant transgenic animals. Posterior wall thickness and left ventricular mass were also increased, but dimensions and systolic function were normal. Premature death was more common in mutant than in wild-type transgenic rabbits or in NLMs. Thus, cardiac expression of beta-MyHC-Q(403) in transgenic rabbits induced hypertrophy, myocyte and myofibrillar disarray, interstitial fibrosis, and premature death, phenotypes observed in humans patients with HCM due to beta-MyHC-Q(403).
Collapse
Affiliation(s)
- A J Marian
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peng X, Griffith JW, Han R, Lang CM, Kreider JW. Development of keratoacanthomas and squamous cell carcinomas in transgenic rabbits with targeted expression of EJras oncogene in epidermis. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:315-24. [PMID: 10393863 PMCID: PMC1868605 DOI: 10.1016/s0002-9440(10)65125-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activated ras genes have been frequently identified in both benign and malignant human tumors, including keratoacanthoma and squamous cell carcinoma. In this study, we developed two lines of transgenic rabbits in which the expression of EJras has been specifically targeted to the rabbit epidermal keratinocytes, using the upstream regulatory region of cottontail rabbit papillomavirus. All of the F1 transgenic progenies developed multiple keratoacanthomas at about 3 days after birth. The rabbits developed an average of 20 tumors, which usually reached the size of approximately 1 cm in diameter and then spontaneously regressed in about 2 months, similar to keratoacanthoma regression in humans. In addition, up to 18% of the rabbits then developed squamous cell carcinoma at about 5 months of age. The expression of EJras was detectable in all of the keratoacanthomas and squamous cell carcinomas. These results strongly support the involvement of the ras oncogene in both the initiation and regression of keratoacanthoma, and in the development of squamous cell carcinomas. These novel transgenic rabbits, with their consistent tumorigenic phenotype at an early age, high similarity to the human lesions, and easy accessibility for examination, manipulation, biopsy, and treatment, should provide a unique model system for studying ras activation-related tumor initiation, regression, and progression, and for evaluating antitumor therapies.
Collapse
Affiliation(s)
- X Peng
- Department of Comparative Medicine, Jake Gittlen Cancer Research Institute, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
15
|
Fan J, Challah M, Watanabe T. Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol Int 1999; 49:583-94. [PMID: 10504518 DOI: 10.1046/j.1440-1827.1999.00923.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The creation of genetically modified laboratory and livestock animals is one of the most dramatic advances derived from recombinant DNA technology. Over the past decade, the development of a large mammal transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided a novel way to produce foreign proteins for both therapeutic and commercial purposes. Recent progress in gene targeting and animal cloning has opened new avenues for production of transgenic rabbits. In this review, we will introduce the reader to the progress that has been achieved in transgenic rabbits with emphasis on the application of these rabbits as human disease models and bioproducers of human therapeutic proteins.
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Japan.
| | | | | |
Collapse
|
16
|
Barrington RA, Fasullo M, Knight KL. A Role for RAD51 in the Generation of Immunoglobulin Gene Diversity in Rabbits. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Ig VDJ genes in rabbit somatically diversify by both hyperpointmutation and gene conversion. To elucidate the mechanism of gene conversion of IgH genes, we cloned a rabbit homologue of RAD51, a gene involved in gene conversion in Saccharomyces cerevisiae (yeast), and tested whether it could complement a yeast rad51 mutant deficient in recombination repair. We found that rabbit RAD51 partially complemented the defect in switching mating types by gene conversion as well as in DNA double-strand break repair after γ-irradiation. Further, by Western blot analysis, we found that levels of Rad51 were higher in appendix-derived B lymphocytes of 6-wk-old rabbits, a time at which IgH genes diversify by somatic gene conversion. We suggest that Rad51 is involved in somatic gene conversion of rabbit Ig genes.
