1
|
Hwang YS, Seita Y, Blanco MA, Sasaki K. CRISPR loss of function screening to identify genes involved in human primordial germ cell-like cell development. PLoS Genet 2023; 19:e1011080. [PMID: 38091369 PMCID: PMC10752514 DOI: 10.1371/journal.pgen.1011080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Despite our increasing knowledge of molecular mechanisms guiding various aspects of human reproduction, those underlying human primordial germ cell (PGC) development remain largely unknown. Here, we conducted custom CRISPR screening in an in vitro system of human PGC-like cells (hPGCLCs) to identify genes required for acquisition and maintenance of PGC fate. Amongst our candidates, we identified TCL1A, an AKT coactivator. Functional assessment in our in vitro hPGCLCs system revealed that TCL1A played a critical role in later stages of hPGCLC development. Moreover, we found that TCL1A loss reduced AKT-mTOR signaling, downregulated expression of genes related to translational control, and subsequently led to a reduction in global protein synthesis and proliferation. Together, our study highlights the utility of CRISPR screening for human in vitro-derived germ cells and identifies novel translational regulators critical for hPGCLC development.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - M. Andrés Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
The Modes of Dysregulation of the Proto-Oncogene T-Cell Leukemia/Lymphoma 1A. Cancers (Basel) 2021; 13:cancers13215455. [PMID: 34771618 PMCID: PMC8582492 DOI: 10.3390/cancers13215455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary T-cell leukemia/lymphoma 1A (TCL1A) is a proto-oncogene that is mainly expressed in embryonic and fetal tissues, as well as in some lymphatic cells. It is frequently overexpressed in a variety of T- and B-cell lymphomas and in some solid tumors. In chronic lymphocytic leukemia and in T-prolymphocytic leukemia, TCL1A has been implicated in the pathogenesis of these conditions, and high-level TCL1A expression correlates with more aggressive disease characteristics and poorer patient survival. Despite the modes of TCL1A (dys)regulation still being incompletely understood, there are recent advances in understanding its (post)transcriptional regulation. This review summarizes the current concepts of TCL1A’s multi-faceted modes of regulation. Understanding how TCL1A is deregulated and how this can lead to tumor initiation and sustenance can help in future approaches to interfere in its oncogenic actions. Abstract Incomplete biological concepts in lymphoid neoplasms still dictate to a large extent the limited availability of efficient targeted treatments, which entertains the mostly unsatisfactory clinical outcomes. Aberrant expression of the embryonal and lymphatic TCL1 family of oncogenes, i.e., the paradigmatic TCL1A, but also TML1 or MTCP1, is causally implicated in T- and B-lymphocyte transformation. TCL1A also carries prognostic information in these particular T-cell and B-cell tumors. More recently, the TCL1A oncogene has been observed also in epithelial tumors as part of oncofetal stemness signatures. Although the concepts on the modes of TCL1A dysregulation in lymphatic neoplasms and solid tumors are still incomplete, there are recent advances in defining the mechanisms of its (de)regulation. This review presents a comprehensive overview of TCL1A expression in tumors and the current understanding of its (dys)regulation via genomic aberrations, epigenetic modifications, or deregulation of TCL1A-targeting micro RNAs. We also summarize triggers that act through such transcriptional and translational regulation, i.e., altered signals by the tumor microenvironment. A refined mechanistic understanding of these modes of dysregulations together with improved concepts of TCL1A-associated malignant transformation can benefit future approaches to specifically interfere in TCL1A-initiated or -driven tumorigenesis.
Collapse
|
3
|
TCL1A, B Cell Regulation and Tolerance in Renal Transplantation. Cells 2021; 10:cells10061367. [PMID: 34206047 PMCID: PMC8230170 DOI: 10.3390/cells10061367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Despite much progress in the management of kidney transplantation, the need for life-long immunosuppressive therapies remains a major issue representing many risks for patients. Operational tolerance, defined as allograft acceptance without immunosuppression, has logically been subject to many investigations with the aim of a better understanding of post-transplantation mechanisms and potentially how it would be induced in patients. Among proposed biomarkers, T-cell Leukemia/Lymphoma protein 1A (TCL1A) has been observed as overexpressed in the peripheral blood of operational tolerant patients in several studies. TCL1A expression is restricted to early B cells, also increased in the blood of tolerant patients, and showing regulatory properties, notably through IL-10 secretion for some subsets. TCL1A has first been identified as an oncogene, overexpression of which is associated to the development of T and B cell cancer. TCL1A acts as a coactivator of the serine threonine kinase Akt and through other interactions favoring cell survival, growth, and proliferation. It has also been identified as interacting with others major actors involved in B cells differentiation and regulation, including IL-10 production. Herein, we reviewed known interactions and functions of TCL1A in B cells which could involve its potential role in the set up and maintenance of renal allograft tolerance.
Collapse
|
4
|
Bailey NG, Elenitoba-Johnson KSJ. Impact of Genetics on Mature Lymphoid Leukemias and Lymphomas. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035444. [PMID: 31932467 DOI: 10.1101/cshperspect.a035444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recurrent genetic aberrations have long been recognized in mature lymphoid leukemias and lymphomas. As conventional karyotypic and molecular cloning techniques evolved in the 1970s and 1980s, multiple cytogenetic aberrations were identified in lymphomas, often balanced translocations that juxtaposed oncogenes to the immunoglobulin (IG) or T-cell receptor (TR) loci, leading to dysregulation. However, genetic characterization and classification of lymphoma by conventional cytogenetic methods is limited by the infrequent occurrence of recurrent karyotypic abnormalities in many lymphoma subtypes and by the frequent difficulty in growing clinical lymphoma specimens in culture to obtain informative karyotypes. As higher-resolution genomic techniques developed, such as array comparative genomic hybridization and fluorescence in situ hybridization, many recurrent copy number changes were identified in lymphomas, and copy number assessment of interphase cells became part of routine clinical practice for a subset of diseases. Platforms to globally examine mRNA expression led to major insights into the biology of several lymphomas, although these techniques have not gained widespread application in routine clinical settings. With the advent of next-generation sequencing (NGS) techniques in the early 2000s, numerous insights into the genetic landscape of lymphomas were obtained. In contrast to the myeloid malignancies, most common lymphomas exhibit an at least somewhat mutationally complex genome, with few single driver mutations in the majority of patients. However, many recurrently mutated pathways have been identified across lymphoma subtypes, informing targeted therapeutic approaches that are beginning to make meaningful changes in the treatment of lymphoma. In addition to the ability to identify possible therapeutic targets, NGS techniques are highly amenable to the tracking of residual lymphoma following therapy, because of the presence of unique genetic "fingerprints" in lymphoma cells due to V(D)-J recombination at the antigen receptor loci. This review will provide an overview of the impact of novel genetic technologies on lymphoma classification, biology, and therapy.
Collapse
Affiliation(s)
- Nathanael G Bailey
- Division of Hematopathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19102, USA
| |
Collapse
|
5
|
Sun S, Fang W. Current understandings on T-cell prolymphocytic leukemia and its association with TCL1 proto-oncogene. Biomed Pharmacother 2020; 126:110107. [PMID: 32247279 DOI: 10.1016/j.biopha.2020.110107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare mature T cell leukemia with aggressive clinical course, poor response to conventional therapies and high mortality rates. Classical cytogenetics and various genetic techniques have observed complex karyotypes and associated genes involved in the molecular pathogenesis of T-PLL, among which the proto-oncogene T-cell leukemia/lymphoma 1 (TCL1) as a hallmark of malignancy is hyper-activated and abnormally expressed in many T-PLL cases. Progress has been made to identify the presence of chromosomal rearrangements and subsequent changes in key molecular pathways typically involving Akt, which may hint cytogenetic mechanisms underlying the pathogenesis of T-PLL and indicate new treatment targets. In this article, we describe current insights of T-PLL with an emphasis on the potential role of TCL1 gene disorders and TCL1-Akt interactions in cell transformation and disease progression, followed by discussion on current treatment options and novel therapeutic approaches based on cytogenetics, which still remains to be explored for the effective management of T-PLL and other TCL1-driven hematological malignancies.
