1
|
Hanley SE, Willis SD, Doyle SJ, Strich R, Cooper KF. Ksp1 is an autophagic receptor protein for the Snx4-assisted autophagy of Ssn2/Med13. Autophagy 2024; 20:397-415. [PMID: 37733395 PMCID: PMC10813586 DOI: 10.1080/15548627.2023.2259708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Ksp1 is a casein II-like kinase whose activity prevents aberrant macroautophagy/autophagy induction in nutrient-rich conditions in yeast. Here, we describe a kinase-independent role of Ksp1 as a novel autophagic receptor protein for Ssn2/Med13, a known cargo of Snx4-assisted autophagy of transcription factors. In this pathway, a subset of conserved transcriptional regulators, Ssn2/Med13, Rim15, and Msn2, are selectively targeted for vacuolar proteolysis following nitrogen starvation, assisted by the sorting nexin heterodimer Snx4-Atg20. Here we show that phagophores also engulf Ksp1 alongside its cargo for vacuolar proteolysis. Ksp1 directly associates with Atg8 following nitrogen starvation at the interface of an Atg8-family interacting motif (AIM)/LC3-interacting region (LIR) in Ksp1 and the LIR/AIM docking site (LDS) in Atg8. Mutating the LDS site prevents the autophagic degradation of Ksp1. However, deletion of the C terminal canonical AIM still permitted Ssn2/Med13 proteolysis, suggesting that additional non-canonical AIMs may mediate the Ksp1-Atg8 interaction. Ksp1 is recruited to the perivacuolar phagophore assembly site by Atg29, a member of the trimeric scaffold complex. This interaction is independent of Atg8 and Snx4, suggesting that Ksp1 is recruited early to phagophores, with Snx4 delivering Ssn2/Med13 thereafter. Finally, normal cell survival following prolonged nitrogen starvation requires Ksp1. Together, these studies define a kinase-independent role for Ksp1 as an autophagic receptor protein mediating Ssn2/Med13 degradation. They also suggest that phagophores built by the trimeric scaffold complex are capable of receptor-mediated autophagy. These results demonstrate the dual functionality of Ksp1, whose kinase activity prevents autophagy while it plays a scaffolding role supporting autophagic degradation.Abbreviations: 3-AT: 3-aminotriazole; 17C: Atg17-Atg31-Atg29 trimeric scaffold complex; AIM: Atg8-family interacting motif; ATG: autophagy related; CKM: CDK8 kinase module; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; LIR: LC3-interacting region; LDS: LIR/AIM docking site; MoRF: molecular recognition feature; NPC: nuclear pore complex; PAS: phagophore assembly site; PKA: protein kinase A; RBP: RNA-binding protein; UPS: ubiquitin-proteasome system. SAA-TF: Snx4-assisted autophagy of transcription factors; Y2H: yeast two-hybrid.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Stephen D. Willis
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Steven J. Doyle
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
- School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Randy Strich
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| | - Katrina F. Cooper
- Department of Molecular Biology, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Stratford, NJ, USA
| |
Collapse
|
2
|
Harris A, Ünal E. The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 2023; 225:iyad123. [PMID: 37431893 PMCID: PMC10550318 DOI: 10.1093/genetics/iyad123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.
Collapse
Affiliation(s)
- Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Willis SD, Hanley SE, Doyle SJ, Beluch K, Strich R, Cooper KF. Cyclin C-Cdk8 Kinase Phosphorylation of Rim15 Prevents the Aberrant Activation of Stress Response Genes. Front Cell Dev Biol 2022; 10:867257. [PMID: 35433688 PMCID: PMC9008841 DOI: 10.3389/fcell.2022.867257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells facing adverse environmental cues respond by inducing signal transduction pathways resulting in transcriptional reprograming. In the budding yeast Saccharomyces cerevisiae, nutrient deprivation stimulates stress response gene (SRG) transcription critical for entry into either quiescence or gametogenesis depending on the cell type. The induction of a subset of SRGs require nuclear translocation of the conserved serine-threonine kinase Rim15. However, Rim15 is also present in unstressed nuclei suggesting that additional activities are required to constrain its activity in the absence of stress. Here we show that Rim15 is directly phosphorylated by cyclin C-Cdk8, the conserved kinase module of the Mediator complex. Several results indicate that Cdk8-dependent phosphorylation prevents Rim15 activation in unstressed cells. First, Cdk8 does not control Rim15 subcellular localization and rim15∆ is epistatic to cdk8∆ with respect to SRG transcription and the execution of starvation programs required for viability. Next, Cdk8 phosphorylates a residue in the conserved PAS domain in vitro. This modification appears important as introducing a phosphomimetic at Cdk8 target residues reduces Rim15 activity. Moreover, the Rim15 phosphomimetic only compromises cell viability in stresses that induce cyclin C destruction as well as entrance into meiosis. Taken together, these findings suggest a model in which Cdk8 phosphorylation contributes to Rim15 repression whilst it cycles through the nucleus. Cyclin C destruction in response to stress inactivates Cdk8 which in turn stimulates Rim15 to maximize SRG transcription and cell survival.
Collapse
|
4
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
5
|
Stieg DC, Cooper KF, Strich R. The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. J Biol Chem 2020; 295:16280-16291. [PMID: 32934007 DOI: 10.1074/jbc.ra120.015215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 kinase module (CKM) is a detachable Mediator subunit composed of cyclin C and one each of paralogs Cdk8/Cdk19, Med12/Med12L, and Med13/Med13L. Our previous RNA-Seq studies demonstrated that cyclin C represses a subset of hydrogen peroxide-induced genes under normal conditions but is involved in activating other loci following stress. Here, we show that cyclin C directs this transcriptional reprograming through changes in its promoter occupancy. Following peroxide stress, cyclin C promoter occupancy increased for genes it activates while decreasing at loci it represses under normal conditions. Promoter occupancy of other CKM components generally mirrored cyclin C, indicating that the CKM moves as a single unit. It has previously been shown that some cyclin C leaves the nucleus following cytotoxic stress to induce mitochondrial fragmentation and apoptosis. We observed that CKM integrity appeared compromised at a subset of repressed promoters, suggesting a source of cyclin C that is targeted for nuclear release. Interestingly, mTOR inhibition induced a new pattern of cyclin C promoter occupancy indicating that this control is fine-tuned to the individual stress. Using inhibitors, we found that Cdk8 kinase activity is not required for CKM movement or repression but was necessary for full gene activation. In conclusion, this study revealed that different stress stimuli elicit specific changes in CKM promoter occupancy correlating to altered transcriptional outputs. Finally, although CKM components were recruited or expelled from promoters as a unit, heterogeneity was observed at individual promoters, suggesting a mechanism to generate gene- and stress-specific responses.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
6
|
Willis SD, Hanley SE, Beishke T, Tati PD, Cooper KF. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Mol Biol Cell 2020; 31:1015-1031. [PMID: 32160104 PMCID: PMC7346723 DOI: 10.1091/mbc.e19-11-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Sara E Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Thomas Beishke
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Prasanna D Tati
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
7
|
Cooper KF, STRICH RANDY. Functional analysis of the Ume3p/ Srb11p-RNA polymerase II holoenzyme interaction. Gene Expr 2018; 8:43-57. [PMID: 10543730 PMCID: PMC6157353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The yeast C-type cyclin Ume3p/Srb11p and its cyclin-dependent kinase (Cdk) Ume5p are required for the full repression of genes involved in the stress response or meiosis. This cyclin-Cdk kinase copurifies with the RNA polymerase II holoenzyme complex, suggesting it functions through modification of the transcriptional machinery. This report describes two domains required for Ume3p-RNA Pol II holoenzyme association. One domain contains the highly conserved cyclin box that directs cyclin-Cdk interaction and requires Ume5p for holoenzyme binding. The second domain, termed HAD for holoenzyme associating domain, is located within the amino-terminal region of the cyclin and is sufficient for holoenzyme binding independent of Ume5p or the cyclin box. In addition to its role in RNA Pol II holoenzyme association, the HAD is also required for Ume3p-dependent repression in vivo. Finally, HAD mutations do not affect the ability of the Ume3p-Ume5p kinase to phosphorylate in vitro the carboxy-terminal domain (CTD) of RNA polymerase II, a reported target of cyclin C-Cdk activity. In conclusion, this study demonstrates that the association of the Ume3p to the holoenzyme is complex, involving two independent domains, both of which are required for full Ume3p-dependent repression in vivo. Furthermore, HAD-dependent repression does not appear to involve CTD phosphorylation, suggesting a different role for this domain in directing Ume3p-Ume5p activity.
