1
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
2
|
Kanner EM, Friedlander M, Simon SM. Co-translational targeting and translocation of the amino terminus of opsin across the endoplasmic membrane requires GTP but not ATP. J Biol Chem 2003; 278:7920-6. [PMID: 12486130 DOI: 10.1074/jbc.m207462200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tight coupling between ongoing translation and translocation across the mammalian endoplasmic reticulum has made it difficult to determine the requirements that are specific for translocation. We have developed an in vitro assay that faithfully mimics the co-translational targeting and translocation of the amino terminus of opsin without ongoing translation. Using this system we demonstrate that this post-translational targeting and translocation requires nucleotide triphosphates but not cytosolic proteins. The addition of GTP alone was sufficient to fully restore targeting. The addition of ATP was not specifically required, and non-hydrolyzable analogs of ATP that blocked 90% of the ATPase activity also had no inhibitory effect on translocation.
Collapse
Affiliation(s)
- Elliott M Kanner
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
3
|
Borgese N, Gazzoni I, Barberi M, Colombo S, Pedrazzini E. Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 2001; 12:2482-96. [PMID: 11514630 PMCID: PMC58608 DOI: 10.1091/mbc.12.8.2482] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b(5), a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.
Collapse
Affiliation(s)
- N Borgese
- Consiglio Nazionale delle Ricerche, Cellular and Molecular Pharmacology Center and Department of Medical Pharmacology, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
4
|
Mottola G, Jourdan N, Castaldo G, Malagolini N, Lahm A, Serafini-Cessi F, Migliaccio G, Bonatti S. A new determinant of endoplasmic reticulum localization is contained in the juxtamembrane region of the ectodomain of hepatitis C virus glycoprotein E1. J Biol Chem 2000; 275:24070-9. [PMID: 10783397 DOI: 10.1074/jbc.m910400199] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus glycoproteins E1 and E2 do not reach the plasma membrane of the cell but accumulate intracellularly, mostly in the endoplasmic reticulum. Previous studies based on transient expression assays have shown that the transmembrane domains of both glycoproteins are sufficient to localize reporter proteins in the endoplasmic reticulum and that other localization signals may be contained in the ectodomain of E1 protein. To identify such signals we generated chimeric proteins between E1 and two reporter proteins, the human CD8 glycoprotein and the human alkaline phosphatase, and analyzed their subcellular localization in stable as well as transient transfectants. Our results showed that (i) an independent localization determinant for the endoplasmic reticulum is present in the juxtamembrane region of the ectodomain of E1 protein and (ii) the localization dictated by this determinant is either due to direct retention or to a recycling mechanism from the intermediate compartment/cis-Golgi complex region, which is clearly different from those previously described for other retrieval signals. These results show for the first time in mammalian cells that the localization in the endoplasmic reticulum of transmembrane protein can be determined by specific targeting signals acting in the lumen of the compartment.
Collapse
Affiliation(s)
- G Mottola
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Pedrazzini E, Villa A, Longhi R, Bulbarelli A, Borgese N. Mechanism of residence of cytochrome b(5), a tail-anchored protein, in the endoplasmic reticulum. J Cell Biol 2000; 148:899-914. [PMID: 10704441 PMCID: PMC2174551 DOI: 10.1083/jcb.148.5.899] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum (ER) proteins maintain their residency by static retention, dynamic retrieval, or a combination of the two. Tail-anchored proteins that contain a cytosolic domain associated with the lipid bilayer via a hydrophobic stretch close to the COOH terminus are sorted within the secretory pathway by largely unknown mechanisms. Here, we have investigated the mode of insertion in the bilayer and the intracellular trafficking of cytochrome b(5) (b[5]), taken as a model for ER-resident tail-anchored proteins. We first demonstrated that b(5) can acquire a transmembrane topology posttranslationally, and then used two tagged versions of b(5), N-glyc and O-glyc b(5), containing potential N- and O-glycosylation sites, respectively, at the COOH-terminal lumenal extremity, to discriminate between retention and retrieval mechanisms. Whereas the N-linked oligosaccharide provided no evidence for retrieval from a downstream compartment, a more stringent assay based on carbohydrate acquisition by O-glyc b(5) showed that b(5) gains access to enzymes catalyzing the first steps of O-glycosylation. These results suggest that b(5) slowly recycles between the ER and the cis-Golgi complex and that dynamic retrieval as well as retention are involved in sorting of tail-anchored proteins.