Collapse
Affiliation(s)
- Siyu Sun
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| | - Wenjia Fang
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
6
|
Fiorenza MT, Rava A. The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle 2019; 18:3055-3063. [PMID: 31564197 DOI: 10.1080/15384101.2019.1672465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oncogenic ability of the T-cell leukemia/lymphoma 1 gene, TCL1, has captured the attention in the field of prolymphocytic T-cell and B-cell chronic leukemias for more than two decades. However, the finding that TCL1 is also expressed in totipotent cells of the mouse preimplantation embryos and that it is among the 10 genes, including the transcription factors Nanog, Oct4, Sox2, Tbx3, and Esrrb, that are required for maintaining the mitotic self-renewal state of embryonic stem cells, raises a great interest. In this review, we highlight newly acquired evidence pinpointing TCL1 as a crucial regulator of metabolic pathways that dictate somatic cell reprogramming toward pluripotency. In our opinion, this feature provides a relevant hint for reframing the role that this factor plays at early stages of mammalian embryo development and in tumorigenesis. Hence, the TCL1-dependent enhancement of serine/threonine AKT/PKB kinase activity favoring cell proliferation appears to be associated to the promotion of glucose transport and activation of glycolytic pathways. This is also consistent with the TCL1 ability to suppress mitochondrial biogenesis and oxygen consumption, downplaying the contribution of oxidative phosphorylation to energy metabolism. It thus appears that TCL1 masters the direction of energy metabolism toward the glycolytic pathway to meet a critical metabolic requirement that goes beyond the mere ATP production. For instance, the synthesis of glycolytic intermediates that are required for DNA synthesis likely represents the most pressing cellular need for both cleavage-stage embryos and rapidly proliferating tumor cells.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy.,IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Alessandro Rava
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
7
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
8
|
Paduano F, Gaudio E, Mensah AA, Pinton S, Bertoni F, Trapasso F. T-Cell Leukemia/Lymphoma 1 (TCL1): An Oncogene Regulating Multiple Signaling Pathways. Front Oncol 2018; 8:317. [PMID: 30151355 PMCID: PMC6099186 DOI: 10.3389/fonc.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023] Open
Abstract
Almost 30 years ago, Carlo Croce's group discovered the T-Cell Leukemia/Lymphoma 1A oncogene (TCL1A or TCL1). TCL1 protein is normally expressed in fetal tissues and early developmental stage lymphocytes. Its expression is deregulated in chronic lymphocytic leukemia (B-CLL) and most lymphomas. TCL1 plays a central role in lymphomagenesis as a co-activator of AKT kinases and other recently elucidated interacting protein partners. These include ATM, HSP70 and TP63, which were all confirmed as binding partners of TCL1 from co-immunoprecipitation experiments utilizing endogenously expressed proteins. The nature of these interactions highlighted the role of TCL1 in enhancing multiple signaling pathways, including PI3K and NF-κB. Based on its role in the aforementioned pathways and, despite the lack of a well-defined enzymatic activity, TCL1 is considered a potential therapeutic target for TCL1-positive hematological malignancies. This perspective will provide an overview of TCL1A and its interacting partners.
Collapse
Affiliation(s)
- Francesco Paduano
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Catanzaro, Italy.,Biomedical Section, Tecnologica Research Institute, Crotone, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Afua A Mensah
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sandra Pinton
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
9
|
Gaudio E, Paduano F, Pinton S, D'Agostino S, Rocca R, Costa G, Ngankeu A, Aqeilan RI, Croce CM, Bertoni F, Alcaro S, Trapasso F. TCL1A interacts with TP63 and enhances the survival of Raji Burkitt lymphoma cell line. Br J Haematol 2017; 183:509-512. [PMID: 29048125 DOI: 10.1111/bjh.14989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eugenio Gaudio
- Lymphoma and Genomics Research Programme, The Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Sandra Pinton
- Laboratory for Biomedical Neurosciences - Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Sabrina D'Agostino
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Roberta Rocca
- Departimento Scienze della Vita, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giosuè Costa
- Departimento Scienze della Vita, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Apollinaire Ngankeu
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Rami I Aqeilan
- The Lautenberg Centre for Immunology and Cancer Research, Institute for Medical Research, The Hebrew University, Jerusalem, Israel
| | - Carlo M Croce
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Francesco Bertoni
- Lymphoma and Genomics Research Programme, The Institute of Oncology Research, Bellinzona, Switzerland
| | - Stefano Alcaro
- Departimento Scienze della Vita, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Abstract
This paper describes how we discovered the juxtaposition of the MYC gene to the human immunoglobulin loci and how that finding was extended to characterize molecularly the t(14;18) chromosome translocation of follicular lymphoma and to clone the BCL2 gene. BCL2 is also overexpressed in CLL, the most common human leukemia. We discovered that most of human CLLs have a deletion of two microRNAs residing in the same polycistronic RNA, miR-15a and miR-16-1, and that these two microRNAs are negative regulators of BCL2. Thus, loss of miR-15/16 leads to overexpression of BCL2 that can be targeted by the new drug, venetoclax, that was recently approved by the FDA for the treatment of aggressive CLLs.
Collapse
|
11
|
Abstract
Mature T-cell leukemias are a group of uncommon lymphoid neoplasms. These disorders have widely variable clinical features, ranging from indolent, slowly progressive processes to diseases with rapidly progressive courses, leading to death. Cytogenetic aberrations have long been identified in some of these diseases, and recent studies have found recurrent genetic mutations that contribute to their pathogenesis. Conventional multiagent chemotherapy lacks significant efficacy in this group of diseases and therapies vary from immunosuppression to treatment with monoclonal antibodies, antiviral agents, and hematopoietic stem cell transplantation. The recent expansion of knowledge regarding the underlying genetic basis of these disorders raises hope that new, more targeted therapeutic approaches will be available to patients in the near future.
Collapse
Affiliation(s)
- Nathanael G Bailey
- Department of Pathology, University of Michigan, M5242 Medical Science 1 1301 Catherine St, Ann Arbor, MI, 48109, USA.
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Abstract
T-cell neoplasms include both mature T-cell leukemias and lymphomas and immature proliferations of precursor T cells. Molecular laboratories routinely assay suspected T-cell proliferations for evidence of clonality. In addition, some T-cell neoplasms are characterized by recurrent structural abnormalities that can be readily identified by such techniques as fluorescence in situ hybridization. New massively parallel sequencing technologies have led to the identification of numerous recurrent gene mutations in T-cell neoplasms. These findings are reviewed. As new technologies become implemented in molecular diagnostic laboratories and as targeted therapies are developed, it is anticipated that more extensive genomic characterization of T-cell neoplasms will be routinely performed in the future.
Collapse
|
13
|
Ehrlich LA, Yang-Iott K, Bassing CH. Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:3076-82. [PMID: 25486566 PMCID: PMC4615123 DOI: 10.4161/15384101.2014.949144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
ATM is the master regulator of the cellular response to DNA double strand breaks (DSBs). Deficiency of ATM predisposes humans and mice to αβ T lymphoid cancers with clonal translocations between the T cell receptor (TCR) α/δ locus and a 450 kb region of synteny on human chromosome 14 and mouse chromosome 12. While these translocations target and activate the TCL1 oncogene at 14q32 to cause T cell pro-lymphocytic leukemia (T-PLL), the TCRα/δ;14q32 translocations in ATM-deficient T cell acute lymphoblastic leukemia (T-ALL) have not been characterized and their role in cancer pathogenesis remains unknown. The corresponding lesion in Atm-deficient mouse T-ALLs is a chromosome t(12;14) translocation with Tcrδ genes fused to sequences on chromosome 12; although these translocations do not activate Tcl1, they delete the Bcl11b haploinsufficient tumor suppressor gene. To assess whether Tcrδ translocations that inactivate one copy of Bcl11b promote transformation of Atm-deficient cells, we analyzed Atm(-/-) mice with mono-allelic Bcl11b deletion initiating in thymocytes concomitant with Tcrδ recombination. Inactivation of one Bcl11b copy had no effect on the predisposition of Atm(-/-) mice to clonal T-ALLs. Yet, none of these T-ALLs had a clonal chromosome t(12;14) translocation that deleted Bcl11b indicating that Tcrδ translocations that inactivate a copy of Bcl11b promote transformation of Atm-deficient thymocytes. Our data demonstrate that antigen receptor locus translocations can cause cancer by deleting a tumor suppressor gene. We discuss the implications of these findings for the etiology and therapy of T-ALLs associated with ATM deficiency and TCRα/δ translocations targeting the 14q32 cytogenetic region.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Division of Oncology; Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| | - Craig H Bassing
- Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia; Philadelphia, PA USA
- Abramson Family Cancer Research Institute; Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
14
|
Dunleavy K, Piekarz RL, Zain J, Janik JE, Wilson WH, O'Connor OA, Bates SE. New strategies in peripheral T-cell lymphoma: understanding tumor biology and developing novel therapies. Clin Cancer Res 2010; 16:5608-17. [PMID: 21138864 PMCID: PMC3058794 DOI: 10.1158/1078-0432.ccr-09-1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peripheral T-cell lymphomas (PTCL) constitute a group of heterogeneous diseases that are uncommon, representing, in Western countries, only approximately 10% of all non-Hodgkin lymphomas. They are typically associated with a poor prognosis compared with their B-cell counterparts and are much less well understood with respect to tumor biology, owing to their rarity and biologic heterogeneity, and to the fact that characteristic cytogenetic abnormalities are few compared with B-cell lymphomas. Although the outcome for patients with anaplastic large cell lymphoma (ALCL), particularly anaplastic lymphoma kinase (ALK)-positive ALCL, is good, other types of PTCLs are associated with a poor prognosis, even with aggressive anthracycline-based chemotherapy. In this respect, there is a need for new approaches in these diseases, and this review focuses on and explores recent experience with novel therapies in PTCL.