Collapse
Affiliation(s)
- Katrina F. Cooper
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111
| | - RANDY STRICH
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111
- Address correspondence to Randy Strich, Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111. Tel: (215) 728-5321; Fax: (215) 728-3616; E-mail
| |
Collapse
|
8
|
Willis SD, Stieg DC, Ong KL, Shah R, Strich AK, Grose JH, Cooper KF. Snf1 cooperates with the CWI MAPK pathway to mediate the degradation of Med13 following oxidative stress. MICROBIAL CELL 2018; 5:357-370. [PMID: 30175106 PMCID: PMC6116281 DOI: 10.15698/mic2018.08.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second SCFGrr1 responsive degron in Med13. Deletion of Snf1 resulted in nuclear retention of cyclin C and failure to induce mitochondrial fragmentation. This degron was able to confer oxidative-stress-induced destruction when fused to a heterologous protein in a Snf1 dependent manner. Although snf1∆ mutants failed to destroy Med13, deleting the degron did not prevent destruction. These results indicate that the control of Med13 degradation following H2O2 stress is complex, being controlled simultaneously by CWI and MAPK pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ravina Shah
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Department of Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028. USA
| | - Alexandra K Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA.,Current address: Shawnee High School, Medford, New Jersey 08055, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
9
|
Chaubal A, Pile LA. Same agent, different messages: insight into transcriptional regulation by SIN3 isoforms. Epigenetics Chromatin 2018; 11:17. [PMID: 29665841 PMCID: PMC5902990 DOI: 10.1186/s13072-018-0188-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
SIN3 is a global transcriptional coregulator that governs expression of a large repertoire of gene targets. It is an important player in gene regulation, which can repress or activate diverse gene targets in a context-dependent manner. SIN3 is required for several vital biological processes such as cell proliferation, energy metabolism, organ development, and cellular senescence. The functional flexibility of SIN3 arises from its ability to interact with a large variety of partners through protein interaction domains that are conserved across species, ranging from yeast to mammals. Several isoforms of SIN3 are present in these different species that can perform common and specialized functions through interactions with distinct enzymes and DNA-binding partners. Although SIN3 has been well studied due to its wide-ranging functions and highly conserved interaction domains, precise roles of individual SIN3 isoforms have received less attention. In this review, we discuss the differences in structure and function of distinct SIN3 isoforms and provide possible avenues to understand the complete picture of regulation by SIN3.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Stieg DC, Willis SD, Ganesan V, Ong KL, Scuorzo J, Song M, Grose J, Strich R, Cooper KF. A complex molecular switch directs stress-induced cyclin C nuclear release through SCF Grr1-mediated degradation of Med13. Mol Biol Cell 2017; 29:363-375. [PMID: 29212878 PMCID: PMC5996960 DOI: 10.1091/mbc.e17-08-0493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/03/2023] Open
Abstract
In response to oxidative stress, cells must choose either to live or to die. Here we show that the E3 ligase SCFGrr1 mediates the destruction of Med13, which releases cyclin C into the cytoplasm and results in cell death. The Med13 SCF degron is most likely primed by the Cdk8 kinase and marked for destruction by the MAPK Slt2. In response to oxidative stress, cells decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module, which, with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which thereafter releases cyclin C into the cytoplasm. Cytoplasmic cyclin C associates with mitochondria, where it induces hyperfragmentation and regulated cell death. In this report, we show that residues 742–844 of Med13’s 600–amino acid intrinsic disordered region (IDR) both directs cyclin C-Cdk8 association and serves as the degron that mediates ubiquitin ligase SCFGrr1-dependent destruction of Med13 following oxidative stress. Here, cyclin C-Cdk8 phosphorylation of Med13 most likely primes the phosphodegron for destruction. Next, pro-oxidant stimulation of the cell wall integrity pathway MAP kinase Slt2 initially phosphorylates cyclin C to trigger its release from Med13. Thereafter, Med13 itself is modified by Slt2 to stimulate SCFGrr1-mediated destruction. Taken together, these results support a model in which this IDR of Med13 plays a key role in controlling a molecular switch that dictates cell fate following exposure to adverse environments.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D Willis
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Vidyaramanan Ganesan
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Kai Li Ong
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Joseph Scuorzo
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Mia Song
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Julianne Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
11
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
12
|
Jin C, Kim SK, Willis SD, Cooper KF. The MAPKKKs Ste11 and Bck1 jointly transduce the high oxidative stress signal through the cell wall integrity MAP kinase pathway. MICROBIAL CELL 2015; 2:329-342. [PMID: 27135035 PMCID: PMC4850913 DOI: 10.15698/mic2015.09.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxidative stress stimulates the Rho1 GTPase, which in turn induces the cell wall integrity (CWI) MAP kinase cascade. CWI activation promotes stress-responsive gene expression through activation of transcription factors (Rlm1, SBF) and nuclear release and subsequent destruction of the repressor cyclin C. This study reports that, in response to high hydrogen peroxide exposure, or in the presence of constitutively active Rho1, cyclin C still translocates to the cytoplasm and is degraded in cells lacking Bck1, the MAPKKK of the CWI pathway. However, in mutants defective for both Bck1 and Ste11, the MAPKKK from the high osmolarity, pseudohyphal and mating MAPK pathways, cyclin C nuclear to cytoplasmic relocalization and destruction is prevented. Further analysis revealed that cyclin C goes from a diffuse nuclear signal to a terminal nucleolar localization in this double mutant. Live cell imaging confirmed that cyclin C transiently passes through the nucleolus prior to cytoplasmic entry in wild-type cells. Taken together with previous studies, these results indicate that under low levels of oxidative stress, Bck1 activation is sufficient to induce cyclin C translocation and degradation. However, higher stress conditions also stimulate Ste11, which reinforces the stress signal to cyclin C and other transcription factors. This model would provide a mechanism by which different stress levels can be sensed and interpreted by the cell.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Stephen K Kim
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Stephen D Willis
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055 USA
| |
Collapse
|
13
|
Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mol Genet Genomics 2015; 290:2031-46. [PMID: 25957495 DOI: 10.1007/s00438-015-1051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.
