1
|
Grant PA, Winston F, Berger SL. The biochemical and genetic discovery of the SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194669. [PMID: 33338653 DOI: 10.1016/j.bbagrm.2020.194669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
One of the major advances in our understanding of gene regulation in eukaryotes was the discovery of factors that regulate transcription by controlling chromatin structure. Prominent among these discoveries was the demonstration that Gcn5 is a histone acetyltransferase, establishing a direct connection between transcriptional activation and histone acetylation. This breakthrough was soon followed by the purification of a protein complex that contains Gcn5, the SAGA complex. In this article, we review the early genetic and biochemical experiments that led to the discovery of SAGA and the elucidation of its multiple activities.
Collapse
Affiliation(s)
- Patrick A Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Department of Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
2
|
Liu Q, Wu J, Lu T, Fang Z, Huang Z, Lu S, Dai C, Li M. Positive expression of basic transcription factor 3 predicts poor survival of colorectal cancer patients: possible mechanisms involved. Cell Death Dis 2019; 10:509. [PMID: 31263147 PMCID: PMC6603001 DOI: 10.1038/s41419-019-1747-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Basic transcription factor 3 (BTF3) is associated with the development of several cancers. The aim of our study was to elucidate the role of BTF3 in colorectal cancer (CRC) tissues. CRC tissues or their paired adjacent noncancerous (ANCT) tissues were obtained from 90 patients who underwent operations in our hospital from November 2011 to December 2016, and then we implemented a gene microarray assay for detecting significant changes in gene expression and confirmed expression in tissues using immunohistochemistry and real-time PCR. We transfected or injected the silencing BTF3 (BTF3-siRNA) plasmid into cells and nude mice, and measured the tumorigenicity of CRC cells with flow cytometry and studied the expression level of BTF3 downstream genes (MAD2L2, MCM3 and PLK1) in CRC cells. BTF3 expression level was not only significantly higher in CRC tissue than in ANCT tissue (2.61 ± 0.07 vs 1.90 ± 0.03, P < 0.001) but BTF3-siRNA decreased tumor formation in a nude mice model. Furthermore, based on the data of gene microarray analysis, MAD2L2, MCM3 and PLK1 were detected as the downstream target genes of BTF3 and their expressions were positive related with BTF3 expression. Also, through transfecting BTF3-siRNA into HCT116 cells, we found that BTF3-siRNA could decrease cell viability and induced cell apoptosis and blocking the cell cycle. In conclusion, BTF3 is positively related to CRC and BTF3-siRNA attenuated the tumorigenicity of colorectal cancer cells via MAD2L2, MCM3 and PLK1 activity reduction.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
| | - Junjie Wu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Tailiang Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zhixue Fang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Zixuan Huang
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Shanzheng Lu
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chen Dai
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Mengqian Li
- Department of General Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Li X, Sui J, Xing J, Cao F, Wang H, Fu C, Wang H. Basic transcription factor 3 expression silencing attenuates colon cancer cell proliferation and migration in vitro. Oncol Lett 2018; 17:113-118. [PMID: 30655745 PMCID: PMC6313191 DOI: 10.3892/ol.2018.9613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Basic transcription factor 3 (BTF3) is an RNA polymerase II transcription factor that also regulates apoptosis. Numerous studies have identified that BTF3 is aberrantly expressed in several types of tumor. However, the function of BTF3 in colorectal cancer remains unknown. The aim of the present study was to assess the function of BTF3 during colon cancer tumorigenesis. Applying a lentivirus-transfected short hairpin RNA approach, expression of BTF3 was dysregulated in the colon cancer HCT116 and HT-29 cell lines; knockdown efficiency was verified using the quantitative polymerase chain reaction and western blotting. To determine the function of BTF3 in colon cancer, cell proliferation was assessed using an MTT assay, cell apoptosis and the cell cycle were assessed using flow cytometry, and cell migration was assessed using a Transwell assay. Knockdown of BTF3 inhibited cell proliferation, possibly because BTF3 knockdown induced cell early apoptosis and arrested cells in G0-G1 phase. BTF3 knockdown also inhibited cell migration. The results of the present study identified that BTF3 expression is associated with colon cancer progress, and BTF3 may therefore be a molecular marker for diagnosis and treatment outcomes of human colon cancer.
Collapse
Affiliation(s)
- Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Jinke Sui
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Chuangang Fu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
4
|
Leading role of TBP in the Establishment of Complexity in Eukaryotic Transcription Initiation Systems. Cell Rep 2017; 21:3941-3956. [DOI: 10.1016/j.celrep.2017.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
|
5
|
Uncovering ancient transcription systems with a novel evolutionary indicator. Sci Rep 2016; 6:27922. [PMID: 27307191 PMCID: PMC4910066 DOI: 10.1038/srep27922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
Abstract
TBP and TFIIB are evolutionarily conserved transcription initiation factors in archaea and eukaryotes. Information about their ancestral genes would be expected to provide insight into the origin of the RNA polymerase II-type transcription apparatus. In obtaining such information, the nucleotide sequences of current genes of both archaea and eukaryotes should be included in the analysis. However, the present methods of evolutionary analysis require that a subset of the genes should be excluded as an outer group. To overcome this limitation, we propose an innovative concept for evolutionary analysis that does not require an outer group. This approach utilizes the similarity in intramolecular direct repeats present in TBP and TFIIB as an evolutionary measure revealing the degree of similarity between the present offspring genes and their ancestors. Information on the properties of the ancestors and the order of emergence of TBP and TFIIB was also revealed. These findings imply that, for evolutionarily early transcription systems billions of years ago, interaction of RNA polymerase II with transcription initiation factors and the regulation of its enzymatic activity was required prior to the accurate positioning of the enzyme. Our approach provides a new way to discuss mechanistic and system evolution in a quantitative manner.
Collapse
|
6
|
Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus. Mol Cell Biol 2016; 36:1287-96. [PMID: 26884462 DOI: 10.1128/mcb.00835-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/25/2016] [Indexed: 02/02/2023] Open
Abstract
Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.