Collapse
Affiliation(s)
- Kieron Dunleavy
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892–1868, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zha S, Bassing CH, Sanda T, Brush JW, Patel H, Goff PH, Murphy MM, Tepsuporn S, Gatti RA, Look AT, Alt FW. ATM-deficient thymic lymphoma is associated with aberrant tcrd rearrangement and gene amplification. ACTA ACUST UNITED AC 2010; 207:1369-80. [PMID: 20566716 PMCID: PMC2901073 DOI: 10.1084/jem.20100285] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ataxia telangiectasia mutated (ATM) deficiency predisposes humans and mice to T lineage lymphomas with recurrent chromosome 14 translocations involving the T cell receptor alpha/delta (Tcra/d) locus. Such translocations have been thought to result from aberrant repair of DNA double-strand breaks (DSBs) during Tcra locus V(D)J recombination, and to require the Tcra enhancer (Ealpha) for Tcra rearrangement or expression of the translocated oncogene. We now show that, in addition to the known chromosome 14 translocation, ATM-deficient mouse thymic lymphomas routinely contain a centromeric fragment of chromosome 14 that spans up to the 5' boundary of the Tcra/d locus, at which position a 500-kb or larger region centromeric to Tcra/d is routinely amplified. In addition, they routinely contain a large deletion of the telomeric end of one copy of chromosome 12. In contrast to prior expectations, the recurrent translocations and amplifications involve V(D)J recombination-initiated breaks in the Tcrd locus, as opposed to the Tcra locus, and arise independently of the Ealpha. Overall, our studies reveal previously unexpected mechanisms that contribute to the oncogenic transformation of ATM-deficient T lineage cells.
Collapse
Affiliation(s)
- Shan Zha
- Howard Hughes Medical Institute, Children's Hospital, Immune Disease Institute, and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114:4675-86. [PMID: 19770358 DOI: 10.1182/blood-2009-03-208256] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although activation of the B-cell receptor (BCR) signaling pathway is implicated in the pathogenesis of chronic lymphocytic leukemia (CLL), its clinical impact and the molecular correlates of such response are not clearly defined. T-cell leukemia 1 (TCL1), the AKT modulator and proto-oncogene, is differentially expressed in CLL and linked to its pathogenesis based on CD5(+) B-cell expansions arising in TCL1-transgenic mice. We studied here the association of TCL1 levels and its intracellular dynamics with the in vitro responses to BCR stimulation in 70 CLL cases. The growth kinetics after BCR engagement correlated strongly with the degree and timing of induced AKT phospho-activation. This signaling intensity was best predicted by TCL1 levels and the kinetics of TCL1-AKT corecruitment to BCR membrane activation complexes, which further included the kinases LYN, SYK, ZAP70, and PKC. High TCL1 levels were also strongly associated with aggressive disease features, such as advanced clinical stage, higher white blood cell counts, and shorter lymphocyte doubling time. Higher TCL1 levels independently predicted an inferior clinical outcome (ie, shorter progression-free survival, P < .001), regardless of therapy regimen, especially for ZAP70(+) tumors. We propose TCL1 as a marker of the BCR-responsive CLL subset identifying poor prognostic cases where targeting BCR-associated kinases may be therapeutically useful.
Collapse
|
17
|
Hamblin TJ. The TCL1 mouse as a model for chronic lymphocytic leukemia. Leuk Res 2009; 34:135-6. [PMID: 19726084 DOI: 10.1016/j.leukres.2009.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 12/24/2022]
Abstract
The TCL1 mouse has been proposed as a mouse model for chronic lymphocytic leukemia. This review details how it resembles the aggressive form of the disease rather than the more common indolent form. Although fulfilled predictions in the human disease based on investigations in the mouse model are at present lacking, there are remarkable similarities between human and mouse leukemias that have led to interesting observations on the pathophysiology of chronic lymphocytic leukemia and have identified putative therapeutic targets.
Collapse
Affiliation(s)
- Terry J Hamblin
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southhampton, UK.
| |
Collapse
|
18
|
Affiliation(s)
- I.R. Kirsch
- Navy Medical Oncology Branch, National Cancer Institute, Bethesda, MD, 20889-5105, U.S.A
| |
Collapse
|
19
|
Sadamori N, Nishino K, Moriuchi Y, Itoyama T, Nakamura H, Sasagawa I, Tokunaga S, Kawachi T, Ikeda S. Karyotypic Evolution in a Patient with a Preleukemic State of Adult T-cell Leukemia (Pre-ATL) progressing to Overt ATL. Leuk Lymphoma 2009. [DOI: 10.3109/10428199209064892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, Jones D. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 2007; 111:328-37. [PMID: 17890451 PMCID: PMC2200815 DOI: 10.1182/blood-2007-07-101519] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The T-cell leukemia 1 (TCL1) oncoprotein is overexpressed by chromosomal rearrangement in the majority of cases of T-cell prolymphocytic leukemia (T-PLL). In vitro, TCL1 can modulate the activity of the serine-threonine kinase AKT, a downstream effector of T-cell receptor (TCR) signaling. In a series of 86 T-PLL tumors, we show that expression of TCR, and levels of TCL1 and activated AKT are adverse prognostic markers. High-level TCL1 in TCR-expressing T-PLL is associated with higher presenting white blood cell counts, faster tumor cell doubling, and enhanced in vitro growth response to TCR engagement. In primary tumors and TCL1-transfected T-cell lines, TCR engagement leads to rapid recruitment of TCL1 and AKT to transient membrane activation complexes that include TCR-associated tyrosine kinases, including LCK. Pharmacologic inhibition of AKT activation alters the localization, stability, and levels of these transient TCL1-AKT complexes and reduces tumor cell growth. Experimental introduction and knockdown of TCL1 influence the kinetics and strength of TCR-mediated AKT activation. We propose that in T-PLL, TCL1 represents a highly regulated, targetable modulator of TCR-mediated AKT growth signaling.