Collapse
|
14
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
15
|
Strich R, Cooper KF. The dual role of cyclin C connects stress regulated gene expression to mitochondrial dynamics. MICROBIAL CELL 2014; 1:318-324. [PMID: 28357211 PMCID: PMC5349174 DOI: 10.15698/mic2014.10.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following exposure to cytotoxic agents, cellular damage is first recognized by a
variety of sensor mechanisms. Thenceforth, the damage signal is transduced to
the nucleus to install the correct gene expression program including the
induction of genes whose products either detoxify destructive compounds or
repair the damage they cause. Next, the stress signal is disseminated throughout
the cell to effect the appropriate changes at organelles including the
mitochondria. The mitochondria represent an important signaling platform for the
stress response. An initial stress response of the mitochondria is extensive
fragmentation. If the damage is prodigious, the mitochondria fragment (fission)
and lose their outer membrane integrity leading to the release of pro-apoptotic
factors necessary for programmed cell death (PCD) execution. As this complex
biological process contains many moving parts, it must be exquisitely
coordinated as the ultimate decision is life or death. The conserved C-type
cyclin plays an important role in executing this molecular Rubicon by coupling
changes in gene expression to mitochondrial fission and PCD. Cyclin C, along
with its cyclin dependent kinase partner Cdk8, associates with the RNA
polymerase holoenzyme to regulate transcription. In particular, cyclin C-Cdk8
repress many stress responsive genes. To relieve this repression, cyclin C is
destroyed in cells exposed to pro-oxidants and other stressors. However, prior
to its destruction, cyclin C, but not Cdk8, is released from its nuclear anchor
(Med13), translocates from the nucleus to the cytoplasm where it interacts with
the fission machinery and is both necessary and sufficient to induce extensive
mitochondria fragmentation. Furthermore, cytoplasmic cyclin C promotes PCD
indicating that it mediates both mitochondrial fission and cell death pathways.
This review will summarize the role cyclin C plays in regulating
stress-responsive transcription. In addition, we will detail this new function
mediating mitochondrial fission and PCD. Although both these roles of cyclin C
are conserved, this review will concentrate on cyclin C's dual role in the
budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford NJ, USA
| |
Collapse
|
16
|
Khakhina S, Cooper KF, Strich R. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C. Mol Biol Cell 2014; 25:2807-16. [PMID: 25057017 PMCID: PMC4161515 DOI: 10.1091/mbc.e14-05-0953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it interacts with the mitochondrial fission machinery and induces extensive fragmentation of this organelle. Med13p is identified as the anchor protein that retains cyclin C in the nucleus. The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress–induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.
Collapse
Affiliation(s)
- Svetlana Khakhina
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| | - Randy Strich
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| |
Collapse
|
17
|
Jin C, Strich R, Cooper KF. Slt2p phosphorylation induces cyclin C nuclear-to-cytoplasmic translocation in response to oxidative stress. Mol Biol Cell 2014; 25:1396-407. [PMID: 24554767 PMCID: PMC3983003 DOI: 10.1091/mbc.e13-09-0550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved transcription factor cyclin C is both translocated to the cytoplasm and destroyed after oxidative stress. The signaling pathway that transmits the stress signal to cyclin C is complex and uses both the MAPK Slt2p and its pseudokinase homologue, Kdx1, via different mechanisms. The yeast C-type cyclin represses the transcription of genes required for the stress response and meiosis. To relieve this repression, cyclin C undergoes nuclear-to-cytoplasmic translocation in response to many stressors, including hydrogen peroxide, where it is destroyed by ubiquitin-mediated proteolysis. Before its destruction, cyclin C promotes stress-induced mitochondrial fission and programmed cell death, indicating that relocalization is an important cell fate regulator. Here we show that cyclin C cytoplasmic translocation requires the cell wall integrity (CWI) mitogen-activated protein kinase Slt2p, its pseudokinase paralogue, Kdx1p, and an associating transcription factor, Ask10p. Furthermore, Slt2p and Kdx1p regulate cyclin C stability through different but required mechanisms. Slt2p associates with, and directly phosphorylates, cyclin C at Ser-266. Eliminating or mimicking phosphorylation at this site restricts or enhances cyclin C cytoplasmic translocation and degradation, respectively. Conversely, Kdx1p does not bind cyclin C but instead coimmunoprecipitates with Ask10p, a transcription factor previously identified as a regulator of cyclin C destruction. These results reveal a complex regulatory circuitry involving both downstream effectors of the CWI mitogen-activated protein kinase signal transduction pathway to target the relocalization and consequent destruction of a single transcriptional repressor.
Collapse
Affiliation(s)
- Chunyan Jin
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|
18
|
Cooper KF, Khakhina S, Kim SK, Strich R. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast. Dev Cell 2014; 28:161-73. [PMID: 24439911 DOI: 10.1016/j.devcel.2013.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 11/08/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023]
Abstract
Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C.
Collapse
Affiliation(s)
- Katrina F Cooper
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Svetlana Khakhina
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Stephen K Kim
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
19
|
Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol 2013; 34:631-42. [PMID: 24298021 DOI: 10.1128/mcb.00256-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Differentiation programs require strict spatial and temporal control of gene transcription. Genes expressed during meiotic development in Saccharomyces cerevisiae display transient induction and repression. Early meiotic gene (EMG) repression during mitosis is achieved by recruiting both histone deacetylase and chromatin remodeling complexes to their promoters by the zinc cluster DNA binding protein Ume6p. Ume6p repression is relieved by ubiquitin-mediated destruction that is stimulated by Gcn5p-induced acetylation. In this report, we demonstrate that Gcn5p acetylation of separate lysines within the zinc cluster domain negatively impacts Ume6p DNA binding. Mimicking lysine acetylation using glutamine substitution mutations decreased Ume6p binding efficiency and resulted in partial derepression of Ume6p-regulated genes. Consistent with this result, molecular modeling predicted that these lysine side chains are adjacent to the DNA phosphate backbone, suggesting that acetylation inhibits Ume6p binding by electrostatic repulsion. Preventing acetylation did not impact final EMG induction levels during meiosis. However, a delay in EMG induction was observed, which became more severe in later expression classes, ultimately resulting in delayed and reduced execution of the meiotic nuclear divisions. These results indicate that Ume6p acetylation ensures the proper timing of the transient transcription program during meiotic development.