Collapse
|
7
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, ULP, Collège de France, Strasbourg.
| |
Collapse
|
9
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
10
|
Choi WS, Yan M, Nusinow D, Gralla JD. In vitro transcription and start site selection in Schizosaccharomyces pombe. J Mol Biol 2002; 319:1005-13. [PMID: 12079343 DOI: 10.1016/s0022-2836(02)00329-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used the fission yeast Schizosaccharomyces pombe to establish both a biochemical and genetic system to study the roles of general transcription factors in transcription initiation. Extracts were prepared that faithfully transcribed S. pombe promoters and the results confirm that, in contrast to the budding yeast Saccharomyces cerevisiae, in vitro transcription in S. pombe initiates near to the TATA element. S. pombe transcription relies on upstream activation sequence elements and these can be replaced successfully with sites for binding Gal4-VP16 activators. Although it is mammalian-like in these respects, S. pombe initiation uses an unusual scanning mechanism. This directs initiation, preferentially using purines, within a narrow window approximately 25-40 base-pairs downstream from the edge of the TATA element. Genetic experiments showed that this scanning mechanism was associated with the properties of the TFIIB polypeptide. When human TFIIB was expressed in S. pombe, it was accepted by the endogenous transcription machinery and caused initiation to be restricted to the closer edge of this window, corresponding to the distance in humans. Preliminary experiments suggested that S. cerevisiae TFIIB was not accepted. The results enlarge the potential for using fission yeast to study the properties of general transcription factors such as TFIIB in choosing the sites at which transcription initiates.
Collapse
Affiliation(s)
- Wai S Choi
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles (UCLA), 90095, USA
| | | | | | | |
Collapse
|
11
|
Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P, Sentenac A, Carles C, Riva M. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 2000; 19:5473-82. [PMID: 11032814 PMCID: PMC314014 DOI: 10.1093/emboj/19.20.5473] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase I (Pol I) is dedicated to transcription of the large ribosomal DNA (rDNA). The mechanism of Pol I recruitment onto rDNA promoters is poorly understood. Here we present evidence that subunit A43 of Pol I interacts with transcription factor Rrn3: conditional mutations in A43 were found to disrupt the transcriptionally competent Pol I-Rrn3 complex, the two proteins formed a stable complex when co-expressed in Escherichia coli, overexpression of Rrn3 suppressed the mutant phenotype, and A43 and Rrn3 mutants showed synthetic lethality. Consistently, immunoelectron microscopy data showed that A43 and Rrn3 co-localize within the Pol I-Rrn3 complex. Rrn3 has several protein partners: a two-hybrid screen identified the C-terminus of subunit Rrn6 of the core factor as a Rrn3 contact, an interaction supported in vitro by affinity chromatography. Our results suggest that Rrn3 plays a central role in Pol I recruitment to rDNA promoters by bridging the enzyme to the core factor. The existence of mammalian orthologues of A43 and Rrn3 suggests evolutionary conservation of the molecular mechanisms underlying rDNA transcription in eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epistasis, Genetic
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Image Processing, Computer-Assisted
- Macromolecular Substances
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Pol1 Transcription Initiation Complex Proteins
- Promoter Regions, Genetic
- Protein Binding
- Protein Subunits
- RNA Polymerase I/chemistry
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- G Peyroche
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Synthesis of messenger RNA by RNA polymerase II requires the combined activities of more than 70 polypeptides. Coordinating the interaction of these proteins is the basal transcription factor TFIID, which recognizes the core promoter and supplies a scaffolding upon which the rest of the transcriptional machinery can assemble. A multisubunit complex, TFIID consists of the TATA-binding protein (TBP) and several TBP-associated factors (TAFs), whose primary sequences are well-conserved from yeast to humans. Data from reconstituted cell-free transcription systems and binary interaction assays suggest that the TAF subunits can function as promoter-recognition factors, as coactivators capable of transducing signals from enhancer-bound activators to the basal machinery, and even as enzymatic modifiers of other proteins. Whether TAFs function similarly in vivo, however, has been an open question. Initial characterization of yeast bearing mutations in particular TAFs seemingly indicated that, unlike the situation in vitro, TAFs played only a minor role in transcriptional regulation in vivo. However, reconsideration of this data in light of more recent results from yeast and other organisms reveals considerable convergence between the models derived from in vitro experiments and those derived from in vivo studies. In particular, there is an emerging consensus that TAFs represent one of several classes of coactivators that participate in transcriptional activation in vivo.
Collapse
Affiliation(s)
- S R Albright
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
13
|
Dantonel JC, Wurtz JM, Poch O, Moras D, Tora L. The TBP-like factor: an alternative transcription factor in metazoa? Trends Biochem Sci 1999; 24:335-9. [PMID: 10470030 DOI: 10.1016/s0968-0004(99)01436-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein sequence analysis has revealed a family of TATA-binding-protein (TBP)-like factors (TLFs) in metazoan organisms. Modelling of the three-dimensional structure of these TLFs suggests that they form an asymmetric saddle-like structure and that, unlike TBP, TLFs might bind to DNA sequences other than classical TATA boxes. Thus, the existence of TLFs presents a challenge to the doctrine that TBP is a universal regulator of transcription in metazoans.
Collapse
Affiliation(s)
- J C Dantonel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, F-67404 Illkirch, Cedex, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
14
|
Chédin S, Ferri ML, Peyroche G, Andrau JC, Jourdain S, Lefebvre O, Werner M, Carles C, Sentenac A. The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:381-9. [PMID: 10384303 DOI: 10.1101/sqb.1998.63.381] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Chédin
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Andrau JC, Sentenac A, Werner M. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. J Mol Biol 1999; 288:511-20. [PMID: 10329159 DOI: 10.1006/jmbi.1999.2724] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast TFIIIB transcription factor is composed of three components, TBP, TFIIIB90 or B", and TFIIIB70 or BRF. TFIIIB70 is a pivotal component since it interacts with TBP, TFIIIC and RNA polymerase III (pol III). In order to better understand the role of TFIIIB70, we mutagenized extensively three evolutionary conserved motifs of its pol III-specific C-terminal extension. Conditional mutations lying in conserved regions II and III were obtained, some of which altered the interaction with the C34 subunit of pol III and were co-lethal with rpc34 mutations. Two conditional mutations in region II impaired the interaction with TBP and were suppressed by its overexpression. The pattern of suppression of the strongest mutation by overexpression of various mutant TBP, suggested a contact between TBP-R220 and TFIIIB70-D464 residues in vivo. As expected, this TFIIIB70 mutation impaired the assembly of TFIIIB. TFIIIC.DNA complexes and affected in vitro transcription of the SUP4 tRNA gene. Our results underscore the important role of region II of TFIIIB70 in pre-initiation as well as transcription complex assembly via C34 and TBP binding.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bât. 142, CEA/Saclay, F-91191 Gif-sur-Yvette, CEDEX, France
| | | | | |
Collapse
|
16
|
Bell B, Tora L. Regulation of gene expression by multiple forms of TFIID and other novel TAFII-containing complexes. Exp Cell Res 1999; 246:11-9. [PMID: 9882510 DOI: 10.1006/excr.1998.4294] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Bell
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, C. U. de Strasbourg, F-67404, France
| | | |
Collapse
|
17
|
Edelmann L, Zheng L, Wang ZF, Marzluff W, Wessel GM, Childs G. The TATA binding protein in the sea urchin embryo is maternally derived. Dev Biol 1998; 204:293-304. [PMID: 9851860 DOI: 10.1006/dbio.1998.9052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA encoding the TATA binding protein was isolated from 8- to 16-cell and morula-stage embryonic libraries of two distantly related species of sea urchin, Strongylocentrotus purpuratus and Lytechinus variegatus, respectively. The two proteins are 96% identical over both the N- and C-terminal domains, suggesting a conservation of transcriptional processes between the two species. The prevalence of SpTBP transcripts at several developmental time points was determined using the tracer excess titration method, and the corresponding number of TBP protein molecules was determined by quantitative Western blot analysis. Our results indicate that the amount of TBP mRNA and protein per embryo remains relatively constant throughout development. An initial large pool of TBP protein (>10(9)) molecules in the egg becomes diluted as a consequence of cell division and decreases to about 2 x 10(6) molecules per cell by the gastrula stage. We found by in situ RNA hybridization that the oocyte contains a large amount of TBP mRNA which is depleted late in oogenesis so that the eggs and early embryos have extremely low levels of TBP mRNA. We conclude that the oocyte manufactures nearly all of the TBP protein necessary for embryogenesis.