Collapse
Affiliation(s)
- Marco Herling
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Herling M, Patel KA, Hsi ED, Chang KC, Rassidakis GZ, Ford R, Jones D. TCL1 in B-cell tumors retains its normal b-cell pattern of regulation and is a marker of differentiation stage. Am J Surg Pathol 2007; 31:1123-9. [PMID: 17592280 DOI: 10.1097/pas.0b013e31802e2201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The high expression of the T-cell oncogene TCL1 in B-cell tumors and the emergence of B-cell lymphomas in TCL1-transgenic mice suggest a pathogenetic role for this kinase coregulator in B-cell malignancies. We compared the expression of TCL1 in B-cell tumors with their differentiation stage. As with normal B-cell subsets, uniform TCL1 expression was characteristic of tumors of pregerminal center derivation such as precursor B-cell lymphoblastic leukemia/lymphoma (85%, 47/55) and mantle cell lymphoma (84%, 49/58), and was more variable in follicular lymphoma (57%, 28/49). Large B-cell lymphoma was less frequently positive for TCL1 (36%, 18/50), especially among cases of the activated B-cell type. All types of Hodgkin lymphoma, splenic marginal zone lymphoma, and post-germinal center-derived tumors, including plasma cell myeloma and MALT lymphoma, were negative for TCL1, except for 1 case. In nearly all TCL1-expressing tumors, as with normal B cells, variations in cellular TCL1 levels were related to the proliferation and microenvironmental factors. In normal B cells, cell lines and primary B-cell tumor samples, TCL1 downmodulation occurred after prolonged cytokine treatment and/or B-cell receptor stimulation. In contrast to mature T-cell tumors where TCL1 expression is always indicative of an activating TCL1 gene translocation, TCL1 expression in B-cell tumors parallels its regulation in non-neoplastic B cells. Therefore, TCL1 expression can be used diagnostically as an indicator of the differentiation stage of a given B-cell tumor.
Collapse
Affiliation(s)
- Marco Herling
- Department of Hematopathology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Pekarsky Y, Calin GA, Aqeilan R. Chronic lymphocytic leukemia: molecular genetics and animal models. Curr Top Microbiol Immunol 2005; 294:51-70. [PMID: 16323427 DOI: 10.1007/3-540-29933-5_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic lymphocytic leukemia accounts for almost 30% of all adult leukemia cases in the United States and Western Europe. Although several common genomic abnormalities in CLL have been identified, mutational and functional analysis of corresponding genes so far have not proved their involvement in CLL. Our latest studies demonstrated functional involvement of Tcl1 oncoprotein and microRNA genes in the pathogenesis of CLL. Deregulated expression of Tcl1 in transgenic mice resulted in CLL. These CLL tumors showed abnormalities in expression of murine microRNA genes mmu-mir-15a and mmu-mir-16-1. Interestingly, human homologs of these genes, mir-15a and mir-16-1, located at the chromosome 13q14 are also deleted in human CLL samples. In this review we summarize and discuss these new developments. These recently emerged insights into the molecular mechanisms of CLL will allow for the development of new approaches to treat this disease.
Collapse
MESH Headings
- Animals
- Chromosome Aberrations
- Disease Models, Animal
- Gene Expression Profiling
- Humans
- Leukemia, Experimental/etiology
- Leukemia, Experimental/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mice
- MicroRNAs/genetics
- Models, Biological
- Molecular Biology
- Oncogene Protein v-akt/genetics
- Proto-Oncogene Proteins/genetics
- RNA, Neoplasm/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Y Pekarsky
- Comprehensive Cancer Center, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
23
|
Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ, Jones D. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2005; 20:280-5. [PMID: 16341048 DOI: 10.1038/sj.leu.2404017] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of the human oncogene TCL1 in transgenic mice produces B-cell tumors that resemble chronic lymphocytic leukemia (CLL) suggesting its role in B-cell tumorigenesis. To clarify the expression pattern and regulation of TCL1 in CLL, we assessed 213 primary tumors by immunohistochemistry (IHC), flow-cytometry and/or Western blot, using a new monoclonal antibody. TCL1 protein was detectable in the majority of CLL (90% by IHC) but showed marked variations across cases with virtual absence in approximately 10% of tumors. Higher TCL1 levels correlated with markers of the 'pre-germinal center' CLL subtype including unmutated VH status (P=0.005), ZAP70 expression (P=0.007), and presence of chromosome 11q22-23 deletions (P=0.04). Intratumoral heterogeneity in TCL1 levels was also prominent and explained in part by markedly lower TCL1 expression in proliferating tumor cells. In vitro exposure of CLL cells to interleukin-4 (but not other growth factors) produced progressive and irreversible decrease in TCL1 protein levels in association with the onset of proliferation. TCL1 expression patterns in CLL are complex and highly dynamic and appear to reflect both the histogenetic subtypes of the disease and the growth parameters of individual tumors. The observed regulation pattern suggests that TCL1 may exert its effects predominantly in the unmutated/ZAP70-positive tumor subset.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Gene Expression Regulation, Leukemic
- Humans
- Immunohistochemistry
- In Vitro Techniques
- Interleukin-4/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogenes/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Herling
- Department of Hematopathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ravandi F, O'Brien S. Chronic lymphoid leukemias other than chronic lymphocytic leukemia: diagnosis and treatment. Mayo Clin Proc 2005; 80:1660-74. [PMID: 16342661 DOI: 10.4065/80.12.1660] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The World Health Organization classification divides lymphoid malignancies into precursor B-cell and T-cell neoplasms as well as mature B-cell and T-cell neoplasms. Mature B-cell neoplasms comprise more than 85% of non-Hodgkin lymphomas worldwide and can be further subclassified according to the postulated cell of origin by using specific morphologic, immunophenotypic, and molecular characteristics. Similarly, the more uncommon mature T-cell neoplasms have been better characterized to include numerous distinct entities with widely varying natural histories. The distinction between lymphoma and leukemia is somewhat arbitrary and is based on variable involvement of the bone marrow, peripheral blood, and lymphatic system. In this article, we review the diagnostic and clinical features of mature B-cell and T-cell lymphoproliferative disorders that commonly have a leukemic presentation.
Collapse
MESH Headings
- Diagnosis, Differential
- Humans
- Leukemia, Hairy Cell/diagnosis
- Leukemia, Hairy Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, T-Cell/diagnosis
- Leukemia, T-Cell/therapy
- Prognosis
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, The University of Texas M D Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
25
|
Ravandi F, O'Brien S, Jones D, Lerner S, Faderl S, Ferrajoli A, Wierda W, Garcia-Manero G, Thomas D, Koller C, Verstovsek S, Giles F, Cortes J, Herling M, Kantarjian H, Keating M. T-Cell Prolymphocytic Leukemia: A Single-Institution Experience. ACTA ACUST UNITED AC 2005; 6:234-9. [PMID: 16354329 DOI: 10.3816/clm.2005.n.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND T-cell prolymphocytic leukemia is an uncommon, aggressive, mature T-cell leukemia characterized by proliferation of T-cell lymphocytes. The recent availability of modern immunophenotypic and molecular tools has allowed a better distinction of this disorder from its B-cell counterpart and other mature T-cell leukemias. PATIENTS AND METHODS The clinical, pathologic, and cytogenetic features of 57 patients with T-PLL who were evaluated at the Department of Leukemia, M. D. Anderson Cancer Center (MDACC) from 1986 to 2004 were examined. RESULTS The most common cytogenetic abnormality was inv(14)(q11;q32), which was present in 7 patients. In all 7 patients, this abnormality was associated with other chromosomal aberrations. Patients treated with alemtuzumab at MDACC had a significantly better response rate (P = 0.02) and survival rate (P = 0.002). There were no significant differences in survival based on Tcl-1 expression or different patterns of CD4 and CD8 expression. CONCLUSION Treatment with alemtuzumab results in higher response rates and a better survival rate in patients with T-cell prolymphocytic leukemia.
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Mature T-cell and NK-cell leukemias are a group of relatively uncommon neoplasms derived from mature or postthymic T-cells accounting for a relatively small percentage of lymphoid malignancies. The recent availability of modern immunophenotypic and molecular tools has allowed a better distinction of these disorders from their B-cell counterparts. Similarly, identification of recurrent cytogenetic abnormalities, as well as plausible mechanisms through which these molecular events influence cellular signaling pathways, have created further insight into the pathogenesis of these disorders. Furthermore, the availability of new agents such as alemtuzumab has generated significant interest in devising specific therapeutic strategies for these malignancies. Herein, we review the clinical and pathological features of mature T-cell leukemias.