Collapse
Affiliation(s)
- Emanuela Pedrazzini
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
| | - Antonello Villa
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
- Biological and Technological Research Department, Scientific Institute San Raffaele, Milan, Italy 20132
| | - Renato Longhi
- Consiglio Nazionale Ricerche Institute of Biocatalysis and Molecular Recognition, Milan, Italy 20133
| | - Alessandra Bulbarelli
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
| | - Nica Borgese
- Consiglio Nazionale Ricerche Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy 20129
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia (Catanzaro), Italy 88021
| |
Collapse
|
6
|
Potter MD, Nicchitta CV. Ribosome-independent regulation of translocon composition and Sec61alpha conformation. J Biol Chem 2000; 275:2037-45. [PMID: 10636907 DOI: 10.1074/jbc.275.3.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complexes of similar composition were identified in digitonin extracts of ribosome-free membranes, indicating that the ribosome does not define the composition of the digitonin-soluble translocon. Whereas in digitonin solution a highly electrostatic ribosome-translocon junction is observed, no stable interactions between ribosomes and Sec61alpha, ribophorin I, or TRAPalpha were observed following solubilization of RM with lipid-derived detergents at physiological salt concentrations. Sec61alpha was found to exist in at least two conformational states, as defined by mild proteolysis. A protease-resistant form was observed in RM and detergent-solubilized RM. Removal of peripheral proteins and ribosomes markedly enhanced the sensitivity of Sec61alpha to proteolysis, yet the readdition of inactive ribosomes to salt-washed membranes yielded only modest reductions in protease sensitivity. Addition of sublytic concentrations of detergents to salt-washed RM markedly decreased the protease sensitivity of Sec61alpha, indicating that a protease-resistant conformation of Sec61alpha can be conferred in a ribosome-independent manner.
Collapse
Affiliation(s)
- M D Potter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
7
|
Kumar V, Heinemann FS, Ozols J. Interleukin-2 induces N-glycosylation in T-cells: characterization of human lymphocyte oligosaccharyltransferase. Biochem Biophys Res Commun 1998; 247:524-9. [PMID: 9642163 DOI: 10.1006/bbrc.1998.8780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the enzyme mediating N-glycosylation in "resting" and activated lymphocytes. Normal peripheral blood lymphocytes (PBLs) were found to have low activity for glycosylation of a synthetic glycan acceptor peptide. N-glycosylation activity increased 10-fold after mitogen activation of PBLs. N-glycosylation activity remained elevated during long-term culture and expansion of human lymphocytes when growth was supported by interleukin-2. To our knowledge, this is the first biochemical evidence for induction of endoplasmic reticulum functions during T-cell activation. The enzyme mediating N-glycosylation in lymphocytes was localized predominantly but not entirely to a microsomal organelle by subcellular fractionation. After solubilization and 85-fold purification from salt-washed microsomes, the enzyme preparation contained four predominant proteins. N-terminal sequence analysis identified the proteins as ribophorin I, ribophorin II (doublet), and a 50-kDa homologue of Wbp1, a yeast protein essential for N-glycosylation.
Collapse
Affiliation(s)
- V Kumar
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.
| | | | | |
Collapse
|
8
|
Juin P, Thieffry M, Henry JP, Vallette FM. Relationship between the peptide-sensitive channel and the mitochondrial outer membrane protein translocation machinery. J Biol Chem 1997; 272:6044-50. [PMID: 9038228 DOI: 10.1074/jbc.272.9.6044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The peptide-sensitive channel (PSC), a cationic channel of the mitochondrial outer membrane, is blocked by synthetic mitochondrial presequences and by nonmitochondrial basic peptides such as dynorphin B(1-13). Both types of peptides are imported into mitochondria. However, the import of dynorphin B(1-13) had to be further characterized since its properties differed from those of the general import pathway used by mitochondrial peptides. Cross-linking experiments with iodinated dynorphin B(1-13) led to the labeling of TOM 40/ISP 42, a component of the protein import machinery of the outer membrane. Accordingly, dynorphin B(1-13) could also be used as a presequence to direct the import of a cytosolic protein into the mitochondria. Pretreatment of intact mitochondria by trypsin removed components capable of discriminating between true mitochondrial presequences and other basic peptides active on the PSC. After proteolysis, both types of peptides appeared to cross the outer membrane through the same pathway. Involvement of the PSC in the translocation complex was shown by immunoprecipitation of the PSC activity by anti-ISP 42 antibodies. Taken together, the present data reinforce the hypothesis that the PSC is the pore responsible for the translocation of protein through the outer membrane.