Collapse
Affiliation(s)
- L Edelmann
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The TATA-binding protein is a general transcription factor required by all three eukaryotic nuclear RNA polymerases. In order to study the function of this protein in the transcription of tRNA genes in the silkworm Bombyx mori, we have cloned TBP cDNA from a silkworm cDNA library. As in most other eukaryotes, TBP in silkworms is encoded by a single copy gene and contains a highly conserved C-terminal domain that includes a basic region and two direct repeats. In the less conserved N-terminal domain, silkworm TBP exhibits characteristics such as a glutamine-rich stretch and three imperfect Pro-Met-Thr-like repeats that are also found in Drosophila and human TBP. Silkworm TBP expressed in Escherichia coli and purified to apparent homogeneity binds the TATA element of the wild-type adenovirus major late promoter with nanomolar affinity.
Collapse
Affiliation(s)
- C Ouyang
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
19
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
20
|
Leng P, Carter PE, Brown AJ. The TATA-binding protein (TBP) from the human fungal pathogen Candida albicans can complement defects in human and yeast TBPs. J Bacteriol 1998; 180:1771-6. [PMID: 9537374 PMCID: PMC107089 DOI: 10.1128/jb.180.7.1771-1776.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 02/02/1998] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is the major fungal pathogen in humans, yet little is known about transcriptional regulation in this organism. Therefore, we have isolated, characterized, and expressed the C. albicans TATA-binding protein (TBP) gene (TBP1), because this general transcription initiation factor plays a key role in the activation and regulation of eukaryotic promoters. Southern and Northern blot analyses suggest that a single C. albicans TBP1 locus is expressed at similar levels in the yeast and hyphal forms of this fungus. The TBP1 open reading frame is 716 bp long and encodes a functional TBP of 27 kDa. C. albicans TBP is capable of binding specifically to a TATA box in vitro, substituting for the human TBP to activate basal transcription in vitro, and suppressing the lethal delta spt15 mutation in Saccharomyces cerevisiae. The predicted amino acid sequences of TBPs from C. albicans and other organisms reveal a striking pattern of C-terminal conservation and N-terminal variability: the C-terminal DNA-binding domain displays at least 80% amino acid sequence identity to TBPs from fungi, flies, nematodes, slime molds, plants, and humans. Sequence differences between human and fungal TPBs in the DNA-binding domain may represent potential targets for antifungal therapy.
Collapse
Affiliation(s)
- P Leng
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, United Kingdom
| | | | | |
Collapse
|
21
|
Soppa J, Link TA. The TATA-box-binding protein (TBP) of Halobacterium salinarum. Cloning of the tbp gene, heterologous production of TBP and folding of TBP into a native conformation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:318-24. [PMID: 9363785 DOI: 10.1111/j.1432-1033.1997.t01-1-00318.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The TATA-box binding protein (TBP) is a basal transcription factor involved in transcription initiation in Eucarya and Archaea. Using a tbp-specific probe, a 4.5-kbp genomic fragment from Halobacterium salinarum was cloned and sequenced. It contained the tbp gene and the 5'-ends of two additional open reading frames, but surprisingly, 70% of the cloned fragment (3.2 kbp) was devoid of coding capacity or similarity to database sequences. The deduced halobacterial TBP exhibits sequence similarities to other archaeal (41-43%) as well as to eucaryal (27-38%) TBP. A comparative analysis showed that the archaeal and eucaryal TBP form two related monophylic protein families, and the archaeal TBP possess features which separate them from eucaryal TBP. Compared with the other TBP, the halobacterial TBP is unique in having a high excess of negatively charged residues. A histidine-tagged version of the halobacterial TBP was produced in Escherichia coli in a denatured conformation and purified by means of Ni-chelating chromatography. CD spectroscopy was used to monitor TBP secondary structure and the conditions necessary for folding it into a native conformation. In the absence of denaturating agents, the folded as well as the unfolded state were found to be stable over a wide range of salt concentrations. Properly folded TBP was shown to bind to a halobacterial TATA-box-containing DNA fragment, indicating that the fusion protein can be used to characterize DNA recognition by the halobacterial TBP.
Collapse
Affiliation(s)
- J Soppa
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | |
Collapse
|
22
|
Teichmann M, Dieci G, Huet J, Rüth J, Sentenac A, Seifart KH. Functional interchangeability of TFIIIB components from yeast and human cells in vitro. EMBO J 1997; 16:4708-16. [PMID: 9303315 PMCID: PMC1170097 DOI: 10.1093/emboj/16.15.4708] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, TFIIIB is required for proper initiation by RNA polymerase III. In the yeast Saccharomyces cerevisiae a single form of TFIIIB (gammaTFIIIB) is sufficient for transcription of all pol III genes, whereas in extracts derived from human cells two different hTFIIIB complexes exist which we have previously designated as hTFIIIB-alpha and hTFIIIB-beta. Human TFIIIB-alpha is a TBP-free entity and must be complemented by TBP for transcription of pol III genes driven by gene external promoters, whereas hTFIIIB-beta is a TBP-TAF complex which governs transcription from internal pol III promoters. We show that hTFIIIB-beta cannot be replaced by yeast TFIIIB for transcription of tRNA genes, but that the B" component of gammaTFIIIB can substitute for hTFIIIB-alpha activity in transcription of the human U6 gene. Moreover, hTFIIIB-alpha can be chromatographically divided into activities which are functionally related to gammaTFIIIE and recombinant yB"90, suggesting that hTFIIIB-alpha is a human homolog of yeast TFIIIB". In addition, we show that yeast TBP can only be exchanged against human TBP for in vitro transcription of the human and yeast U6 gene but virtually not for that of the yeast tRNA4Sup gene. This deficiency can be counteracted by a mutant of human TBP (R231K) which is able to replace yeast TBP for transcription of yeast tRNA genes in vitro.