Collapse
MESH Headings
- Adult
- Alemtuzumab
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/therapeutic use
- Antineoplastic Agents/therapeutic use
- Human T-lymphotropic virus 1
- Humans
- Immunophenotyping
- Leukemia, Lymphoid
- Leukemia, Prolymphocytic/diagnosis
- Leukemia, Prolymphocytic/drug therapy
- Leukemia, Prolymphocytic/genetics
- Leukemia, T-Cell/blood
- Leukemia, T-Cell/diagnosis
- Leukemia, T-Cell/drug therapy
- Leukemia, T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/diagnosis
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/virology
- Middle Aged
- Tumor Virus Infections
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Pekarsky Y, Zanesi N, Aqeilan R, Croce CM. Tcl1 as a model for lymphomagenesis. Hematol Oncol Clin North Am 2004; 18:863-79, ix. [PMID: 15325703 DOI: 10.1016/j.hoc.2004.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mature leukemias and lymphomas are a heterogeneous group of lymphoproliferative neoplasias characterized by the accumulation of mature lymphocytes in lymph nodes, other lymphoid tissues, and peripheral blood. In this article we discuss molecular mechanisms leading to the pathogenesis of two major types of mature leukemias and lymphomas: mature T-cell leukemia and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
28
|
Pekarsky Y, Hallas C, Croce CM. Targeting mature T cell leukemia: new understanding of molecular pathways. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:31-6. [PMID: 12562214 DOI: 10.2165/00129785-200303010-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The best studied T cell leukemia/lymphoma from a genetic and biochemical point of view is T-cell chronic lymphocytic/prolymphocytic leukemia (T-CLL/T-PLL). This neoplasia commonly shows chromosomal rearrangements at 14q32.1 including translocations [t(14;14)(q11;q32), t(7;14)(q35;q32)], and inversions [inv(14)(q11;q32)]. The investigation of the locus in question at 14q32.1 resulted in the identification of two related genes named T cell leukemia/lymphoma 1 (TCL1) and TCL1b. Both genes are activated in T-CLL/T-PLL by the chromosomal aberrations mentioned above. Mice from a transgenic mouse strain expressing the TCL1 gene under the thymocyte specific lck promoter developed a mature T cell leukemia late in life, thereby demonstrating that over-expression of TCL1 induces the neoplastic transformation of T cells. Biochemically, Tcl1 protein works as a co-factor of the Akt kinase, a key regulator of antiapoptotic and proliferative signals. Tcl1 interacts physically with Akt, increases its kinase activity and facilitates its transport to the nucleus. The pathogenesis of T-CLL/T-PLL may also involve Nur77, a T cell transcription factor required for T cell receptor-mediated apoptosis. Akt phosphorylates Nur77, thereby blocking its DNA-binding ability and rendering the transcription factor inactive. The recently emerged insights into the molecular mechanisms of T cell leukemogenesis will allow for the development of specific pharmacological tools for the treatment of these hematopoietic malignancies.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
29
|
Giovannetti A, Mazzetta F, Caprini E, Aiuti A, Marziali M, Pierdominici M, Cossarizza A, Chessa L, Scala E, Quinti I, Russo G, Fiorilli M. Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood 2002; 100:4082-9. [PMID: 12393664 DOI: 10.1182/blood-2002-03-0976] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ataxia telangiectasia (A-T), a genetic disorder caused by the homozygous mutation of the ATM gene, frequently associates with variable degrees of cellular and humoral immunodeficiency. However, the immune defects occurring in patients with A-T are still poorly characterized. Here we show that the T-cell receptor (TCR) variable beta (BV)-chain repertoire of 9 A-T patients was restricted by diffuse expansions of some variable genes prevalently occurring within the CD4 subset and clustering to certain TCRBV genes (eg, 5.1, 11, 14, and 23). In addition, the study of the third complementarity-determining region (CDR3) showed, in all patients, significantly altered profiles in most BV genes examined suggesting diffuse oligoclonal expansions. The sequencing of TCR CDR3 regions revealed completely normal V(D)J coding joints and confirmed a reduced diversity of the antigen-receptor repertoire. The B-cell repertoire was similarly restricted and skewed by diffuse oligoclonal expansions with normal V(D)J joints. Thymic output, evaluated by measuring TCR rearrangement excision circles, was extremely low. The majority of peripheral T cells had the phenotype and the function of effector memory cells, indicating that in vivo they are able to respond normally by terminal differentiation to antigenic stimulation. These results indicate that ATM mutation limits the generation of a wide repertoire of normally functioning T and B cells.
Collapse
|
30
|
Chun HH, Castellví-Bel S, Wang Z, Nagourney RA, Plaeger S, Becker-Catania SG, Naeim F, Sparkes RS, Gatti RA. TCL-1, MTCP-1 and TML-1 gene expression profile in non-leukemic clonal proliferations associated with ataxia-telangiectasia. Int J Cancer 2002; 97:726-31. [PMID: 11857346 DOI: 10.1002/ijc.10102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We analyzed the role of 4 genes, TCL-1, MTCP-1, TML-1 and ATM, in the early pathogenesis of T cell leukemia, with particular interest in the characteristics of long-standing non-leukemic clonal proliferations in ataxia-telangiectasia (A-T) patients. Five patients were studied: 4 patients had A-T (2 of whom had non-leukemic clonal proliferations [ATCP]), 1 had B cell lymphoma and 1 had T-ALL; a fifth patient with T-PLL did not have A-T. We measured the levels of expression for TCL-1, MTCP-1 and TML-1. TCL-1, not expressed in unstimulated mature T cells, was upregulated in the peripheral blood leukocytes (PBL) of the 2 A-T patients with ATCP. It was also expressed in the malignant cells of the A-T patient with B cell lymphoma and the T-PLL cells of the patient without A-T. In the same cells, MTCP-1 type A was expressed equally in all 5 patients, as well as in the controls; MTCP-1 type B transcripts were not observed. TML-1, also not expressed in unstimulated T cells, was expressed in the PBL of one A-T patient with ATCP and in the leukemic cells of the non-A-T T-PLL patient. These expression patterns were compared to cellular immunophenotypes. The non-leukemic clonal T cell populations had the characteristics of immature T cells. We conclude that TCL-1 and TML-1 play a role in cell proliferation and survival but are not pivotal genes in the progression to malignancy, even when the ATM gene is mutated. Additional genetic alterations must occur to initiate tumorigenesis.
Collapse
Affiliation(s)
- Helen H Chun
- Department of Pathology, School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The TCL1 locus on human chromosome 14q32.1 is activated in T-cell leukemias by translocations and inversions that juxtapose it to regulatory elements of T-cell receptor genes. We isolated and characterized four genes at this locus, TCL1 and TCL1b (T-cell leukemia/lymphoma 1 and 1b), and TNG1 and TNG2 (TCL neighboring genes 1 and 2) all of which are overexpressed following rearrangements involving 14q32.1. TCL1 and TCL1b show 60% similarity and are represented in the mouse by a cluster of six homologous genes. In humans TCL1 and TCL1b show similar expression patterns: They are expressed mainly in CD4-/CD8- immature T-cells, pre B-cells and virgin B-cells. Expression decreases significantly at more mature stages of B-cell development. Activation of TCL1 and/or TCL1b in mature T-cells causes T-cell leukemia in humans. The oncogenic nature of TCL1 was confirmed by the analysis of a transgenic mouse model. Functional analysis of Tcl1 revealed its involvement in a PI3-kinase dependent Akt (PKB) pro-survival pathway through its interaction with the Akt kinase which increases Akt's enzymatic activity and promotes translocation of Akt to the nucleus.
Collapse
Affiliation(s)
- Y Pekarsky
- Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street Philadelphia, Pennsylvania, PA 19107, USA.
| | | | | |
Collapse
|
32
|
Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, Catovsky D. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer 2001; 30:336-41. [PMID: 11241786 DOI: 10.1002/gcc.1099] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
TCL1 is an oncogene activated by recurrent reciprocal translocations at chromosome segment 14q32.1 in the most common of the mature T-cell malignancies, T-cell prolymphocytic leukemia. It acts to transport Akt1 to the nucleus and enhance Akt1's serine-threonine kinase activity. TCL1 is also expressed in the B-cell malignancy, Burkitt's lymphoma (BL). However, 14q32.1 breakpoints have not been detected in BL, and we therefore investigated in more detail how expression was activated. No evidence for rearrangement near TCL1 was found in BL. Instead, a NotI site adjacent to the TATA box in the TCL1 promoter was found to be unmethylated. By contrast, tumor cell lines not expressing TCL1 were fully methylated at this NotI site, while normal somatic cells were hemimethylated. We also found that TCL1 was expressed in B-cell chronic lymphocytic leukemia (CLL) and the related disorder splenic lymphoma with villous lymphocytes (unlike in normal mature B-cells), and that the NotI site was unmethylated on both alleles. This correlation of repression and methylation was tested in vitro. When cells with both alleles methylated at the NotI site were demethylated, TCL1 expression was induced. These data provide evidence that in mature B-cell malignancies there is an alternative mechanism of TCL1 activation that apparently involves loss of methylation of one promoter allele. We discuss the significance of this for CLL tumorigenesis and for genomewide hypomethylation in CLL.