Collapse
Affiliation(s)
- P Juin
- Service de Neurobiologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 9071, Institut de Biologie Physico-Chimique, 13 rue P. et M. Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
9
|
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372:425-32. [PMID: 7984236 DOI: 10.1038/372425a0] [Citation(s) in RCA: 8695] [Impact Index Per Article: 289.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanisms that balance food intake and energy expenditure determine who will be obese and who will be lean. One of the molecules that regulates energy balance in the mouse is the obese (ob) gene. Mutation of ob results in profound obesity and type II diabetes as part of a syndrome that resembles morbid obesity in humans. The ob gene product may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot.
Collapse
Affiliation(s)
- Y Zhang
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
10
|
Christensen AK. Negatively-stained polysomes on rough microsome vesicles viewed by electron microscopy: further evidence regarding the orientation of attached ribosomes. Cell Tissue Res 1994; 276:439-44. [PMID: 8062339 DOI: 10.1007/bf00343942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rough microsomes, derived from rough endoplasmic reticulum of rat liver, were studied by electron microscopy after negative staining, to seek further information about the orientation of ribosomal small and large subunits in bound polysomes. Rough microsomal vesicles were fixed with 2% formaldehyde, centrifuged onto electron-microscopic grid membranes, and were then negatively-stained with 2% phosphotungstic acid. In these preparations, viewed with the electron microscope, flattened rough microsomal vesicles with bound polysomes were sometimes discernible, and the individual ribosomes in the polysomes occasionally showed small and large subunits. The small subunits were uniformly oriented toward the inside of the polysomal curve. The large and small subunits appeared to be alongside one another on the membrane, consistent with the orientation that has been described by Unwin and his co-workers. The boundary between the small and large subunits occurred at approximately the same level in the ribosome where inter-ribosomal strands have been described previously in surface views of bound polysomes in positively-stained electron-microscopic tissue sections. This further confirms the identity of the strands as messenger RNA.
Collapse
Affiliation(s)
- A K Christensen
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616
| |
Collapse
|
11
|
Lin J, Wu X, Kreibich G, Sun T. Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42095-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Abstract
The past year has seen significant advances in the field of protein translocation: the roles of the signal recognition particle and its receptor have been understood in greater detail; many membrane components responsible for translocation have been identified; and insight has been gained into how proteins cross membranes.
Collapse
Affiliation(s)
- S Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021
| |
Collapse
|
13
|
Fèvre F, Henry JP, Thieffry M. Solubilization and reconstitution of the mitochondrial peptide-sensitive channel. J Bioenerg Biomembr 1993; 25:55-60. [PMID: 7680031 DOI: 10.1007/bf00768068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In addition to the voltage-dependent anion channel (VDAC), mitochondrial outer membranes contain a cationic channel of large conductance, which is blocked by a mitochondrial addressing peptide (peptide-sensitive channel, PSC). Bovine adrenal cortex mitochondria were solubilized in 1.5% octyl beta-glucoside, and membrane vesicles were reconstituted by slow dilution with a low ionic strength buffer. The reconstituted vesicles contained a functional channel possessing the electrical characteristics of the cationic channel, including its sensitivity to the mitochondrial addressing peptide. Important features of the described protocol are the nature of the detergent, its concentration, and the addition of glycerol during the whole procedure. No solubilization could be observed in the presence of cholate.
Collapse
Affiliation(s)
- F Fèvre
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 23, Gif sur Yvette, France
| | | | | |
Collapse
|
14
|
Klappa P, Zimmermann M, Dierks T, Zimmermann R. Components and mechanisms involved in transport of proteins into the endoplasmic reticulum. Subcell Biochem 1993; 21:17-40. [PMID: 8256266 DOI: 10.1007/978-1-4615-2912-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Klappa
- Zentrum Biochemie/Abteilung Biochemie II der Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
15
|
Rowling PJ, Freedman RB. Folding, assembly, and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem 1993; 21:41-80. [PMID: 8256274 DOI: 10.1007/978-1-4615-2912-5_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P J Rowling
- Biological Laboratory, University of Kent, Canterbury, United Kingdom
| | | |
Collapse
|
16
|
Abstract
The synthesis of biological membranes requires the insertion of proteins into a lipid bilayer. The rough endoplasmic reticulum of eukaryotic cells is a principal site of membrane biogenesis. The insertion of proteins into the membrane of the endoplasmic reticulum is mediated by a resident proteinaceous machinery. Over the last five years several different experimental approaches have provided information about the components of the machinery and how it may function.