Collapse
Affiliation(s)
- M Teichmann
- Institut für Molekularbiologie und Tumorforschung, Marburg/Lahn, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Tanese N. Small-scale density gradient sedimentation to separate and analyze multiprotein complexes. Methods 1997; 12:224-34. [PMID: 9237167 DOI: 10.1006/meth.1997.0475] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor TFIID is a multisubunit complex that is required for promoter recognition and accurate initiation of transcription by RNA polymerase II. To dissect the molecular architecture and the biochemical properties of TFIID, a small-scale density gradient sedimentation method is employed to separate related complexes through differences in their sedimentation properties. A small amount of starting material is sufficient to obtain readily assayable amounts of separated proteins after centrifugation for 8 to 12 h in a benchtop ultracentrifuge. Gradient fractions are analyzed by immunoblotting for the presence of specific components of TFIID. Sucrose gradient sedimentation is performed to separate a mixture of multiprotein complexes from a crude nuclear extract immunoprecipitation of the proteins present in each fraction with an anti-TBP antibody reveals multiple TBP-containing complexes of different sizes. Density gradient sedimentation permits separation of specific components in a complex mixture and preserves activity, allowing functional assays.
Collapse
Affiliation(s)
- N Tanese
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
24
|
Iwataki N, Hoya A, Yamazaki K. Restoration of TATA-dependent transcription in a heat-inactivated extract of tobacco nuclei by recombinant TATA-binding protein (TBP) from tobacco. PLANT MOLECULAR BIOLOGY 1997; 34:69-79. [PMID: 9177313 DOI: 10.1023/a:1005759521285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We isolated a complementary DNA (cDNA) that encoded a TATA-binding protein (TBP) from a cDNA library of tobacco (Nicotiana tabacum) suspension-cultured cells (BY-2). A comparison among deduced amino acid sequences of plant TBPs revealed the presence of a long conserved region within the amino acid sequence of the TBP. Genomic Southern analysis revealed that tobacco TBP (tTBP) is encoded by only a small number of copies of a gene in the tobacco genome. Addition of recombinant tTBP to an extract of tobacco nuclei (TNE) enhanced the basal transcriptional activity in vitro. This result indicates that the level of tTBP is a rate-limiting factor for basal transcriptional activity in TNE. We subsequently succeeded in the functional complementation of TATA-dependent initiation of transcription that was associated with a plant promoter in a homologous plant system. Addition of bacterially expressed recombinant tTBP to a heat-inactivated TNE restored transcriptional activity, as did the addition of human TBP. Moreover, heating of the recombinant tTBP eliminated its ability to restore transcriptional activity. It appears that the heat inactivation of TNE was caused by the heat inactivation of tTBP in TNE.
Collapse
Affiliation(s)
- N Iwataki
- School of Agricultural Sciences, Nagoya University, Chikusa, Japan
| | | | | |
Collapse
|
25
|
Librizzi MD, Moir RD, Brenowitz M, Willis IM. Expression and purification of the RNA polymerase III transcription specificity factor IIIB70 from Saccharomyces cerevisiae and its cooperative binding with TATA-binding protein. J Biol Chem 1996; 271:32695-701. [PMID: 8955101 DOI: 10.1074/jbc.271.51.32695] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription by RNA polymerase III (pol III) in yeast requires the assembly of an initiation complex comprising the TATA-binding protein (TBP), a 90-kDa polypeptide (TFIIIB90), and a 70-kDa polypeptide (TFIIIB70). TFIIIB70 interacts with TBP, a unique pol III subunit, C34, and the 131-kDa subunit of the pol III-specific complex, TFIIIC. TFIIIB70 was expressed in Escherichia coli and purified to homogeneity. The specific transcription activity of rTFIIIB70 is 22-58% that of the native yeast and in vitro synthesized factor. However, only a small fraction (0.07-0.32%) of the TFIIIB70 from these sources results in the synthesis of full-length RNA. The data suggest that TFIIIB70 function may be limited by an unfavorable recruitment equilibrium into the preinitiation complex. Quantitative DNase I "footprint" titrations of yeast TBP to the adenovirus major late promoter were conducted at a series of constant TFIIIB70 concentrations. A value of -0.7 +/- 0.2 kcal/mol was determined for the cooperative free energy of formation of the TBP.TFIIIB70.DNA complex at concentrations of TFIIIB70 sufficient to partition all of the binding cooperativity to the TBP binding isotherm. A Kd of 44 +/- 23 nM characterizes the TFIIIB70 concentration dependence of the TBP.TFIIIB70 cooperativity. The relationship deltalog K/deltalog (TFIIIB70) is consistent with the linkage of a single molecule of TFIIIB70 with the TBP-promoter binding reaction.
Collapse
Affiliation(s)
- M D Librizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
26
|
Moqtaderi Z, Yale JD, Struhl K, Buratowski S. Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci U S A 1996; 93:14654-8. [PMID: 8962109 PMCID: PMC26190 DOI: 10.1073/pnas.93.25.14654] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1996] [Accepted: 10/11/1996] [Indexed: 02/03/2023] Open
Abstract
In eukaryotic cells the TATA-binding protein (TBP) associates with other proteins known as TBP-associated factors (TAFs) to form multisubunit transcription factors important for gene expression by all three nuclear RNA polymerases. Computer searching of the complete Saccharomyces cerevisiae genome revealed five previously unidentified yeast genes with significant sequence similarity to known human and Drosophila RNA polymerase II TAFs. Each of these genes is essential for viability. A sixth essential gene (FUN81) has previously been noted to be similar to human TAFII18. Coimmunoprecipitation experiments show that all six proteins are associated with TBP, demonstrating that they are true TAFs. Furthermore, these proteins are present in complexes containing the TAFII130 subunit, indicating that they are components of TFIID. Based on their predicted molecular weights, these genes have been designated TAF67, TAF61(68), TAF40, TAF23(25), TAF19(FUN81), and TAF17. Yeast TAF61 is significantly larger than its higher eukaryotic homologues, and deletion analysis demonstrates that the evolutionarily conserved, histone-like domain is sufficient and necessary to support viability.