Collapse
Affiliation(s)
- M R Yuille
- Academic Department of Haematology and Cytogenetics, Institute of Cancer Research, Sutton Surrey SM2 5NG, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Gatti RA, Becker-Catania S, Chun HH, Sun X, Mitui M, Lai CH, Khanlou N, Babaei M, Cheng R, Clark C, Huo Y, Udar NC, Iyer RK. The pathogenesis of ataxia-telangiectasia. Learning from a Rosetta Stone. Clin Rev Allergy Immunol 2001; 20:87-108. [PMID: 11269230 DOI: 10.1385/criai:20:1:87] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- R A Gatti
- Department of Pathology, UCLA School of Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saitou M, Sugimoto J, Hatakeyama T, Russo G, Isobe M. Identification of the TCL6 genes within the breakpoint cluster region on chromosome 14q32 in T-cell leukemia. Oncogene 2000; 19:2796-802. [PMID: 10851082 DOI: 10.1038/sj.onc.1203604] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A region on chromosome 14q32.1 is often involved in chromosomal translocations and inversions with one of the T-cell receptor loci in T-cell lymphoproliferative diseases. The breakpoints of the different rearrangements segregate into two clusters; a cluster due to inversion on the centromeric side and a cluster due to simple balanced translocations on the telomeric side. If the target gene activated by these different types of chromosomal rearrangements is the same, the gene must be localized between the two clusters of breakpoints in a region of around 160 kb. Within this breakpoint cluster region, we isolated two genes; namely, TCL1 and TML1/TCL1b genes. In the course of characterizing the TML1 gene, we further identified a third novel gene, which we named TCL6 (T-cell leukemia/lymphoma 6), from a region 7 kb upstream of the TML1 locus. The TCL6 gene expressed at least 11 isoforms through very complex alternative-splicing, including splicing with the TML1 gene. Those isoforms encode at least five open reading frames (ORFs) with no homology to known sequences. The localization of the proteins corresponding to these ORF was determined by fusing green fluorescence protein at the carboxyl terminal of each ORF. ORF141 and ORF72 were observed in the cytoplasmic region, while ORF105, ORF119, and ORF163 were predominantly localized in the nuclear region. Since the TCL6 gene was expressed in T-cell leukemia carrying a t(14;14)(q11;q32.1) chromosome translocation and was not expressed in normal T-cells (just like the TML1 and TCL1 genes), it is also a candidate gene potentially involved in leukemogenesis. Oncogene (2000).
Collapse
Affiliation(s)
- M Saitou
- Department of Materials and Biosystem Engineering, Faculty of Engineering, Toyama University, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
35
|
Du Bois GC, Song SP, Kulikovskaya I, Rothstein JL, Germann MW, Croce CM. Purification and characterization of recombinant forms of murine Tcl1 proteins. Protein Expr Purif 2000; 18:277-85. [PMID: 10733880 DOI: 10.1006/prep.1999.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TCL1 gene, which is located on chromosome 14, plays a major role in human hematopoietic malignancies and encodes a 14-kDa protein whose function has not been determined. This gene is expressed in pre-B cells, in immature thymocytes, and, at low levels, in activated T cells but not in peripheral mature B cells and in normal cells. The Tcl1 protein is similar in its primary structure to a protein encoded by the mature T-cell proliferation gene (MTCP1). The MTCP1 gene is located on the X chromosome and has been shown to be involved in rare chromosomal translocations in T-cell proliferative diseases. The murine TCL1 gene resides on mouse chromosome 12 and is homologous to the human TCL1 and MTCP1 genes. Murine Tcl1 protein has 116 amino acid residues and shares 50% sequence identity with human Tcl1, while the human and mouse Mtcp1 are nearly identical, with conservative differences in only six residues. The TCL1 and MTCP1 genes appear to be members of a family of genes involved in lymphoid proliferation and T-cell malignancies. Our laboratory has undertaken the study of the Tcl1 and Mtcp1 proteins to determine the structure and the function of these related proteins. In the present report, we have produced, using a bacterial expression system, the purified murine Tcl1 protein and a mutant form of murine Tcl1 protein containing a cysteine to alanine mutation at amino acid position 85. The recombinant proteins were purified by chromatography on a Ni-NTA resin followed by reverse-phase FPLC using a buffer system at pH 7.9 and a polymer-based reverse-phase column. The murine Tcl1 recombinant protein displays limited solubility and forms disulfide-linked dimers and oligomers, while the mutant murine Tcl1 C86A protein has increased solubility and does not form higher order oligomers. The purified recombinant murine proteins were characterized by N-terminal sequence analysis, mass spectrometry, and circular dichroism spectroscopy. Initial results indicate that the mutant murine Tcl1 C86A protein is suitable for both NMR and X-ray crystallographic methods of structure determination.
Collapse
Affiliation(s)
- G C Du Bois
- Department of Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Yuille MA, Coignet LJ. The ataxia telangiectasia gene in familial and sporadic cancer. Recent Results Cancer Res 1999; 154:156-73. [PMID: 10026998 DOI: 10.1007/978-3-642-46870-4_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ataxia telangiectasia (A-T) gene, ATM, predisposes affected homozygotes to a wide range of malignancies. It has been suggested that this is a consequence of the genomic instability associated with the syndrome. The elevated risk of malignancy is not, however, observed among A-T heterozygotes (except, apparently, regarding breast cancer). In this report we describe results from the study of the rare sporadic disease, T cell prolymphocytic leukaemia (T-PLL). In all individuals tested, we observed that at least one ATM allele was disrupted by rearrangement, that in many cases both alleles were disrupted and that there were additional mutations, predominantly missense, that clustered toward the 3' end of the gene corresponding to the protein's phosphatidylinositol 3-kinase (PIK)-related domain. We conclude that the ATM gene can act as a tumour suppressor in the development of sporadic T-PLL. Our finding of a surfeit of mutations within ATM may reflect the involvement of the gene at more than one step in tumorigenesis. In particular, we suggest that the clustering of missense mutations may pertain to the late-onset character of both sporadic and A-T-related T-PLL, since the closest homologue of Atm protein is the yeast TEL1 protein that maintains telomere length. ATM inactivation may not be the initiating event in T-PLL tumorigenesis: prior mutation of another gene--perhaps TCL1 activation--may be obligate. This would explain the recessive character of T-PLL risk in A-T.
Collapse
Affiliation(s)
- M A Yuille
- Department of Haematology and Cytogenetics, Haddow Laboratories, Sutton, Surrey, UK
| | | |
Collapse
|
37
|
Takizawa J, Suzuki R, Kuroda H, Utsunomiya A, Kagami Y, Joh T, Aizawa Y, Ueda R, Seto M. Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia. Jpn J Cancer Res 1998; 89:712-8. [PMID: 9738977 PMCID: PMC5921886 DOI: 10.1111/j.1349-7006.1998.tb03275.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The TCL1 gene was recently cloned as a candidate target within the 14q32.1 breakpoint cluster region observed in T-cell malignancies. We examined the TCL1 gene expression in 21 patients with adult T-cell leukemia (ATL) and 5 cell lines, because ATL is reported to have frequent chromosome 14 band q32 aberrations. However, 20 of the ATL patients and all 5 cell lines lacked any TCL1 expression on northern blot analysis, and TCL1 transcripts were only very faintly detected in the remaining one patient. Expansion of our analysis to include other types of hematopoietic malignancies revealed strong expression of the TCL1 gene in almost all tumor cells of B-cell lineage except myelomas. However, no TCL1 signals were encountered in cells of T-cell or myeloid lineages. In normal human tissues TCL1 was found to be expressed in the spleen, lymph nodes and B-lymphocytes of peripheral blood. These results indicate that TCL1 is not a major target gene for ATL, but that it may play a role in B-cell differentiation and proliferation.