Collapse
Affiliation(s)
- S High
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
17
|
Ivessa NE, De Lemos-Chiarandini C, Tsao YS, Takatsuki A, Adesnik M, Sabatini DD, Kreibich G. O-glycosylation of intact and truncated ribophorins in brefeldin A-treated cells: newly synthesized intact ribophorins are only transiently accessible to the relocated glycosyltransferases. J Cell Biol 1992; 117:949-58. [PMID: 1577870 PMCID: PMC2289488 DOI: 10.1083/jcb.117.5.949] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribophorins I and II are type I transmembrane glycoproteins of the ER that are segregated to the rough domains of this organelle. Both ribophorins appear to be part of the translocation apparatus for nascent polypeptides that is associated with membrane-bound ribosomes and participate in the formation of a proteinaceous network within the ER membrane that also includes other components of the translocation apparatus. The ribophorins are both highly stable proteins that lack O-linked sugars but each contains one high mannose N-linked oligosaccharide that remains endo H sensitive throughout their lifetimes. We have previously shown (Tsao, Y. S., N. E. Ivessa, M. Adesnik, D. D. Sabatini, and G. Kreibich. 1992. J. Cell Biol. 116:57-67) that a COOH-terminally truncated variant of ribophorin I that contains only the first 332 amino acids of the luminal domain (RI332), when synthesized in permanent transformants of HeLa cells, undergoes a rapid degradation with biphasic kinetics in the ER itself and in a second, as yet unidentified nonlysosomal pre-Golgi compartment. We now show that in cells treated with brefeldin A (BFA) RI332 molecules undergo rapid O-glycosylation in a multistep process that involves the sequential addition of N-acetylgalactosamine, galactose, and terminal sialic acid residues. Addition of O-linked sugars affected all newly synthesized RI332 molecules and was completed soon after synthesis with a half time of about 10 min. In the same cells, intact ribophorins I and II also underwent O-linked glycosylation in the presence of BFA, but these molecules were modified only during a short time period immediately after their synthesis was completed, and the modification affected only a fraction of the newly synthesized polypeptides. More important, these molecules synthesized before the addition of BFA were not modified by O-glycosylation. The same is true for ribophorin I when overexpressed in HeLa cells although it is significantly less stable than the native polypeptide in control cells. We, therefore, conclude that soon after their synthesis, ribophorins lose their susceptibility to the relocated Golgi enzymes that effect the O-glycosylation, most likely as a consequence of a conformational change in the ribophorins that occurs during their maturation, although it cannot be excluded that rapid integration of these molecules into a supramolecular complex in the ER membrane leads to their inaccessibility to these enzymes.