Collapse
Affiliation(s)
- Z Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
27
|
Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10:2657-83. [PMID: 8946909 DOI: 10.1101/gad.10.21.2657] [Citation(s) in RCA: 772] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
28
|
Burke TW, Kadonaga JT. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 1996; 10:711-24. [PMID: 8598298 DOI: 10.1101/gad.10.6.711] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe the identification and characterization of a conserved downstream basal promoter element that is present in a subset of Drosophila TATA-box-deficient (TATA-less) promoters by using purified, epitope-tagged TFIID complex (eTFIID) from embryos of transgenic Drosophila. DNase I footprinting of the binding of eTFIID to TATA-less promoters revealed that the factor protected a region that extended from the initiation site sequence (about +1) to approximately 35 nucleotides downstream of the RNA start site. In contrast, there was no apparent upstream DNase I protection or hypersensitivity induced by eTFIID in the -25 to -30 region at which TATA motifs are typically located. Further studies revealed a conserved sequence motif, (A/G)G(A/T)CGTG, termed the downstream promoter element (DPE), which is located approximately 30 nucleotides downstream of the RNA start site of many TATA-less promoters. DNase I footprinting and in vitro transcription experiments revealed that a DPE in its normal downstream location is necessary for transcription of DPE-containing TATA-less promoters and can compensate for the disruption of an upstream TATA box of a TATA-containing promoter. Moreover, a systematic mutational analysis of DNA sequences that encompass the DPE confirmed the importance of the consensus DPE sequence motif for basal transcription and further supports the postulate that the DPE is a distinct, downstream basal promoter element. These results suggest that the DPE acts in conjunction with the initiation site sequence to provide a binding site for TFIID in the absence of a TATA box to mediate transcription of TATA-less promoters.
Collapse
Affiliation(s)
- T W Burke
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, 92093-0347, USA
| | | |
Collapse
|
29
|
Perez-Howard GM, Weil PA, Beechem JM. Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics. Biochemistry 1995; 34:8005-17. [PMID: 7794913 PMCID: PMC2891535 DOI: 10.1021/bi00025a006] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A combination of steady-state, stopped-flow, and time-resolved fluorescence of intrinsic tryptophan and extrinsically labeled fluorescent DNA is utilized to examine the interaction of yeast TATA binding protein (TBP) with DNA. TBP is composed of two structural domains, the carboxy domain (residues 61-240), which is responsible for DNA binding and initiation of basal level transcription, and an amino terminal domain (residues 1-60), whose function is currently unknown. The steady-state fluorescence emission spectrum of the single tryptophan in the amino terminal domain of TBP undergoes a huge (30-40 nm) red-shift upon interaction with stoichiometric amounts of TATA box containing DNA. From time-resolved tryptophan fluorescence anisotropy studies, we demonstrate that, in the absence of DNA, the protein exists as a multimer in solution and it contains (at least) two primary conformations, one with the amino terminus associated tightly with the protein(s) in a hydrophobic environment and one with the amino terminus decoupled away from the rest of the protein and solvent-exposed. Upon binding DNA, the protein dissociates into a monomeric complex, upon which only the solvent-exposed amino terminus conformation remains. Kinetic and equilibrium binding studies were performed on TATA box containing DNA which was extrinsically labeled with a fluorescent probe Rhodamine-X at the 5'-end. This "fluorescent" DNA allowed for the collection of quantitative spectroscopic binding, kinetic on-rate, and kinetic off-rate data at physiological concentrations. Global analysis of equilibrium binding studies performed from 500 pM to 50 nM DNA reveals a single dissociation constant (Kd) of approximately 5 nM. Global analysis of stopped-flow anisotropy on-rate experiments, with millisecond timing resolution and TBP concentrations ranging from 20 to 600 nM (20 nM DNA), can be perfectly described by a single second-order rate constant of 1.66 x 10(5) M(-1) s(-1). These measurements represent the very first stopped-flow anisotropy study of a protein/DNA interaction. Stopped-flow anisotropy off-rate experiments reveal a single exponential k(off) of 4.3 x 10(-2) min-1 (1/k(off) = 23 min) From the ratio of on-rate to off-rate, a predicted Kd of 4.3 nM is obtained, revealing that the kinetic and equilibrium studies are internally consistent. Deletion of the amino terminal domain of TBP decreases the k(on) of TBP approximately 45-fold and eliminates classic second-order behavior.
Collapse
Affiliation(s)
- G M Perez-Howard
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
30
|
Kuromori T, Yamamoto M. Cloning of cDNAs from Arabidopsis thaliana that encode putative protein phosphatase 2C and a human Dr1-like protein by transformation of a fission yeast mutant. Nucleic Acids Res 1994; 22:5296-301. [PMID: 7816619 PMCID: PMC332074 DOI: 10.1093/nar/22.24.5296] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We characterized three Arabidopsis thaliana cDNA clones that could rescue the sterile phenotype of the Schizosaccharomyces pombe pde1 mutant, which is defective in cAMP phosphodiesterase. The first clone had a coding capacity of 399 amino acids that is 35% identical with rat protein phosphatase 2C (PP2C). The second had a coding capacity of 159 amino acids that is 41% identical with human Dr1. Dr1 has been shown to interact with TATA-binding protein (TBP) and block its ability to activate transcription. The third encoded Arabidopsis TBP itself. Saccharomyces cerevisiae TBP also could suppress the sterile phenotype if expressed in S.pombe pde1 cells, but overexpression of S.pombe TBP could do so very poorly. These observations suggest preliminarily that PP2C may counteract cAMP-dependent protein kinase in fission yeast cells, and that the heterologous TBPs and Dr1 may interfere with the general transcription factors of S.pombe so that the gene expression in the host cell becomes affirmative of sexual development. Furthermore, the identification of a Dr1-like protein in A.thaliana strongly argues for the ubiquity of this protein among eukaryotic genera and for a conserved mechanism to regulate transcription initiation that involves Dr1.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Base Sequence
- Cloning, Molecular
- Cyclic Nucleotide Phosphodiesterases, Type 1
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Gene Library
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Genes, Suppressor/genetics
- Genetic Complementation Test
- Humans
- Molecular Sequence Data
- Mutation
- Phosphoprotein Phosphatases/genetics
- Phosphoproteins/genetics
- Phosphoric Diester Hydrolases
- Protein Phosphatase 2
- Protein Phosphatase 2C
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- TATA Box
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- T Kuromori
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | |
Collapse
|
31
|
Nikolov DB, Burley SK. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). NATURE STRUCTURAL BIOLOGY 1994; 1:621-37. [PMID: 7634102 DOI: 10.1038/nsb0994-621] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of a TATA box-binding protein (TBP2) from Arabidopsis thaliana has been refined at 2.1 A resolution. TBPs are general eukaryotic transcription factors that participate in initiation of RNA synthesis by all three eukaryotic RNA polymerases. The carboxy-terminal portion of TBP is a unique DNA-binding motif/protein fold, adopting a highly symmetric alpha/beta structure that resembles a molecular saddle with two stirrup-like loops. A ten-stranded, antiparallel beta-sheet provides a concave surface for recognizing class II nuclear gene promoters, while the four amphipathic alpha-helices on the convex surface are available for interaction with other transcription factors. The myriad interactions of TBP2 with components of the transcription machinery are discussed.