Collapse
Affiliation(s)
- J Takizawa
- Laboratory of Chemotherapy, Aichi Cancer Center Research Institute, Nagoya
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang YS, Guignard L, Padilla A, Hoh F, Strub MP, Stern MH, Lhoste JM, Roumestand C. Solution structure of the recombinant human oncoprotein p13MTCP1. JOURNAL OF BIOMOLECULAR NMR 1998; 11:337-354. [PMID: 9691281 DOI: 10.1023/a:1008279616063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The human oncoprotein p13MTCP1 is coded by the MTCP1 gene, a gene involved in chromosomal translocations associated with T-cell prolymphocytic leukemia, a rare form of human leukemia with a mature T-cell phenotype. The primary sequence of p13MTCP1 is highly and only homologous to that of p14TCL1, a product coded by the gene TCL1 which is also involved in T-cell prolymphocytic leukemia. These two proteins probably represent the first members of a new family of oncogenic proteins. We present the three-dimensional solution structure of the recombinant p13MTCP1 determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After proton resonance assignments, a total of 1253 distance restraints and 64 dihedral restraints were collected. The solution structure of p13MTCP1 is presented as a set of 20 DYANA structures. The rmsd values with respect to the mean structure for the backbone and all heavy atoms for the conformer family are 1.07 +/- 0.19 and 1.71 +/- 0.17 A, when the structured core of the protein (residues 11-103) is considered. The solution structure of p13MTCP1 consists of an orthogonal beta-barrel, composed of eight antiparallel beta-strands which present an original arrangement. The two beta-pleated loops which emerge from this barrel might constitute the interaction surface with a potential molecular partner.
Collapse
Affiliation(s)
- Y S Yang
- Centre de Biochimie Structurale, CNRS-UMR 9955, INSERM-U414, Université de Montpellier I, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Virgilio L, Lazzeri C, Bichi R, Nibu K, Narducci MG, Russo G, Rothstein JL, Croce CM. Deregulated expression of TCL1 causes T cell leukemia in mice. Proc Natl Acad Sci U S A 1998; 95:3885-9. [PMID: 9520462 PMCID: PMC19932 DOI: 10.1073/pnas.95.7.3885] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The TCL1 oncogene on human chromosome 14q32.1 is involved in the development of T cell leukemia in humans. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. The TCL1 oncogene is activated in these leukemias by juxtaposition to the alpha or beta locus of the T cell receptor, caused by chromosomal translocations t(14:14)(q11:q32), t(7:14)(q35:q32), or by inversions inv(14)(q11:q32). To show that transcriptional alteration of TCL1 is causally involved in the generation of T cell neoplasia we have generated transgenic mice that carry the TCL1 gene under the transcriptional control of the p56(lck) promoter element. The lck-TCL1 transgenic mice developed mature T cell leukemias after a long latency period. Younger mice presented preleukemic T cell expansions expressing TCL1, and leukemias developed only at an older age. The phenotype of the murine leukemias is CD4-CD8+, in contrast to human leukemias, which are predominantly CD4+CD8-. These studies demonstrate that transcriptional activation of the TCL1 protooncogene can cause malignant transformation of T lymphocytes, indicating the role of TCL1 in the initiation of malignant transformation in T prolymphocytic leukemias and T chronic lymphocytic leukemias.
Collapse
Affiliation(s)
- L Virgilio
- Kimmel Cancer Institute and Department of Microbiology/Immunology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Du Bois GC, Song SP, Kulikovskaya I, Virgilio L, Varnum J, Germann MW, Croce CM. Purification and characterization of recombinant forms of TCL-1 and MTCP-1 proteins. Protein Expr Purif 1998; 12:215-25. [PMID: 9518463 DOI: 10.1006/prep.1997.0822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TCL-1 gene which is located on chromosome 14 plays a major role in human hematopoeitic malignancies and encodes a 14-kDa protein whose function has not been determined. The TCL-1 gene is expressed in pre-B cells, in immature thymocytes, and at low levels in activated T cells but not in peripheral mature B cells and in normal cells. The TCL-1 protein is similar in its primary structure to a protein encoded by the mature T cell proliferation gene (MTCP-1). The MTCP-1 gene is located on the X chromosome and has been shown to be involved in rare chromosomal translocations in T cell proliferative diseases. The TCL-1 and MTCP-1 genes appear to be members of a family of genes involved in lymphoid proliferation and T cell malignancies. Our laboratory has undertaken the study of the TCL-1 and MTCP-1 proteins to determine the structure and the function of these related proteins. In the present report, we have produced, using a bacterial expression system, both purified TCL-1 and MTCP-1 proteins in forms with and without a six His tag sequence. The recombinant proteins were purified by chromatography on a Ni-NTA resin followed by reverse-phase FPLC using a buffer system at pH 7.9 and a polymeric-based reverse-phase column. The MTCP-1 recombinant proteins display greater solubility, do not form disulfide linked dimers or oligomers, and elute at a lower isopropanol concentration than the corresponding TCL-1 proteins. The purified recombinant TCL-1 and MTCP-1 proteins have been characterized by N-terminal sequence analysis, time of flight mass spectrometry, and circular dichroism spectroscopy. Initial results have indicated that the MTCP-1 protein with the His tag removed is suitable for both NMR and X-ray crystallographic methods of structure determination.
Collapse
Affiliation(s)
- G C Du Bois
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hoh F, Yang YS, Guignard L, Padilla A, Stern MH, Lhoste JM, van Tilbeurgh H. Crystal structure of p14TCL1, an oncogene product involved in T-cell prolymphocytic leukemia, reveals a novel beta-barrel topology. Structure 1998; 6:147-55. [PMID: 9519406 DOI: 10.1016/s0969-2126(98)00017-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chromosome rearrangements are frequently involved in the generation of hematopoietic tumors. One type of T-cell leukemia, T-cell prolymphocytic leukemia, is consistently associated with chromosome rearrangements characterized by the juxtaposition of the TCRA locus on chromosome 14q11 and either the TCL1 gene on 14q32.1 or the MTCP1 gene on Xq28. The TCL1 gene is preferentially expressed in cells of early lymphoid lineage; its product is a 14 kDa protein (p14TCL1), expressed in the cytoplasm. p14TCL1 has strong sequence similarity with one product of the MTCP1 gene, p13MTCP1 (41% identical and 61% similar). The functions of the TCL1 and MTCP1 genes are not known yet. They have no sequence similarity to any other published sequence, including those of well-documented oncogene families responsible for leukemia. In order to gain a more fundamental insight into the role of this particular class of oncogenes, we have determined the three-dimensional structure of p14TCL1. RESULTS The crystal structure of p14TCL1 has been determined at 2.5 A resolution. The structure was solved by molecular replacement using the solution structure of p13MTCP1, revealing p14TCL1 to be an all-beta protein consisting of an eight-stranded antiparallel beta barrel with a novel topology. The barrel consists of two four-stranded beta-meander motifs, related by a twofold axis and connected by a long loop. This internal pseudo-twofold symmetry was not expected on basis of the sequence alone, but structure-based sequence analysis of the two motifs shows that they are related. The structures of p13MTCP1 and p14TCL1 are very similar, diverging only in regions that are either flexible and/or involved in crystal packing. p14TCL1 forms a tight crystallographic dimer, probably corresponding to the 28 kDa species identified in solution by gel filtration experiments. CONCLUSIONS Structural similarities between p14TCL1 and p13MTCP1 suggest that their (unknown) function may be analogous. This is confirmed by the fact that these proteins are implicated in analogous diseases. Their structure does not show similarity to other oncoproteins of known structure, confirming their classification as a novel class of oncoproteins.