Collapse
Affiliation(s)
| | - Michael Fasullo
- †Radiotherapy, Loyola University of Chicago, Maywood, IL 60153
| | | |
Collapse
|
17
|
Kingzette M, Spieker-Polet H, Yam PC, Zhai SK, Knight KL. Trans-chromosomal recombination within the Ig heavy chain switch region in B lymphocytes. Proc Natl Acad Sci U S A 1998; 95:11840-5. [PMID: 9751752 PMCID: PMC21727 DOI: 10.1073/pnas.95.20.11840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic DNA rearrangements in B lymphocytes, including V(D)J gene rearrangements and isotype switching, generally occur in cis, i. e., intrachromosomally. We showed previously, however, that 3 to 7% of IgA heavy chains have the VH and Calpha regions encoded in trans. To determine whether the trans-association of VH and Calpha occurred by trans-chromosomal recombination, by trans-splicing, or by trans-chromosomal gene conversion, we generated and analyzed eight IgA-secreting rabbit hybridomas with trans-associated VH and Calpha heavy chains. By ELISA and by nucleotide sequence analysis we found that the VH and Calpha regions were encoded by genes that were in trans in the germline. We cloned the rearranged VDJ-Calpha gene from a fosmid library of one hybridoma and found that the expressed VH and Calpha genes were juxtaposed. Moreover, the juxtaposed VH and Calpha genes originated from different IgH alleles. From the same hybridoma, we also identified a fosmid clone with the other expected product of a trans-chromosomal recombination. The recombination breakpoint occurred within the Smicro/Salpha region, indicating that the trans-association of VH and Calpha genes occurred by trans-chromosomal recombination during isotype switching. We conclude that trans-chromosomal recombination occurs at an unexpectedly high frequency (7%) within the IgH locus of B lymphocytes in normal animals, which may explain the high incidence of B-cell tumors that arise from oncogene translocation into the IgH locus.
Collapse
Affiliation(s)
- M Kingzette
- Department of Microbiology and Immunology, Loyola University of Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- K L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, USA.
| | | |
Collapse
|
19
|
Duverger N, Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L, Laine B, Fievet C, Castro G, Fruchart JC, Houbebine LM, Denèfie P. Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol 1996; 16:1424-9. [PMID: 8977445 DOI: 10.1161/01.atv.16.12.1424] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human apolipoprotein A-I (apo A-I) transgenic rabbits were created by use of an 11-kb genomic human apo A-I construct containing a liver-specific promoter. Five independent transgenic lines were obtained in which human apo A-I gene had integrated and was expressed. Plasma levels of human apo A-I ranged from 8 to 100 mg/dL for the founder and up to 175 mg/dL for the progeny. Rabbit apo A-I levels were substantially decreased in the transgenic rabbits. HDL cholesterol (HDL-C) levels were higher in two of the five transgenic rabbit lines than in controls (line 20 versus nontransgenic littermate, HDL-C = 80 +/- 7 versus 37 +/- 6 mg/dL; line 8 versus nontransgenic littermate, HDL-C = 54 +/- 16 versus 35 +/- 6 mg/dL). This resulted in less atherogenic lipoprotein profiles, with very low (VLDL + LDL-C)/HDL-C ratios. HDL size and protein and lipid compositions were similar between transgenic and littermate nontransgenic rabbits. However, a large amount of pre-beta apo A-I-containing lipoproteins was observed in the plasma of the highest human apo A-I expressor. Cell cholesterol efflux was evaluated with the incubation of whole serum from transgenic and control rabbits. Cell cholesterol efflux was highly correlated with HDL cholesterol, with apo A-I, and with the presence of pre-beta apo A-I-containing lipoproteins. These rabbits will be an extremely useful model for the evaluation of the effect of increased hepatic apo A-I expression on atherosclerosis.
Collapse
Affiliation(s)
- N Duverger
- Rhône-Poulenc Rorer-Gencell, Atherosclerosis Department, Centre de recherche de Vitry-Alfortville, Vitry sur Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Spieker-Polet H, Sethupathi P, Yam PC, Knight KL. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci U S A 1995; 92:9348-52. [PMID: 7568130 PMCID: PMC40982 DOI: 10.1073/pnas.92.20.9348] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the last 15 years several laboratories have attempted to generate rabbit monoclonal antibodies, mainly because rabbits recognize antigens and epitopes that are not immunogenic in mice or rats, two species from which monoclonal antibodies are usually generated. Monoclonal antibodies from rabbits could not be generated, however, because a plasmacytoma fusion partner was not available. To obtain a rabbit plasmacytoma cell line that could be used as a fusion partner we generated transgenic rabbits carrying two transgenes, c-myc and v-abl. These rabbits developed plasmacytomas, and we obtained several plasmacytoma cell lines from which we isolated hypoxanthine/aminopterin/thymidine-sensitive clones. One of these clones, when fused with spleen cells of immunized rabbits, produced stable hybridomas that secreted antibodies specific for the immunogen. The hybridomas can be cloned and propagated in nude mice, and they can be frozen without change in their ability to secrete specific monoclonal antibodies. These rabbit-rabbit hybridomas will be useful not only for production of monoclonal antibodies but also for studies of immunoglobulin gene rearrangements and isotype switching.