Collapse
|
20
|
The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:320823. [PMID: 24260614 PMCID: PMC3821959 DOI: 10.1155/2013/320823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022]
Abstract
Mtl1 is a member of a cell wall sensor family that monitors cell wall integrity in budding yeast. In response to cell wall stress, Mtl1 activates the cell wall integrity (CWI) MAP kinase pathway which transmits this signal to the nucleus to effect changes in gene expression. One target of the CWI MAP kinase is cyclin C, a negative regulator of stress response genes. CWI activation results in cyclin C relocalization from the nucleus to the cytoplasm where it stimulates programmed cell death (PCD) before it is destroyed. This report demonstrates that under low oxidative stress conditions, a combination of membrane sensors, Mtl1 and either Wsc1 or Mid2, are required jointly to transmit the oxidative stress signal to initiate cyclin C destruction. However, when exposed to elevated oxidative stress, additional pathways independent of these three sensor proteins are activated to destroy cyclin C. In addition, N-glycosylation is important for Mtl1 function as mutating the receptor residue (Asn42) or an enzyme required for synthesis of N-acetylglucosamine (Gfa1) reduces sensor activity. Finally, combining gfa1-1 with the cyclin C null allele induces a severe synthetic growth defect. This surprising result reveals a previously unknown genetic interaction between cyclin C and plasma membrane integrity.
Collapse
|
21
|
Mallory MJ, Law MJ, Sterner DE, Berger SL, Strich R. Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p. Mol Biol Cell 2012; 23:1609-17. [PMID: 22438583 PMCID: PMC3338428 DOI: 10.1091/mbc.e11-06-0536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acetyltransferases induce transcription by enhancing the activity of transcriptional activators and opening chromatin domains. A third avenue is described by which gene activation is accomplished by acetylation through the targeted destruction of the Ume6p repressor. Ume6p represses early meiotic gene transcription in Saccharomyces cerevisiae by recruiting the Rpd3p histone deacetylase and chromatin-remodeling proteins. Ume6p repression is relieved in a two-step destruction process mediated by the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. The first step induces partial Ume6p degradation when vegetative cells shift from glucose- to acetate-based medium. Complete proteolysis happens only upon meiotic entry. Here we demonstrate that the first step in Ume6p destruction is controlled by its acetylation and deacetylation by the Gcn5p acetyltransferase and Rpd3p, respectively. Ume6p acetylation occurs in medium lacking dextrose and results in a partial destruction of the repressor. Preventing acetylation delays Ume6p meiotic destruction and retards both the transient transcription program and execution of the meiotic nuclear divisions. Conversely, mimicking acetylation induces partial destruction of Ume6p in dextrose medium and accelerates meiotic degradation by the APC/C. These studies reveal a new mechanism by which acetyltransferase activity induces gene expression through targeted destruction of a transcriptional repressor. These findings also demonstrate an important role for nonhistone acetylation in the transition between mitotic and meiotic cell division.
Collapse
Affiliation(s)
- Michael J Mallory
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | | | | | | | |
Collapse
|
22
|
Cooper KF, Scarnati MS, Krasley E, Mallory MJ, Jin C, Law MJ, Strich R. Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. J Cell Sci 2012; 125:1015-26. [PMID: 22421358 DOI: 10.1242/jcs.096479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast cyclin-C-Cdk8p kinase complex represses the transcription of a subset of genes involved in the stress response. To relieve this repression, cyclin C is destroyed in cells exposed to H(2)O(2) by the 26S proteasome. This report identifies Not4p as the ubiquitin ligase mediating H(2)O(2)-induced cyclin C destruction. Not4p is required for H(2)O(2)-induced cyclin C destruction in vivo and polyubiquitylates cyclin C in vitro by utilizing Lys48, a ubiquitin linkage associated with directing substrates to the 26S proteasome. Before its degradation, cyclin C, but not Cdk8p, translocates from the nucleus to the cytoplasm. This translocation requires both the cell-wall-integrity MAPK module and phospholipase C, and these signaling pathways are also required for cyclin C destruction. In addition, blocking cytoplasmic translocation slows the mRNA induction kinetics of two stress response genes repressed by cyclin C. Finally, a cyclin C derivative restricted to the cytoplasm is still subject to Not4p-dependent destruction, indicating that the degradation signal does not occur in the nucleus. These results identify a stress-induced proteolytic pathway regulating cyclin C that requires nuclear to cytoplasmic relocalization and Not4p-mediated ubiquitylation.
Collapse
Affiliation(s)
- Katrina F Cooper
- Department of Molecular Biology, University of Medicine and Dentistry New Jersey, Two Medical Center Drive, Stratford, NJ 08055, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
24
|
Cryptococcus neoformans mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence. PLoS One 2011; 6:e19162. [PMID: 21559476 PMCID: PMC3084776 DOI: 10.1371/journal.pone.0019162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/28/2011] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans.
Collapse
|
25
|
Tan GS, Magurno J, Cooper KF. Ama1p-activated anaphase-promoting complex regulates the destruction of Cdc20p during meiosis II. Mol Biol Cell 2010; 22:315-26. [PMID: 21118994 PMCID: PMC3031463 DOI: 10.1091/mbc.e10-04-0360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During meiosis, the APC/C is activated by either Cdc20 or the meiosis-specific activator Ama1. Upon exit from meiosis II, APC/CAma1 mediates Cdc20 destruction using Db1 and GxEN degrons. The amino terminus of Ama1, which contains the Cdc20-binding domain, is sufficient for Cdc20 degradation but not spore formation. The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)–mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/CAma1 mediates Cdc20p destruction. APC/CAma1 recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/CAma1. Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/CCdc20 activity as the cells complete meiosis II and form spores.
Collapse
Affiliation(s)
- Grace S Tan
- Department of Biochemistry and Molecular Biology, Drexel Medical School, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
26
|
Jäschke Y, Schwarz J, Clausnitzer D, Müller C, Schüller HJ. Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 285:91-100. [PMID: 21104417 DOI: 10.1007/s00438-010-0589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 01/19/2023]
Abstract
Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1-Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression. Our results also suggested that repression is not executed entirely via Sin3. Indeed, we could show that OSID contacts a second pleiotropic corepressor, Ssn6 (=Cyc8), which together with Tup1 is also able to recruit HDACs. Interestingly, mutations sin3 and ssn6 turned out as synthetically lethal. Our analysis further revealed that OSID not only binds to PAH1 but also interacts with tetratricopeptide repeats (TPR) of Ssn6. This interaction could no longer be observed with Opi1 OSID variants. To trigger gene repression, Opi1 must also interact with activator Ino2, using its activator interaction domain (AID). AID contains a hydrophobic structural motif reminiscent of a leucine zipper. Our mutational analysis of selected positions indeed confirmed that residues L333, L340, V343, V350, L354 and V361 are necessary for repression of Opi1 target genes.
Collapse
Affiliation(s)
- Yvonne Jäschke
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
27
|
The Sin3p PAH domains provide separate functions repressing meiotic gene transcription in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:1835-44. [PMID: 20971827 DOI: 10.1128/ec.00143-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.