Collapse
Affiliation(s)
- D B Nikolov
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
32
|
Lefebvre O, Rüth J, Sentenac A. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. Identification of two classes of suppressors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31663-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Abstract
Sequence data banks have been searched for proteins possessing uninterrupted reiterations of any amino acid. Hydrophilic amino acids, and particularly glutamine, account for a large proportion of the longer reiterants. In the genes for these proteins, the most common reiterants are those that contain poly(CAG), even out-of-frame or, to a lesser degree, those that contain repeated doublets of CA, AG, or GC. The preferential generation of such reiterants requires that DNA strand-specific signals predispose to reiteration and thus to the extension of coding regions.
Collapse
Affiliation(s)
- H Green
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
34
|
Kato K, Makino Y, Kishimoto T, Yamauchi J, Kato S, Muramatsu M, Tamura T. Multimerization of the mouse TATA-binding protein (TBP) driven by its C-terminal conserved domain. Nucleic Acids Res 1994; 22:1179-85. [PMID: 8165131 PMCID: PMC523640 DOI: 10.1093/nar/22.7.1179] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conformational states of the mouse TATA-binding protein (TBP) in solution were studied. A histidine tag and a factor Xa recognition site-carrying mouse TBP was expressed in E. coli, highly purified, and its fundamental functions as a TBP were demonstrated. We analyzed the molecular states of mouse TBP by gel filtration and glycerol gradient sedimentation, and found that TBP forms heterogeneous multimers in solution. Direct binding of TBP molecules to each other was proven by the far-Western procedure. Analyses using TBPs truncated at the N- and C-termini demonstrated that the functionally important C-terminal domain was responsible for homomultimer formation, and the N-terminal domain enhances multimerization. Furthermore, it was found that the TATA sequence dissociates homomultimers, and only monomeric TBP binds to the TATA-box. We suggest that TBP shares structural motifs in the C-terminal conserved domain for intermolecular interaction and TATA-binding.
Collapse
Affiliation(s)
- K Kato
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Unambiguous TATA boxes have not been identified in upstream sequences of Tetrahymena thermophila genes analyzed to date. To begin a characterization of the promoter requirements for RNA polymerase II, the gene encoding TATA-binding protein (TBP) was cloned from this species. The derived amino acid sequence for the conserved C-terminal domain of Tetrahymena TBP is one of the most divergent described and includes a unique 20-amino-acid C-terminal extension. Polyclonal antibodies generated against a fragment of Tetrahymena TBP recognize a 36-kDa protein in macronuclear preparations and also cross-react with yeast and human TBPs. Immunocytochemistry was used to examine the nuclear localization of TBP during growth, starvation, and conjugation (the sexual phase of the life cycle). The transcriptionally active macronuclei stained at all stages of the life cycle. The transcriptionally inert micronuclei did not stain during growth or starvation but surprisingly stained with anti-TBP throughout early stages of conjugation. Anti-TBP staining disappeared from developing micronuclei late in conjugation, corresponding to the onset of transcription in developing macronuclei. Since micronuclei do not enlarge or divide at this time, loss of TBP appears to be an active process. Thus, the transcriptional differences between macro- and micronuclei that arise during conjugation are associated with the loss of a major component of the basal transcription apparatus from developing micronuclei rather than its appearance in developing macronuclei.
Collapse
|
36
|
Stargell LA, Gorovsky MA. TATA-binding protein and nuclear differentiation in Tetrahymena thermophila. Mol Cell Biol 1994; 14:723-34. [PMID: 8264641 PMCID: PMC358421 DOI: 10.1128/mcb.14.1.723-734.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Unambiguous TATA boxes have not been identified in upstream sequences of Tetrahymena thermophila genes analyzed to date. To begin a characterization of the promoter requirements for RNA polymerase II, the gene encoding TATA-binding protein (TBP) was cloned from this species. The derived amino acid sequence for the conserved C-terminal domain of Tetrahymena TBP is one of the most divergent described and includes a unique 20-amino-acid C-terminal extension. Polyclonal antibodies generated against a fragment of Tetrahymena TBP recognize a 36-kDa protein in macronuclear preparations and also cross-react with yeast and human TBPs. Immunocytochemistry was used to examine the nuclear localization of TBP during growth, starvation, and conjugation (the sexual phase of the life cycle). The transcriptionally active macronuclei stained at all stages of the life cycle. The transcriptionally inert micronuclei did not stain during growth or starvation but surprisingly stained with anti-TBP throughout early stages of conjugation. Anti-TBP staining disappeared from developing micronuclei late in conjugation, corresponding to the onset of transcription in developing macronuclei. Since micronuclei do not enlarge or divide at this time, loss of TBP appears to be an active process. Thus, the transcriptional differences between macro- and micronuclei that arise during conjugation are associated with the loss of a major component of the basal transcription apparatus from developing micronuclei rather than its appearance in developing macronuclei.
Collapse
Affiliation(s)
- L A Stargell
- Biology Department, University of Rochester, New York 14627
| | | |
Collapse
|
37
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
38
|
ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol Cell Biol 1993. [PMID: 8413201 DOI: 10.1128/mcb.13.10.5981] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the isolation of a yeast gene, ADA3, mutations in which prevent the toxicity of GAL4-VP16 in vivo. Toxicity was previously proposed to be due to the trapping of general transcription factors required at RNA polymerase II promoters (S. L. Berger, B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente, Cell 70:251-265, 1992). trans activation by VP16 as well as the acidic activation domain of GCN4 is reduced in the mutant. Other activation domains, such as those of GAL4 and HAP4, are only slightly affected in the mutant. This spectrum is similar to that observed for mutants with lesions in ADA2, a gene proposed to encode a transcriptional adaptor. The ADA3 gene is not absolutely essential for cell growth, but gene disruption mutants grow slowly and are temperature sensitive. Strains doubly disrupted for ada2 and ada3 grow no more slowly than single mutants, providing further evidence that these genes function in the same pathway. Selection of initiation sites by the general transcriptional machinery in vitro is altered in the ada3 mutant, providing a clue that ADA3 could be a novel general transcription factor involved in the response to acidic activators.