Collapse
Affiliation(s)
- H Spieker-Polet
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
21
|
Abstract
We describe a model for B cell development and generation of the antibody repertoire in rabbits. In this model, B cells develop early in ontogeny, migrate to GALT, and undergo the first round of diversification by a somatic gene conversion-like process and by somatic mutation. We designate the repertoire developed by this mechanism as the primary antibody repertoire and it is this repertoire that makes the rabbit immunocompetent. We invoke GALT as the site for development of the primary repertoire because (1) surgical removal of GALT from neonatal rabbits results in highly immunocompromised animals, (2) in germfree rabbits essentially no lymphoid development occurs in GALT and the rabbits are immunoincompetent, and (3) the follicular development of rabbit GALT is highly similar to that of the chicken bursa, the site in which the primary antibody repertoire develops by somatic gene conversion in chicken. We suggest that once the primary antibody repertoire is formed, it is maintained by self-renewing CD5+ B cells and is expanded to a secondary antibody repertoire after the B cells encounter antigen.
Collapse
Affiliation(s)
- K L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153
| | | |
Collapse
|
22
|
Peng X, Olson RO, Christian CB, Lang CM, Kreider JW. Papillomas and carcinomas in transgenic rabbits carrying EJ-ras DNA and cottontail rabbit papillomavirus DNA. J Virol 1993; 67:1698-701. [PMID: 8382316 PMCID: PMC237546 DOI: 10.1128/jvi.67.3.1698-1701.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two transgenic rabbits (TRI and TRIII) that carried cottontail rabbit papillomavirus (CRPV) DNA alone were identified; another (TRII) carried both CRPV DNA and EJ-ras. TRI and TRIII developed extensive skin papillomas at about 1 month of age, and transcripts of CRPV DNA were detectable only in skin and/or papillomas. TRII developed extensive squamous carcinomas of the skin at a very early age. Transcription of both CRPV DNA and EJ-ras was found in the skin cancers. Thus, the tissue specificity of CRPV DNA expression in transgenic rabbits was the same as in virion-infected animals. The expression of EJ-ras could be dependent on the expression of certain CRPV genes and may be a critical cofactor of CRPV DNA in the progression of carcinomas.
Collapse
Affiliation(s)
- X Peng
- Department of Comparative Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | | | | | |
Collapse
|
23
|
Abstract
The c-Myc protein is a potential activator of transcription, with the ability to bind in a heterodimer form with Max to DNA sequences containing the core hexanucleotide sequence CAC(G/A)TG. These properties are shared with L-Myc, a homologous oncoprotein expressed in small cell lung carcinoma cells; with N-Myc, expressed in neuroblastoma cells; and with avian v-Myc, the c-Myc homolog expressed by a chicken retrovirus. The c-Myc, and probably v-Myc, proteins also have nonspecific DNA binding function, which may improve the kinetics of specific DNA binding. Curiously, this domain appears not to be conserved in L-Myc or N-Myc [22]. The data that have accumulated to date are consistent with a model in which a c-Myc/Max heterodimer positively regulates the transcription of growth-related genes, with Max homodimer functioning as a negative regulator of the same genes (Fig. 4) [55]. Max is expressed constitutively at low levels, whereas c-Myc is expressed at low levels in quiescent cells, but high levels of c-Myc are induced by mitogenic stimulation [56]. Thus, in proliferating cells c-Myc/Max heterodimers might bind to the regulatory elements of growth-related genes, where the c-Myc TAD might stimulate transcription. Conversely, in quiescent cells with little c-Myc present, Max homodimers might predominate. They might bind to exactly the same regulatory elements, but due to the apparent absence of a TAD in Max [36], transcription might be repressed. Validation of this model will require the demonstration of clear regulation of a physiological promoter of a growth-related gene by c-Myc/Max. Although it is widely believed that Myc proteins function as transcriptional activators, this hypothesis has only been conclusively supported recently [57, 58]. A theory that c-Myc plays a role in DNA replication is not as well substantiated at this point. It is even possible that Myc might be involved in both transcription and replication. Although the function of these fascinating proteins has been enigmatic for a decade, the rate of progress in our understanding of Myc function is accelerating. Such progress will undoubtedly lead to a deeper appreciation of this protein, which lies at the crossroads of cellular proliferation and oncogenesis.