Collapse
|
28
|
Inference of the Molecular Mechanism of Action from Genetic Interaction and Gene Expression Data. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:357-67. [DOI: 10.1089/omi.2009.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Ramírez M, Ambrona J. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Appl Environ Microbiol 2008; 74:2129-34. [PMID: 18245242 PMCID: PMC2292588 DOI: 10.1128/aem.01840-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/24/2008] [Indexed: 11/20/2022] Open
Abstract
The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts that are unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts that are unable to sporulate and mate, bear easy-to-detect genetic markers, and quickly disappear in grape must fermentation immediately after sporulation of the yeast population. These sterile yeasts maintained the same biotechnological properties as their parent yeasts without any detectable deleterious effect of the ime1Delta mutation. These yeasts are therefore interesting biotechnologically for food industry applications and for genetically modified microorganism environmental monitoring studies.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | | |
Collapse
|
30
|
Mallory MJ, Cooper KF, Strich R. Meiosis-specific destruction of the Ume6p repressor by the Cdc20-directed APC/C. Mol Cell 2007; 27:951-61. [PMID: 17889668 PMCID: PMC2034308 DOI: 10.1016/j.molcel.2007.08.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 07/09/2007] [Accepted: 08/24/2007] [Indexed: 11/22/2022]
Abstract
Meiotic development in yeast requires the coordinated induction of transient waves of gene transcription. The present study investigates the regulation of Ume6p, a mitotic repressor of the "early" class of meiosis-specific genes. Western blot analysis revealed that Ume6p is destroyed early in meiosis by Cdc20p, an activator of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. This control appears direct as Cdc20p and Ume6p associate in vivo and APC/C(Cdc20) ubiquitylates Ume6p in vitro. Inactivating Cdc20p, or stabilizing Ume6p through mutation, prevented meiotic gene transcription and meiotic progression. During mitotic cell division, Ume6p is protected from destruction by protein kinase A phosphorylation of Cdc20p. Complete elimination of Ume6p in meiotic cells requires association with the meiotic inducer Ime1p. These results indicate that Ume6p degradation is required for normal meiotic gene induction and meiotic progression. These findings demonstrate a direct connection between the transcription machinery and ubiquitin-mediated proteolysis that is developmentally regulated.
Collapse
Affiliation(s)
- Michael J. Mallory
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Katrina F. Cooper
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Randy Strich
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
- *To whom correspondence should be addressed. Two Medical Center Drive, UMDNJ-School of Osteopathic Medicine, Stratford, NJ 08084, Tel: 856 566-6043, FAX: 856 566-6366,
| |
Collapse
|
31
|
Yu YE, Morishima M, Pao A, Wang DY, Wen XY, Baldini A, Bradley A. A deficiency in the region homologous to human 17q21.33-q23.2 causes heart defects in mice. Genetics 2006; 173:297-307. [PMID: 16489219 PMCID: PMC1461454 DOI: 10.1534/genetics.105.054833] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several constitutional chromosomal rearrangements occur on human chromosome 17. Patients who carry constitutional deletions of 17q21.3-q24 exhibit distinct phenotypic features. Within the deletion interval, there is a genomic segment that is bounded by the myeloperoxidase and homeobox B1 genes. This genomic segment is syntenically conserved on mouse chromosome 11 and is bounded by the mouse homologs of the same genes (Mpo and HoxB1). To attain functional information about this syntenic segment in mice, we have generated a 6.9-Mb deletion [Df(11)18], the reciprocal duplication [Dp(11)18] between Mpo and Chad (the chondroadherin gene), and a 1.8-Mb deletion between Chad and HoxB1. Phenotypic analyses of the mutant mouse lines showed that the Dp(11)18/Dp(11)18 genotype was responsible for embryonic or adolescent lethality, whereas the Df(11)18/+ genotype was responsible for heart defects. The cardiovascular phenotype of the Df(11)18/+ fetuses was similar to those of patients who carried the deletions of 17q21.3-q24. Since heart defects were not detectable in Df(11)18/Dp(11)18 mice, the haplo-insufficiency of one or more genes located between Mpo and Chad may be responsible for the abnormal cardiovascular phenotype. Therefore, we have identified a new dosage-sensitive genomic region that may be critical for normal heart development in both mice and humans.
Collapse
Affiliation(s)
- Y Eugene Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Krasley E, Cooper KF, Mallory MJ, Dunbrack R, Strich R. Regulation of the oxidative stress response through Slt2p-dependent destruction of cyclin C in Saccharomyces cerevisiae. Genetics 2005; 172:1477-86. [PMID: 16387872 PMCID: PMC1456298 DOI: 10.1534/genetics.105.052266] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae C-type cyclin and its cyclin-dependent kinase (Cdk8p) repress the transcription of several stress response genes. To relieve this repression, cyclin C is destroyed in cells exposed to reactive oxygen species (ROS). This report describes the requirement of cyclin C destruction for the cellular response to ROS. Compared to wild type, deleting cyclin C makes cells more resistant to ROS while its stabilization reduces viability. The Slt2p MAP kinase cascade mediates cyclin C destruction in response to ROS treatment but not heat shock. This destruction pathway is important as deleting cyclin C suppresses the hypersensitivity of slt2 mutants to oxidative damage. The ROS hypersensitivity of an slt2 mutant correlates with elevated programmed cell death as determined by TUNEL assays. Consistent with the viability studies, the elevated TUNEL signal is reversed in cyclin C mutants. Finally, two results suggest that cyclin C regulates programmed cell death independently of its function as a transcriptional repressor. First, deleting its corepressor CDK8 does not suppress the slt2 hypersensitivity phenotype. Second, the human cyclin C, which does not repress transcription in yeast, does regulate ROS sensitivity. These findings demonstrate a new role for the Slt2p MAP kinase cascade in protecting the cell from programmed cell death through cyclin C destruction.
Collapse
Affiliation(s)
- Elizabeth Krasley
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Randy Strich
- Program for Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
34
|
Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 2004; 47:1-17. [PMID: 15565322 DOI: 10.1007/s00294-004-0541-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/05/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
SIN3 was first identified genetically as a global regulator of transcription. Sin3 is a large protein composed mainly of protein-interaction domains, whose function is to provide structural support for a heterogeneous Sin3/histone deacetylase (HDAC) complex. The core Sin3/HDAC complex is conserved from yeast to man and consists of eight proteins. In addition to HDACs, Sin3 can sequester other enzymatic functions, including nucleosome remodeling, DNA methylation, N-acetylglucoseamine transferase activity, and histone methylation. Since the Sin3/HDAC complex lacks any DNA-binding activity, it must be targeted to gene promoters by interacting with DNA-binding proteins. Although most research on Sin3 has focused on its role as a corepressor, mounting evidence suggests that Sin3 can also positively regulate transcription. Furthermore, Sin3 is key to the propagation of epigenetically silenced domains and is required for centromere function. Thus, Sin3 provides a platform to deliver multiple combinations modifications to the chromatin, using both sequence-specific and sequence-independent mechanisms.