Collapse
|
39
|
Lichtsteiner S, Tjian R. Cloning and properties of the Caenorhabditis elegans TATA-box-binding protein. Proc Natl Acad Sci U S A 1993; 90:9673-7. [PMID: 8415761 PMCID: PMC47632 DOI: 10.1073/pnas.90.20.9673] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nematode Caenorhabditis elegans has become an organism of choice for the study of developmental processes at the genetic level. We have undertaken to develop an in vitro system to study transcription in C. elegans. As a first step we report here the cloning of the cDNA encoding the C. elegans TATA-box-binding protein (CeTBP). We used "touch-down PCR" to generate a specific DNA probe derived from the C-terminal region conserved in all TBP genes cloned to date. Several clones encoding an extended open reading frame were isolated from a phage lambda cDNA library. The complete amino acid sequence of CeTBP deduced from the cDNA reveals a protein of 37 kDa with an extended sequence similarity in the C-terminal region with all other TBP cDNAs sequenced so far. The N-terminal region of CeTBP (amino acids 1-153), however, does not show any homology with TBPs from other organisms. Interestingly, the N-terminal portion of the molecule contains three short direct repeats. Purified recombinant CeTBP binds specifically to the TATA box sequence, interacts with transcription factors TFIIA and TFIIB, and is able to substitute for the TFIID basal activity when assayed by in vitro transcription in both HeLa and C. elegans nuclear extracts. CeTBP is therefore a basal transcription factor.
Collapse
Affiliation(s)
- S Lichtsteiner
- Howard Hughes Medical Institute, University of California, Berkeley 94720
| | | |
Collapse
|
40
|
Piña B, Berger S, Marcus GA, Silverman N, Agapite J, Guarente L. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol Cell Biol 1993; 13:5981-9. [PMID: 8413201 PMCID: PMC364647 DOI: 10.1128/mcb.13.10.5981-5989.1993] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe the isolation of a yeast gene, ADA3, mutations in which prevent the toxicity of GAL4-VP16 in vivo. Toxicity was previously proposed to be due to the trapping of general transcription factors required at RNA polymerase II promoters (S. L. Berger, B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente, Cell 70:251-265, 1992). trans activation by VP16 as well as the acidic activation domain of GCN4 is reduced in the mutant. Other activation domains, such as those of GAL4 and HAP4, are only slightly affected in the mutant. This spectrum is similar to that observed for mutants with lesions in ADA2, a gene proposed to encode a transcriptional adaptor. The ADA3 gene is not absolutely essential for cell growth, but gene disruption mutants grow slowly and are temperature sensitive. Strains doubly disrupted for ada2 and ada3 grow no more slowly than single mutants, providing further evidence that these genes function in the same pathway. Selection of initiation sites by the general transcriptional machinery in vitro is altered in the ada3 mutant, providing a clue that ADA3 could be a novel general transcription factor involved in the response to acidic activators.
Collapse
Affiliation(s)
- B Piña
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | |
Collapse
|
41
|
Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36839-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Abstract
Transcription-dependent DNA melting on the yeast GAL1 and GAL10 promoters was found to be more closely correlated with the TATA box than the transcription start site. On both these genes, melting begins about 20 base pairs downstream of the TATA box. Physical and genetic analyses suggest that RNA polymerase II associates with this region. Thus, the distance between promoter melting and the TATA box in yeast may be similar to that in higher eukaryotes, even though transcription initiates in a region about 10 to 90 base pairs farther downstream in yeast.
Collapse
Affiliation(s)
- C Giardina
- Section of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
43
|
Hancock JM. Evolution of sequence repetition and gene duplications in the TATA-binding protein TBP (TFIID). Nucleic Acids Res 1993; 21:2823-30. [PMID: 8332491 PMCID: PMC309661 DOI: 10.1093/nar/21.12.2823] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Analysis of TBP gene sequences from a variety of species for clustering of short sequence motifs and for over- and underrepresentation of short sequence motifs suggests involvement of slippage in the recent evolution of the TBP N-terminal domains in metazoans, Acanthamoeba and wheat. AGC, GCA and CAG are overrepresented in TBP genes of other species, suggesting that opa arrays were amplified from motifs overrepresented in ancestral species. The phylogenetic distribution of recently slippage-derived sequences in TBP is similar to that observed in the large subunit ribosomal RNAs, suggesting a propensity for certain evolutionary lineages to incorporate slippage-generated motifs into protein-coding as well as ribosomal RNA genes. Because length increase appears to have taken place independently in lineages leading to vertebrates, insects and nematodes, TBP N-terminal domains in these lineages are not homologous. All gene duplications in the TBP gene family appear to have been recent events despite strong protein sequence similarity between TRF and P. falciparum TBP. The enlargement of the TBP N-terminal domain may have coincided with acquisition of new functions and may have accompanied molecular coevolution with domains of other proteins, resulting in the acquisition of new or more complex mechanisms of transcription regulation.
Collapse
Affiliation(s)
- J M Hancock
- Molecular Evolution and Systematics Group and Bioinformatics Facility, Research School of Biological Sciences, Australian National University, Canberra, ACT
| |
Collapse
|
44
|
Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Mol Cell Biol 1993. [PMID: 8497275 DOI: 10.1128/mcb.13.6.3650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP) is an essential component of the transcriptional machinery of all three nuclear RNA polymerase enzymes. Comparison of the amino acid sequence of TBPs from a number of species reveals a highly conserved 180-residue C-terminal domain. In contrast, the N terminus is variable in both size and amino acid sequence. Overexpression of a TBP protein with a deletion of the nonconserved N terminus (TBP delta 57) in Saccharomyces cerevisiae results in a dominant negative phenotype of extremely slow growth. Associated with the slow-growth phenotype are defects in RNA polymerase II transcription in vivo. We have screened a high-copy-number yeast genomic library for suppression of the slow-growth phenotype and have isolated plasmids which encode suppressors of TBP delta 57 overexpression. Here we report the sequence and initial characterization of one suppressor, designated STD1 for suppressor of TBP deletion. The STD1 gene contains a single continuous open reading frame with the potential to encode a 50.2-kDa protein. Disruption of the STD1 gene indicates that it is not essential for vegetative growth, mating, or sporulation. High-copy-number suppression by the STD1 gene is not the result of a decrease in TBP delta 57 protein accumulation or DNA-binding activity; instead, STD1 suppression is coincident with the elimination of TBP delta 57-induced RNA polymerase II defects in both uninduced and induced transcription in vivo.