Collapse
Affiliation(s)
- F Hoh
- Centre de Biochimie Structurale, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Vorechovský I, Luo L, Dyer MJ, Catovsky D, Amlot PL, Yaxley JC, Foroni L, Hammarström L, Webster AD, Yuille MA. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet 1997; 17:96-9. [PMID: 9288106 DOI: 10.1038/ng0997-96] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ataxia-telangiectasia (A-T) is a recessive multi-system disorder caused by mutations in the ATM gene at 11q22-q23 (ref. 3). The risk of cancer, especially lymphoid neoplasias, is substantially elevated in A-T patients and has long been associated with chromosomal instability. By analysing tumour DNA from patients with sporadic T-cell prolymphocytic leukaemia (T-PLL), a rare clonal malignancy with similarities to a mature T-cell leukaemia seen in A-T, we demonstrate a high frequency of ATM mutations in T-PLL. In marked contrast to the ATM mutation pattern in A-T, the most frequent nucleotide changes in this leukaemia were missense mutations. These clustered in the region corresponding to the kinase domain, which is highly conserved in ATM-related proteins in mouse, yeast and Drosophila. The resulting amino-acid substitutions are predicted to interfere with ATP binding or substrate recognition. Two of seventeen mutated T-PLL samples had a previously reported A-T allele. In contrast, no mutations were detected in the p53 gene, suggesting that this tumour suppressor is not frequently altered in this leukaemia. Occasional missense mutations in ATM were also found in tumour DNA from patients with B-cell non-Hodgkin's lymphomas (B-NHL) and a B-NHL cell line. The evidence of a significant proportion of loss-of-function mutations and a complete absence of the normal copy of ATM in the majority of mutated tumours establishes somatic inactivation of this gene in the pathogenesis of sporadic T-PLL and suggests that ATM acts as a tumour suppressor. As constitutional DNA was not available, a putative hereditary predisposition to T-PLL will require further investigation.
Collapse
Affiliation(s)
- I Vorechovský
- Karolinska Institute, Department of Bioscience at NOVUM, Center for Biotechnology, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Studies in yeast, files and mammalian cells have uncovered a novel family of signal-transducing kinases which bear an evolutionary relationship to phosphatidylinositol 3-kinase. These phosphatidylinositol 3-kinase related enzymes play critical roles in DNA repair, V(D)J recombination and cell-cycle checkpoints, and their dysfunction leads to clinical manifestations ranging from immunodeficiency to cancer.
Collapse
Affiliation(s)
- R T Abraham
- Department of Immunology, Mayo Clinic/Foundation, Rochester, MN 55905, USA.
| |
Collapse
|
44
|
Arden B, Clark SP, Kabelitz D, Mak TW. Human T-cell receptor variable gene segment families. Immunogenetics 1995; 42:455-500. [PMID: 8550092 DOI: 10.1007/bf00172176] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor alpha/delta, beta, and gamma (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V delta and V alpha, one at a site that in VH contacts the constant region, the other at the interface between immunoglobulin VH and VL. This site may be responsible for restricted pairing between certain V delta and V gamma chains. On the other hand, V beta and V gamma appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V alpha/delta peptides.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Humans
- Molecular Sequence Data
- Polymorphism, Genetic
- Receptors, Antigen, T-Cell, alpha-beta/classification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Alignment
- Terminology as Topic
Collapse
Affiliation(s)
- B Arden
- Paul-Ehrlich-Institute, Langen, Germany
| | | | | | | |
Collapse
|
45
|
Aoki K, Suzuki K, Sugano T, Tasaka T, Nakahara K, Kuge O, Omori A, Kasai M. A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations. Nat Genet 1995; 10:167-74. [PMID: 7663511 DOI: 10.1038/ng0695-167] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a novel gene, Translin, encoding a protein which specifically binds to consensus sequences at breakpoint junctions of chromosomal translocations in many cases of lymphoid malignancies. The encoded protein, Translin, is a previously undescribed type with no significant similarity to known proteins. In the native form, Translin polypeptides form a multimeric structure which is responsible for its DNA binding activity. Nuclear localization of Translin is limited to lymphoid cell lines, raising the intriguing possibility that nuclear transport of Translin is regulated in a physiologically significant way such that active nuclear transport is associated with the lymphoid specific process known as Ig/TCR gene rearrangement.
Collapse
Affiliation(s)
- K Aoki
- Department of Immunology, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- D T Weaver
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
47
|
|
48
|
Virgilio L, Narducci MG, Isobe M, Billips LG, Cooper MD, Croce CM, Russo G. Identification of the TCL1 gene involved in T-cell malignancies. Proc Natl Acad Sci U S A 1994; 91:12530-4. [PMID: 7809072 PMCID: PMC45472 DOI: 10.1073/pnas.91.26.12530] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The TCL1 locus on chromosome 14q32.1 is frequently involved in chromosomal translocations and inversions with one of the T-cell receptor loci in human T-cell leukemias and lymphomas. The chromosome 14 region translocated or rearranged involves approximately 350 kb of DNA at chromosome band 14q32.1. Within this region we have identified a gene coding for a 1.3-kb transcript, expressed only in restricted subsets of cells within the lymphoid lineage and expressed at high levels in leukemic cells carrying a t(14;14)(q11;q32) chromosome translocation or a inv(14)(q11;q32) chromosome inversion. The cognate cDNA sequence reveals an open reading frame of 342 nt encoding a protein of 14 kDa. The TCL1 gene sequence, which, to our knowledge, shows no sequence homology with other human genes, is preferentially expressed early in T- and B-lymphocyte differentiation.
Collapse
Affiliation(s)
- L Virgilio
- Jefferson Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Carcinogenesis, the formation of solid tumors, is now widely accepted to represent a multistep process. Several genetic events, activation of proto-oncogenes and inactivation of tumor suppressor genes, are involved. DESIGN Review of the literature for evidence that the concept of multistep transformation has relevance also for the formation of low-grade lymphoproliferative diseases. RESULTS AND CONCLUSION The common translocations in low-grade lymphoid tumors are probably early events, predominantly involved in the activation of oncogenes, leading to growth stimulation or prolonged cell survival. As a result 'monoclonal lymphoproliferative disorders of undetermined significance (MLDUS)' occur, undetermined, because some translocations may not always led to tumor formation. For progression to full malignancy, additional genetic events are required besides sequential selection of variant subpopulations within the neoplastic clone. Recent data indicate that mutations and deletions of putative tumor suppressor genes, including the P53 and retinoblastoma genes, are also involved in the progression of lymphoproliferative disorders. A list of lymphoproliferative diseases stressing this concept of multistep transformation is presented in this article.
Collapse
Affiliation(s)
- C U Ludwig
- Department of Research, University Hospital, Basel, Switzerland
| | | | | |
Collapse
|
50
|
Virgilio L, Isobe M, Narducci MG, Carotenuto P, Camerini B, Kurosawa N, Croce CM, Russo G. Chromosome walking on the TCL1 locus involved in T-cell neoplasia. Proc Natl Acad Sci U S A 1993; 90:9275-9. [PMID: 8415691 PMCID: PMC47550 DOI: 10.1073/pnas.90.20.9275] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The TCL1 locus on chromosome 14 band q32.1 is frequently involved in the chromosomal translocations and inversions with the T-cell receptor genes observed in several T-cell tumors, including T-prolymphocytic leukemias, acute and chronic leukemias associated with the immunodeficiency syndrome ataxia-telangiectasia, and adult T-cell leukemia. All breakpoints cloned in this area have been mapped to 14q32.1, an area distant approximately 10,000 kb from the immunoglobulin heavy-chain gene locus on chromosome 14q band 32.3. Except for two cases of inversion, no physical linkage of the cloned breakpoints has been reported, nor has a gene been identified in this region. Taking advantage of chromosome-walking techniques and of the P1 phage, we cloned and characterized 450 kb of the germ-line TCL1 locus, starting from the breakpoints of two independent T-cell leukemias. We show that all molecular rearrangements characterized so far map to these clones, indicating not only that this region is the target of chromosomal rearrangements occurring in this area but also that both inversion and translocations occur within a 300-kb region in the T-cell leukemias. In the attempt to identify a candidate oncogene responsible for the malignant transformation, a CpG island centromeric to the inversions and to the translocations has been identified. Two probes near the CpG island have detected sequences conserved among species, as well as two transcripts in the K562 human erythroleukemia cell line. On the basis of these data, a model of activation of the putative TCL1 oncogene is suggested.
Collapse
|