Collapse
Affiliation(s)
- Rebecca A Silverstein
- Karolinska Institutet, Department of Biosciences, University College Sodertorn, Alfred Nobels Allé 7, 141 89, Huddinge, Sweden
| | | |
Collapse
|
35
|
Mallory MJ, Strich R. Ume1p represses meiotic gene transcription in Saccharomyces cerevisiae through interaction with the histone deacetylase Rpd3p. J Biol Chem 2003; 278:44727-34. [PMID: 12954623 DOI: 10.1074/jbc.m308632200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ume1p is a member of a conserved protein family including RbAp48 that associates with histone deacetylases. Consistent with this finding, Ume1p is required for the full repression of a subset of meiotic genes during vegetative growth in budding yeast. In addition to mitotic cell division, this report describes a new role for Ume1p in meiotic gene repression in precommitment sporulating cultures returning to vegetative growth. However, Ume1p is not required to re-establish repression as part of the meiotic transient transcription program. Mutational analysis revealed that two conserved domains (NEE box and a WD repeat motif) are required for Ume1p-dependent repression. Co-immunoprecipitation studies revealed that both the NEE box and the WD repeat motif are essential for normal Rpd3p binding. Finally, Ume1p-Rpd3p association is dependent on the global co-repressor Sin3p. Moreover, this activity was localized to one of the four paired amphipathic-helix domains of Sin3p shown previously to be required for transcriptional repression. These findings support a model that Ume1p binding to Rpd3p is required for its repression activity. In addition, these results suggest that Rpd3-Ume1p-Sin3p comprises an interdependent complex required for mediating transcriptional repression.
Collapse
Affiliation(s)
- Michael J Mallory
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
36
|
Scott KL, Plon SE. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:4522-31. [PMID: 12808094 PMCID: PMC164854 DOI: 10.1128/mcb.23.13.4522-4531.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that expression of the human forkhead/winged helix transcription factor, CHES1 (checkpoint suppressor 1; FOXN3), suppresses sensitivity to DNA damage and restores damage-induced G(2)/M arrest in checkpoint-deficient strains of Saccharomyces cerevisiae. We find that a functional glutathione S-transferase-Ches1 fusion protein binds in vivo to Sin3, a component of the S. cerevisiae Sin3/Rpd3 histone deacetylase complex. Checkpoint mutant strains with SIN3 deleted show increased resistance to UV irradiation, which is not further enhanced by CHES1 expression. Conversely, overexpression of SIN3 blocks the Ches1-mediated G(2)/M delay in response to DNA damage, which is consistent with Ches1 acting by inhibiting the Sin3/Rpd3 complex. Deletion of either SIN3 or RPD3 in rad9 or mec1 checkpoint mutant strains suppresses sensitivity to replication blocks and DNA damage resulting from Cdc9 ligase deficiency and UV irradiation. SIN3 or RPD3 deletions also restored G(2)/M arrest after DNA damage without concomitant Rad53 phosphorylation in mec1 mutant strains. This DNA damage response is absent in mad1 spindle checkpoint mutants. These data suggest that modulation of chromatin structure may regulate checkpoint responses in S. cerevisiae. Inhibition of histone deacetylation results in a DNA damage checkpoint response mediated by the spindle checkpoint pathway that compensates for loss of the primary DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Kenneth L Scott
- Department of Molecular and Human Genetics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
37
|
Briza P, Bogengruber E, Thür A, Rützler M, Münsterkötter M, Dawes IW, Breitenbach M. Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast 2002; 19:403-22. [PMID: 11921089 DOI: 10.1002/yea.843] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new high throughput mutant screening procedure for the detection of sporulation mutants was developed and used to analyse a set of 624 non-lethal homozygous deletion mutants created in the European joint research program EUROFAN. The screening procedure involved determination of LL- and DL-dityrosine, sporulation-specific compounds, which were shown to be robust markers of the extent and arrest stage of sporulation mutants. Secondary screens consisted of light microscopy to detect mature and immature spores and DAPI staining to monitor the progress of meiotic nuclear divisions. We discovered new phenotypic classes of mutants defective in spore wall synthesis that were not discovered by previous screens for sporulation mutants. The genes corresponding to the sporulation mutants fell in several functional classes, some of which were previously unknown to be involved in spore formation. Peroxisomes seem to play a role in spore wall synthesis. Mitochondria play a role in sporulation that is not simply restricted to supply of ATP from respiratory metabolism. The deletion mutants included in the set were functionally unknown at the start of EUROFAN; however, within the last few years the importance to sporulation of some of them was also reported by other authors. Taken together, about 8% of all single gene deletion mutants of non-essential genes of Saccharomyces cerevisiae seem to display a clear and reproducible sporulation phenotype.
Collapse
Affiliation(s)
- Peter Briza
- Institut für Genetik und Allgemeine Biologie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
38
|
Cooper KF, Strich R. Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. EUKARYOTIC CELL 2002; 1:66-74. [PMID: 12455972 PMCID: PMC118056 DOI: 10.1128/ec.01.1.66-74.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast C-type cyclin Ume3p/Srb11p and its cyclin-dependent kinase partner Ume5p/Srb10p repress the transcription of several genes required for meiotic recombination or meiosis I nuclear division. To relieve this repression, Srbllp is destroyed early in meiosis, prior to the first meiotic division. This report identifies two roles for Srb11p in regulating meiotic development. First, SRB11 is required for the normal exit from the mitotic cell cycle prior to meiotic induction. Specifically, mutants lacking SRB11 (srb11delta) uncouple bud growth from chromosome segregation, producing small buds with nuclei. The bud growth defect is most likely due to the failure of srb11delta mutants to reestablish polarized actin fibers at the bud tip following exposure to sporulation medium. Second, Srb11p is required for the efficient execution of meiosis I. srb11delta mutants either exhibited a delay in performing meiosis I and meiosis II or skipped meiosis I entirely. This meiotic defect is not due to the activation of the recombination or spindle assembly checkpoint pathways. However, the expression of several meiotic genes is delayed and reduced in the mutant strains. These results suggest a positive role for Srb10-Srb11p in regulating the transcription program. This model is supported by the finding that overexpression of the meiotic inducer IME2 partially restored the ability of srb11 mutants to perform meiosis I. In conclusion, these findings indicate that Srb11p is required for both entry into and execution of the meiotic program, thus describing multiple roles for a C-type cyclin in the regulation of a developmental pathway.
Collapse
Affiliation(s)
- Katrina F Cooper
- Program for Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
39
|
Vincent O, Kuchin S, Hong SP, Townley R, Vyas VK, Carlson M. Interaction of the Srb10 kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:5790-6. [PMID: 11486018 PMCID: PMC87298 DOI: 10.1128/mcb.21.17.5790-5796.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sip4 is a Zn(2)Cys(6) transcriptional activator that binds to the carbon source-responsive elements of gluconeogenic genes in Saccharomyces cerevisiae. The Snf1 protein kinase interacts with Sip4 and regulates its phosphorylation and activator function in response to glucose limitation; however, evidence suggested that another kinase also regulates Sip4. Here we examine the role of the Srb10 kinase, a component of the RNA polymerase II holoenzyme that has been primarily implicated in transcriptional repression but also positively regulates Gal4. We show that Srb10 is required for phosphorylation of Sip4 during growth in nonfermentable carbon sources and that the catalytic activity of Srb10 stimulates the ability of LexA-Sip4 to activate transcription of a reporter. Srb10 and Sip4 coimmunoprecipitate from cell extracts and interact in two-hybrid assays, suggesting that Srb10 regulates Sip4 directly. We also present evidence that the Srb10 and Snf1 kinases interact with different regions of Sip4. These findings support the view that the Srb10 kinase not only plays negative roles in transcriptional control but also has broad positive roles during growth in carbon sources other than glucose.