Collapse
|
45
|
Swaminathan S, Malhotra P, Manohar CF, Dhar R, Thimmapaya B. Activation of a dual adenovirus promoter containing nonconsensus TATA motifs in Schizosaccharomyces pombe: role of TATA sequences in the efficiency of transcription. Nucleic Acids Res 1993; 21:2737-46. [PMID: 8332470 PMCID: PMC309611 DOI: 10.1093/nar/21.11.2737] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The role of TATA elements in the expression of a mammalian promoter was investigated in the fission yeast Schizosaccharomyces pombe, by studying the human adenovirus E2-early promoter. This is a unique dual promoter with two nonconsensus TATA elements directing transcription from two cap sites, +1 and -26. A sequence TTAAGA provides the TATA box function for the +1 promoter, whereas a sequence TAAATT, with a closer resemblance to the consensus (TATAA/TA) provides this function for the -26 promoter. Yet, in human cells, the +1 promoter is transcribed about 20 fold more efficiently than the -26 promoter. We found that both promoters are transcribed faithfully in S. pombe with start sites identical or close to those found in human cells. Surprisingly, the relative ratio of expression for the +1 and -26 promoters was exactly reversed in S. pombe cells. This reversal appeared to be due to the relatively weak binding of S. pombe TATA binding protein to the TTAAGA motif, rather than to its rate of dissociation. Furthermore, we show that in S. pombe, promoter expression correlates well with the nucleotide sequence of the TATA element rather than the context in which it is placed. By contrast, it is the context of the TATA element, rather than its nucleotide sequence that appears to be critical for promoter expression in human cells. Our data suggest the existence of one or more additional factors in human cells that permit the utilization of nonconsensus TATA elements. S. pombe appears to lack these factors.
Collapse
Affiliation(s)
- S Swaminathan
- Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | | | |
Collapse
|
46
|
Ganster RW, Shen W, Schmidt MC. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Mol Cell Biol 1993; 13:3650-9. [PMID: 8497275 PMCID: PMC359834 DOI: 10.1128/mcb.13.6.3650-3659.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The TATA-binding protein (TBP) is an essential component of the transcriptional machinery of all three nuclear RNA polymerase enzymes. Comparison of the amino acid sequence of TBPs from a number of species reveals a highly conserved 180-residue C-terminal domain. In contrast, the N terminus is variable in both size and amino acid sequence. Overexpression of a TBP protein with a deletion of the nonconserved N terminus (TBP delta 57) in Saccharomyces cerevisiae results in a dominant negative phenotype of extremely slow growth. Associated with the slow-growth phenotype are defects in RNA polymerase II transcription in vivo. We have screened a high-copy-number yeast genomic library for suppression of the slow-growth phenotype and have isolated plasmids which encode suppressors of TBP delta 57 overexpression. Here we report the sequence and initial characterization of one suppressor, designated STD1 for suppressor of TBP deletion. The STD1 gene contains a single continuous open reading frame with the potential to encode a 50.2-kDa protein. Disruption of the STD1 gene indicates that it is not essential for vegetative growth, mating, or sporulation. High-copy-number suppression by the STD1 gene is not the result of a decrease in TBP delta 57 protein accumulation or DNA-binding activity; instead, STD1 suppression is coincident with the elimination of TBP delta 57-induced RNA polymerase II defects in both uninduced and induced transcription in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Western
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Dominant
- Genes, Fungal
- Genes, Suppressor
- Genomic Library
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Mutation
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Amino Acid
- TATA Box
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- R W Ganster
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | |
Collapse
|
47
|
Upstream basal promoter element important for exclusive RNA polymerase III transcription of the EBER 2 gene. Mol Cell Biol 1993. [PMID: 8386314 DOI: 10.1128/mcb.13.5.2655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus-encoded small RNA (EBER) genes are transcribed by RNA polymerase III, but their transcription unit appears to contain both class II and class III promoter elements. One of these promoter element, a TATA-like box which we call the EBER TATA box, or ETAB, is located in a position typical for a class II TATA box but contains G/C residues in the normal T/A motif and a conserved thymidine doublet. Experiments using chloramphenicol acetyltransferase constructs and mutations in the TATA box of the adenovirus major late promoter showed that the ETAB promoter element does not substitute for a class II TATA box. However, when the ETAB promoter element sequence was changed to a class II TATA box consensus sequence, the EBER 2 gene was transcribed in vitro by both RNA polymerases II and III. From these results, we conclude that the ETAB promoter element is important for the exclusive transcription of the EBER 2 gene by RNA polymerase III.
Collapse
|
48
|
Howe JG, Shu MD. Upstream basal promoter element important for exclusive RNA polymerase III transcription of the EBER 2 gene. Mol Cell Biol 1993; 13:2655-65. [PMID: 8386314 PMCID: PMC359634 DOI: 10.1128/mcb.13.5.2655-2665.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Epstein-Barr virus-encoded small RNA (EBER) genes are transcribed by RNA polymerase III, but their transcription unit appears to contain both class II and class III promoter elements. One of these promoter element, a TATA-like box which we call the EBER TATA box, or ETAB, is located in a position typical for a class II TATA box but contains G/C residues in the normal T/A motif and a conserved thymidine doublet. Experiments using chloramphenicol acetyltransferase constructs and mutations in the TATA box of the adenovirus major late promoter showed that the ETAB promoter element does not substitute for a class II TATA box. However, when the ETAB promoter element sequence was changed to a class II TATA box consensus sequence, the EBER 2 gene was transcribed in vitro by both RNA polymerases II and III. From these results, we conclude that the ETAB promoter element is important for the exclusive transcription of the EBER 2 gene by RNA polymerase III.
Collapse
Affiliation(s)
- J G Howe
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
49
|
Kuddus R, Schmidt MC. Effect of the non-conserved N-terminus on the DNA binding activity of the yeast TATA binding protein. Nucleic Acids Res 1993; 21:1789-96. [PMID: 8493098 PMCID: PMC309416 DOI: 10.1093/nar/21.8.1789] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have studied the DNA binding activity of recombinant yeast TATA Binding Protein (TBP) with particular interest in the role played by the non-conserved N-terminal domain. By comparing the DNA binding activity of wild type yeast TBP with a mutant form of TBP that lacks the non-conserved N-terminal domain (TBP delta 57), we have determined that the N-terminus of TBP alters both the shape and the stability of the TBP-DNA complex. Measurements of the DNA bending angle indicate that the N-terminus enhances the bending of the DNA that is induced by TBP binding and greatly destabilizes the TBP-DNA complex during native gel electrophoresis. In solution, the N-terminus has only a slight effect on the equilibrium dissociation constant and the dissociation rate constant. However, the N-terminal domain reduces the association rate constant in a temperature dependent manner and increases the apparent activation energy of the TBP-DNA complex formation by 3 kcal/mole. These data suggest that a conformational change involving the N-terminus of TBP may be one of the isomerization steps in the formation of a stable TBP-DNA complex.
Collapse
Affiliation(s)
- R Kuddus
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261
| | | |
Collapse
|
50
|
Poon D, Knittle R, Sabelko K, Yamamoto T, Horikoshi M, Roeder R, Weil P. Genetic and biochemical analyses of yeast TATA-binding protein mutants. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|