Collapse
|
24
|
Wilkinson JM, Galea-Lauri J, Reid HW. A cytotoxic rabbit T-cell line infected with a gamma-herpes virus which expresses CD8 and class II antigens. Immunology 1992; 77:106-8. [PMID: 1328042 PMCID: PMC1421598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A rabbit T-cell line, BJ-610, has been derived from a New Zealand White rabbit infected with Alcelaphine herpes virus-1, which has the characteristics of a lymphokine activated killer (LAK) cell. The surface phenotype of this cell line has been studied by flow cytometry, using a panel of monoclonal antibodies (mAb) to rabbit leucocyte surface markers, and compared with that of another rabbit T-cell line, RL-5, transformed with herpes virus ateles. The expression of a number of markers is common to the two lines; these include the rabbit analogues of CD11a/CD18, CD43, CD44 and CD45. Three antigens are expressed on BJ-610 but not RL-5. One of these is recognized by a mAb thought to recognize CD8, while a second is a class II R-DQ molecule. The third antigen is expressed on thymocytes, a subset of T cells, neutrophils and platelets but its molecular nature is unknown. These two cell lines should prove useful in preparing reagents which recognize subsets of rabbit T cells and for studying the mechanism of herpes virus-induced lymphoid cell deregulation.
Collapse
Affiliation(s)
- J M Wilkinson
- Department of Biochemistry and Cell Biology, Royal College of Surgeons, London, U.K
| | | | | |
Collapse
|
25
|
|
26
|
Allegrucci M, Young-Cooper GO, Alexander CB, Newman BA, Mage RG. Preferrential rearrangement in normal rabbits of the 3' VHa allotype gene that is deleted in Alicia mutants; somatic hypermutation/conversion may play a major role in generating the heterogeneity of rabbit heavy chain variable region sequences. Eur J Immunol 1991; 21:411-7. [PMID: 1999224 DOI: 10.1002/eji.1830210224] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rabbit is unique in having well-defined allotypes in the variable region of the heavy chain. Products of the VHa locus, (with alleles a1, a2, and a3), account for the majority of the serum immunoglobulins. A small percentage of the serum immunoglobulins are a-negative. In 1986, Kelus and Weiss described a mutation that depressed the expression of the Ig VH a2 genes in an a1/a2 rabbit. From this animal the Alicia rabbit strain was developed and the mutation was termed ali. We previously showed, using Southern analysis and the transverse alternating field electrophoresis technique, that the difference between the ali rabbit and normal is a relatively small deletion including some of the most 3' VH genes. The most JH proximal 3' VH1 genes in DNA from normal rabbits of a1, a2 and a3 haplotypes encode a1, a2 and a3 molecules respectively, and it has been suggested that these genes are responsible for allelic inheritance of VHa allotypes. The present study suggests that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression in rabbits because VH gene(s) in this region are the target(s) of preferential VDJ rearrangements. This raises the possibility that mechanisms such as somatic gene conversion and hypermutation are at work to generate the antibody repertoire in this species. Our data support the view that the 3' VH1 gene may be the preferred target for rearrangement in normal rabbits, and for the normal chromosome in heterozygous ali animals. However, homozygous ali rabbits with a deletion that removed the a2-encoding VH1 on both chromosomes do survive, rearrange other VH genes and produce normal levels of immunoglobulins as well as a significant percentage of B cells which bear the a2 allotype. This challenges the view that one VH gene, VH1, is solely responsible for the inheritance pattern of VHa allotypes.
Collapse
Affiliation(s)
- M Allegrucci
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
27
|
Knight KL, Becker RS, DiPietro LA. Restricted utilization of germ-line VH genes in rabbits: implications for inheritance of VH allotypes and generation of antibody diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 292:235-44. [PMID: 1950775 DOI: 10.1007/978-1-4684-5943-2_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of inherited VH region allotypic specificities, a1, a2 or a3, on nearly all rabbit immunoglobulins has presented a paradox. We know the germline contains hundreds of VH genes, and if we assume that most of these are used in the generation of antibody diversity, then we must ask how have the a allotype-encoding regions been maintained over time? On the other hand, if we assume that only one (or a small number) of these VH gene(s) is (are) used in VDJ gene rearrangements, then, how is antibody diversity generated? To address these questions, we have cloned and determined the nucleotide sequence of the 3'-most germline VH genes from the a1, a2 and a3 chromosomes and shown in each case that the 3'-most H gene, VH1-a1, VH1-a2, or VH1-a3, encodes an a1, a2 or a3 VH region, respectively. Analysis of rearranged VDJ genes from leukemic B cells showed that VH1 was utilized in these rearrangements. Based on these data, we propose that the allelic inheritance of the VH allotypes is explained by the preferential usage of the VH1 gene in VDJ rearrangements. Support for this hypothesis was obtained from analysis of the mutant rabbit Alicia in which most serum Ig molecules do not have VHa allotypic specificities, but instead have so-called VHa-negative Ig molecules. In this rabbit, VH1 is not expressed as it has been deleted. Analysis of cDNA clones from spleen of Alicia rabbits suggests that the expressed VHa-negative molecules also are encoded by a single germline VH gene. Thus, we suggest that nearly all rabbit VH regions are encoded by one to two germline VH genes and that antibody diversity is generated primarily by somatic hypermutation and gene conversion.