Collapse
Affiliation(s)
- O Vincent
- Department of Genetics and Development, Columbia University, 701 W. 168th Street, HSC 922, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kennedy BK, Liu OW, Dick FA, Dyson N, Harlow E, Vidal M. Histone deacetylase-dependent transcriptional repression by pRB in yeast occurs independently of interaction through the LXCXE binding cleft. Proc Natl Acad Sci U S A 2001; 98:8720-5. [PMID: 11447271 PMCID: PMC37502 DOI: 10.1073/pnas.151240898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a yeast model system to address transcriptional repression by the retinoblastoma protein (pRB). When fused to the DNA-binding domain of Gal4p (DB-pRB), pRB can repress transcription of reporter genes containing Gal4p binding sites; the histone deacetylase activity encoded by yeast RPD3 is required for DB-pRB repression. Mutation of the LXCXE binding cleft in pRB, a region reported to be required for histone deacetylase recruitment, does not interfere with pRB-mediated repression. From these findings based on yeast experiments, we surmise that the small pocket region of pRB must contain an additional domain that confers histone deacetylase-dependent transcriptional repression. This hypothesis was verified by experiments examining pRB-dependent histone deacetylase association in mammalian cells. In addition to RPD3, repression by pRB in yeast requires MSI1, an ortholog of RbAp48, but not SIN3 or SAP30. By comparing the genetic requirements of DB-pRB repression in yeast to those of other DB-repressor fusions, we can suggest a mechanism by which pRB recruits histone deacetylase activity.
Collapse
Affiliation(s)
- B K Kennedy
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Washburn BK, Esposito RE. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 2001; 21:2057-69. [PMID: 11238941 PMCID: PMC86811 DOI: 10.1128/mcb.21.6.2057-2069.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA-binding protein Ume6 is required for both repression and activation of meiosis-specific genes, through interaction with the Sin3 corepressor and Rpd3 histone deacetylase and the meiotic activator Ime1. Here we show that fusion of a heterologous activation domain to Ume6 is unable to convert it into a constitutive activator of early meiotic gene transcription, indicating that an additional function is needed to overcome repression at these promoters. Mutations in UME6 allowing the fusion to activate lie in a predicted amphipathic alpha helix and specifically disrupt interaction with Sin3 but not with Teal, an activator of Ty transcription also found to interact with Ume6 in a two-hybrid screen. The mutations cause a loss of repression by Ume6 and precisely identify the Ume6 Sin3-binding domain, which we show interacts with the paired amphipathic helix 2 region of Sin3. Analysis of these mutants indicates that conversion of Ume6 to an activator involves two genetically distinct steps that act to relieve Sin3-mediated repression and provide an activation domain to Ume6. The mutants further demonstrate that premature expression and lack of subsequent rerepression of Ume6-Sin3-regulated genes are not deleterious to meiotic progression and suggest that the essential role of Sin3 in meiosis is independent of Ume6. The model for Ume6 function arising from these studies indicates that Ume6 is similar in many respects to metazoan regulators that utilize Sin3, such as the Myc-Mad-Max system and nuclear hormone receptors, and provides new insights into the control of transcriptional repression and activation by the Ume6-URS1 regulatory complex in yeast.
Collapse
Affiliation(s)
- B K Washburn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
42
|
Barette C, Jariel-Encontre I, Piechaczyk M, Piette J. Human cyclin C protein is stabilized by its associated kinase cdk8, independently of its catalytic activity. Oncogene 2001; 20:551-62. [PMID: 11313987 DOI: 10.1038/sj.onc.1204129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Revised: 11/10/2000] [Accepted: 11/23/2000] [Indexed: 01/21/2023]
Abstract
Cyclin C belongs to the cyclin family of proteins that control cell cycle transitions through activation of specific catalytic subunits, the cyclin-dependent kinases (CDKs). However, there is as yet no evidence for any role of cyclin C and its partner, cdk8, in cell cycle regulation. Rather, the cyclin C-cdk8 complex was found associated with the RNA polymerase II transcription machinery. The periodic degradation of bona fide cyclins is crucial for cell-cycle progression and depends on the catalytic activity of the associated CDK. Here we show that endogenous cyclin C protein is quite stable with a half-life of 4 h. In contrast, exogenously expressed cyclin C is very unstable (half-life 15 min) and degraded by the ubiquitin-proteasome pathway. Co-expression with its associated cdk, however, strongly stabilizes cyclin C and results in a protein half-life near that of endogenous cyclin C. In stark contrast to data reported for other members of the cyclin family, both catalytically active and inactive cdk8 induce cyclin C stabilization. Moreover, this stabilization is accompanied in both cases by phosphorylation of the cyclin, which is not detectable when unstable. Our results indicate that cyclin C has apparently diverged from other cyclins in the regulation of its stability by its CDK partner.
Collapse
Affiliation(s)
- C Barette
- Institut de Genetique Moleculaire de Montpellier, CNRS UMR 5535, IFR24, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
43
|
Cooper KF, Mallory MJ, Egeland DB, Jarnik M, Strich R. Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci U S A 2000; 97:14548-53. [PMID: 11114178 PMCID: PMC18956 DOI: 10.1073/pnas.250351297] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiosis is the developmental program by which diploid organisms produce haploid gametes capable of sexual reproduction. Here we describe the yeast gene AMA1, a new member of the Cdc20 protein family that regulates the multisubunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C). AMA1 is developmentally regulated in that its transcription and splicing occur only in meiotic cells. The meiosis-specific processing of AMA1 mRNA depends on the previously described MER1 splicing factor. Several results indicate that Ama1p is required for APC/C function during meiosis. First, coimmunoprecipitation assays indicate that Ama1p associates with the APC/C in vivo. Second, Ama1p is required for the degradation of the B-type cyclin Clb1p, an APC/C substrate in both meiotic and mitotic cells. Third, ectopic overexpression of AMA1 is able to stimulate ubiquitination of Clb1p in vitro and degradation of Clb1p in vivo. Mutants lacking AMA1 revealed that it is required for the first meiotic division but not the mitotic-like meiosis II. In addition, ama1 mutants are defective for both spore wall assembly and the expression of late meiotic genes. In conclusion, this study indicates that Ama1p directs a meiotic APC/C that functions solely outside mitotic cell division. The requirement of Ama1p only for meiosis I and spore morphogenesis suggests a function for APC/C(Ama1) specifically adapted to germ cell development.
Collapse
Affiliation(s)
- K F Cooper
- Program for Cellular and Developmental Biology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
44
|
Bernstein BE, Tong JK, Schreiber SL. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A 2000; 97:13708-13. [PMID: 11095743 PMCID: PMC17640 DOI: 10.1073/pnas.250477697] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trichostatin A (TSA)-sensitive histone deacetylase (HDAC) Rpd3p exists in a complex with Sin3p and Sap30p in yeast that is recruited to target promoters by transcription factors including Ume6p. Sir2p is a TSA-resistant HDAC that mediates yeast silencing. The transcription profile of rpd3 is similar to the profiles of sin3, sap30, ume6, and TSA-treated wild-type yeast. A Ume6p-binding site was identified in the promoters of genes up-regulated in the sin3 strain. Two genes appear to participate in feedback loops that modulate HDAC activity: ZRT1 encodes a zinc transporter and is repressed by RPD3 (Rpd3p is zinc-dependent); BNA1 encodes a nicotinamide adenine dinucleotide (NAD)-biosynthesis enzyme and is repressed by SIR2 (Sir2p is NAD-dependent). Although HDACs are transcriptional repressors, deletion of RPD3 down-regulates certain genes. Many of these are down-regulated rapidly by TSA, indicating that Rpd3p may also activate transcription. Deletion of RPD3 previously has been shown to repress ("silence") reporter genes inserted near telomeres. The profiles demonstrate that 40% of endogenous genes located within 20 kb of telomeres are down-regulated by RPD3 deletion. Rpd3p appears to activate telomeric genes sensitive to histone depletion indirectly by repressing transcription of histone genes. Rpd3p also appears to activate telomeric genes repressed by the silent information regulator (SIR) proteins directly, possibly by deacetylating lysine 12 of histone H4. Finally, bioinformatic analyses indicate that the yeast HDACs RPD3, SIR2, and HDA1 play distinct roles in regulating genes involved in cell cycle progression, amino acid biosynthesis, and carbohydrate transport and utilization, respectively.
Collapse
Affiliation(s)
- B E Bernstein
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Center for Genomics Research, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
45
|
Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 2000; 103:423-33. [PMID: 11081629 DOI: 10.1016/s0092-8674(00)00134-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ISWI class of chromatin remodeling factors exhibits potent chromatin remodeling activities in vitro. However, the in vivo functions of this class of factors are unknown at a molecular level. We have found that S. cerevisiae Isw2 complex represses transcription of early meiotic genes during mitotic growth in a parallel pathway to Rpd3-Sin3 histone deacetylase complex. This repressor function of lsw2 complex is largely dependent upon Ume6p, which recruits the complex to target genes. Nuclease digestion analyses revealed that lsw2 complex establishes nuclease-inaccessible chromatin structure near the Ume6p binding site in vivo. Based on these findings, we propose a model for the mechanism of transcriptional repression by two distinct chromatin remodeling complexes.
Collapse
MESH Headings
- Binding Sites
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Macromolecular Substances
- Meiosis/genetics
- Mitosis/genetics
- Models, Genetic
- Molecular Conformation
- Mutation/genetics
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- J P Goldmark
- Division of Basic Sciences, Fred Hutchinson Cancer Research Institute, Fred Hutchinson Cancer Research Center and University of Washington, Seattle 98109, USA
| | | | | | | | | |
Collapse
|
46
|
Elkhaimi M, Kaadige MR, Kamath D, Jackson JC, Biliran H, Lopes JM. Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res 2000; 28:3160-7. [PMID: 10931932 PMCID: PMC108424 DOI: 10.1093/nar/28.16.3160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Revised: 05/18/2000] [Accepted: 06/21/2000] [Indexed: 12/18/2022] Open
Abstract
The Ume6p-Sin3p-Rpd3p complex negatively regulates expression of genes containing a Ume6p binding site. However, these regulatory proteins also function independently to regulate gene expression both negatively and positively. The model system for this combinatorial regulation is the yeast phospholipid biosynthetic pathway. Sin3p negatively regulates the INO1, CHO1, CHO2 and OPI3 genes while Ume6p negatively regulates the INO1 gene and positively regulates the other genes. We have suggested that the positive regulation results from indirect effects on expression of the INO2 transcriptional activator gene. Here, we demonstrate that the effect of Ume6p on INO2 gene expression is also indirect. We also show that Rpd3p is a negative regulator of phospholipid biosynthetic gene expression. The ability of Ume6p, Sin3p and Rpd3p to differentially regulate expression of the phospholipid biosynthetic genes affects phospholipid composition. A sin3 mutant strain lacks detectable levels of phosphatidylethanolamine and elevated levels of phosphatidylcholine (PC) and a rpd3 mutant strain has reduced levels of PC. These alterations in membrane composition suggest that there may exist additional differences in regulation of phospholipid biosynthetic gene expression and that membrane compositions may be coordinated with other biological processes regulated by Ume6p, Sin3p and Rpd3p.
Collapse
Affiliation(s)
- M Elkhaimi
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20:5077-86. [PMID: 10866664 PMCID: PMC85957 DOI: 10.1128/mcb.20.14.5077-5086.2000] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, LRBGE, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The genes required for meiosis and sporulation in yeast are expressed at specific points in a highly regulated temporal pathway. Recent experiments using DNA microarrays to examine gene expression during meiosis and the identification of many regulatory factors have provided important advances in our understanding of how genes are regulated at the different stages of meiosis.
Collapse
Affiliation(s)
- A K Vershon
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA. vershon@waksman. rutgers.edu
| | | |
Collapse
|
49
|
Dorland S, Deegenaars ML, Stillman DJ. Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3. Genetics 2000; 154:573-86. [PMID: 10655212 PMCID: PMC1460964 DOI: 10.1093/genetics/154.2.573] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae Sin3 transcriptional repressor is part of a large multiprotein complex that includes the Rpd3 histone deacetylase. A LexA-Sin3 fusion protein represses transcription of promoters with LexA binding sites. To identify genes involved in repression by Sin3, we conducted a screen for mutations that reduce repression by LexA-Sin3. One of the mutations identified that reduces LexA-Sin3 repression is in the RPD3 gene, consistent with the known roles of Rpd3 in transcriptional repression. Mutations in CBK1 and HYM1 reduce repression by LexA-Sin3 and also cause defects in cell separation and altered colony morphology. cbk1 and hym1 mutations affect some but not all genes regulated by SIN3 and RPD3, but the effect on transcription is much weaker. Genetic analysis suggests that CBK1 and HYM1 function in the same pathway, but this genetic pathway is separable from that of SIN3 and RPD3. The remaining gene from this screen described in this report is SDS3, previously identified in a screen for mutations that increase silencing at HML, HMR, and telomere-linked genes, a phenotype also seen in sin3 and rpd3 mutants. Genetic analysis demonstrates that SDS3 functions in the same genetic pathway as SIN3 and RPD3, and coimmunoprecipitation experiments show that Sds3 is physically present in the Sin3 complex.
Collapse
Affiliation(s)
- S Dorland
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
50
|
Abstract
A central problem in eukaryotic transcription is how proteins gain access to DNA packaged in nucleosomes. Research on the interplay between chromatin and transcription has progressed with the use of yeast genetics as a useful tool to characterize factors involved in this process. These factors have both positive and negative effects on the stability of nucleosomes, thereby controlling the role of chromatin in transcription in vivo. The negative effectors include the structural components of chromatin, the histones and non-histone chromatin associated proteins, as well as regulatory components like chromatin assembly factors and histone deacetylase complexes. The positive factors are involved in remodeling chromatin and several multiprotein complexes have been described: Swi/Snf, Srb/mediator and SAGA. The components of each of these complexes, as well as the functional relationships between them are covered by this review.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|