Collapse
Affiliation(s)
- K L Knight
- Department of Microbiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | | |
Collapse
|
28
|
Allegrucci M, Newman BA, Young-Cooper GO, Alexander CB, Meier D, Kelus AS, Mage RG. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region. Proc Natl Acad Sci U S A 1990; 87:5444-8. [PMID: 2115171 PMCID: PMC54341 DOI: 10.1073/pnas.87.14.5444] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.
Collapse
Affiliation(s)
- M Allegrucci
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
29
|
Becker RS, Suter M, Knight KL. Restricted utilization of VH and DH genes in leukemic rabbit B cells. Eur J Immunol 1990; 20:397-402. [PMID: 2107085 DOI: 10.1002/eji.1830200224] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polyclonal B cell leukemias have been generated in 17- to 20-day old Emu-myc transgenic rabbits. To analyze the repertoire of VH genes utilized in early B cells, eight VDJ genes were cloned from these leukemic cells. The nucleotide sequences of these genes indicated that seven of the eight VDJ genes encoded prototype VHa1, VHa2 or VHa3 allotypes. The two VDJ genes encoding VHa1 molecules had VH segments with identical nucleotide sequences; similarly, the VH segments of the four VDJ genes encoding VHa2 molecules were identical, with the exception of a single base pair. These data suggest that a limited repertoire of VH genes were utilized in the generation of these VDJ genes. The DH segments of these genes were limited to two DH families, D1 and D2, indicating that a restricted repertoire of DH genes also had been utilized. Since these leukemic cells probably developed early in ontogeny, we suggest that this restricted utilization of VH and DH genes is representative of B cells from developmentally immature rabbits.
Collapse
Affiliation(s)
- R S Becker
- Department of Microbiology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL 60153
| | | | | |
Collapse
|
30
|
Spieker-Polet H, Sittisombut N, Yam PC, Knight KL. Rabbit major histocompatibility complex. IV. Expression of major histocompatibility complex class II genes. JOURNAL OF IMMUNOGENETICS 1990; 17:123-32. [PMID: 2120349 DOI: 10.1111/j.1744-313x.1990.tb00865.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The rabbit MHC class II DP, DQ, and DR alpha and beta chain genes were transfected into murine B lymphoma cells. The transfected cells expressed R-DQ and R-DR molecules on the cell surface but they did not express the R-DP genes either on the cell surface or at the level of mRNA. Northern blot analyses showed that the R-DP genes were expressed, albeit at low levels, in rabbit spleen. Similar analyses showed that the R-DQ and R-DR genes were expressed at high levels in rabbit spleen. A new monoclonal anti-rabbit class II antibody, RDR34, has been developed and shown to react with the R-DR transfected cells and not with the R-DQ transfected cells. The previously described monoclonal anti-rabbit class II antibody, 2C4, reacted with the R-DQ transfected cells and not with the R-DR transfected cells. Thus, 2C4 and RDR34 MAb's are specific for the R-DQ and R-DR molecules, respectively. Each of the antibodies reacted with approximately 50% of rabbit spleen cells as shown by immunofluorescent antibody studies.
Collapse
Affiliation(s)
- H Spieker-Polet
- Department of Microbiology, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153
| | | | | | | |
Collapse
|
31
|
Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, Brinster RL, Hammer RE. Genetic engineering of livestock. Science 1989; 244:1281-8. [PMID: 2499927 DOI: 10.1126/science.2499927] [Citation(s) in RCA: 309] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic engineering of livestock is expected to have a major effect on the agricultural industry. However, accurate assessment of the consequences of transgene expression is impossible without multigenerational studies. A systematic study of the beneficial and adverse consequences of long-term elevations in the plasma levels of bovine growth hormone (bGH) was conducted on two lines of transgenic pigs. Two successive generations of pigs expressing the bGH gene showed significant improvements in both daily weight gain and feed efficiency and exhibited changes in carcass composition that included a marked reduction in subcutaneous fat. However, long-term elevation of bGH was generally detrimental to health: the pigs had a high incidence of gastric ulcers, arthritis, cardiomegaly, dermatitis, and renal disease. The ability to produce pigs exhibiting only the beneficial, growth-promoting effects of growth hormone by a transgenic approach may require better control of transgene expression, a different genetic background, or a modified husbandry regimen.
Collapse
Affiliation(s)
- V G Pursel
- U.S. Department of Agriculture, Beltsville, MD 20705
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|