Collapse
Affiliation(s)
- N E Ivessa
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | | | | | | | | | |
Collapse
|
18
|
Tsao YS, Ivessa NE, Adesnik M, Sabatini DD, Kreibich G. Carboxy terminally truncated forms of ribophorin I are degraded in pre-Golgi compartments by a calcium-dependent process. J Cell Biol 1992; 116:57-67. [PMID: 1730749 PMCID: PMC2289265 DOI: 10.1083/jcb.116.1.57] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two COOH terminally truncated variants of ribophorin I (RI), a type I transmembrane glycoprotein of 583 amino acids that is segregated to the rough portions of the ER and is associated with the protein-translocating apparatus of this organelle, were expressed in permanent HeLa cell transformants. Both variants, one membrane anchored but lacking part of the cytoplasmic domain (RL467) and the other consisting of the luminal 332 NH2-terminal amino acids (RI332), were retained intracellularly but, in contrast to the endogenous long lived, full length ribophorin I (t 1/2 = 25 h), were rapidly degraded (t 1/2 less than 50 min) by a nonlysosomal mechanism. The absence of a measurable lag phase in the degradation of both truncated ribophorins indicates that their turnover begins in the ER itself. The degradation of RI467 was monophasic (t 1/2 = 50 min) but the rate of degradation of RI332 molecules increased about threefold approximately 50 min after their synthesis. Several pieces of evidence suggest that the increase in degradative rate is the consequence of the transport of RI332 molecules that are not degraded during the first phase to a second degradative compartment. Thus, when added immediately after labeling, ionophores that inhibit vesicular flow out of the ER, such as carbonyl cyanide m-chlorophenylhydrazone (CCCP) and monensin, suppressed the second phase of degradation of RI332. On the other hand, when CCCP was added after the second phase of degradation of RI332 was initiated, the degradation was unaffected. Moreover, in cells treated with brefeldin A the degradation of RI332 became monophasic, and took place with a half-life intermediate between those of the two normal phases. These results point to the existence of two subcellular compartments where abnormal ER proteins can be degraded. One is the ER itself and the second is a non-lysosomal pre-Golgi compartment to which ER proteins are transported by vesicular flow. A survey of the effects of a variety of other ionophores and protease inhibitors on the turnover of RI332 revealed that metalloproteases are involved in both phases of the turnover and that the maintenance of a high Ca2+ concentration is necessary for the degradation of the luminally truncated ribophorin.
Collapse
Affiliation(s)
- Y S Tsao
- Department of Cell Biology, New York University School of Medicine, New York 10016
| | | | | | | | | |
Collapse
|
19
|
Zimmerman DL, Walter P. An ATP-binding membrane protein is required for protein translocation across the endoplasmic reticulum membrane. CELL REGULATION 1991; 2:851-9. [PMID: 1801920 PMCID: PMC361880 DOI: 10.1091/mbc.2.10.851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.
Collapse
Affiliation(s)
- D L Zimmerman
- Department of Biochemistry and Biophysics University of California, Medical School San Francisco 94143-0448
| | | |
Collapse
|
20
|
Production of the glycosylphosphatidylinositol-specific phospholipase D by the islets of Langerhans. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55185-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Sanderson C, Meyer D. Purification and functional characterization of membranes derived from the rough endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98857-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Glycosylation site-binding protein is not required for N-linked glycoprotein synthesis. Proc Natl Acad Sci U S A 1991; 88:1986-90. [PMID: 2000403 PMCID: PMC51151 DOI: 10.1073/pnas.88.5.1986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In prior studies we identified a 57-kDa protein in the lumen of the endoplasmic reticulum that, in addition to having both protein disulfide isomerase and thyroid hormone-binding protein activities, bound a photoaffinity probe containing the N-glycosylation-site sequence Asn-Xaa-Ser/Thr. It was hypothesized that this multifunctional protein, called glycosylation site-binding protein (GSBP), participated in the process of N-glycosylation of proteins. To test this hypothesis we have employed various conditions to deplete the lumen of GSBP and then assess the level of N-glycosylation catalyzed by oligosaccharyltransferase (OTase). Although most conditions leading to depletion resulted in partial loss of OTase activity, this loss was independent of the extent of GSBP depletion. Indeed, virtually complete loss (greater than 99%) of GSBP with partial retention of OTase activity was frequently observed. Moreover, repletion of the microsomal lumen with GSBP did not restore OTase activity to control levels. Thus, no correlation between GSBP content and OTase activity before or after reconstitution was found. These results suggest that this multifunctional 57-kDa protein is not an essential component of the enzymatic reaction in which oligosaccharide chains are transferred from dolichyl-P-P-GlcNAc2Man9Glc3 to nascent polypeptides or to synthetic tripeptide acceptors.
Collapse
|
23
|
Nicchitta C, Migliaccio G, Blobel G. Reconstitution of secretory protein translocation from detergent-solubilized rough microsomes. Methods Cell Biol 1991; 34:263-85. [PMID: 1943804 DOI: 10.1016/s0091-679x(08)61685-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- C Nicchitta
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
24
|
Tokuda H, Shiozuka K, Mizushima S. Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:583-9. [PMID: 2170124 DOI: 10.1111/j.1432-1033.1990.tb19264.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protein translocation system of Escherichia coli was solubilized and reconstituted, using the octylglucoside dilution method, into liposomes prepared from E. coli phospholipids. SecA, ATP, phospholipids and membrane proteins were found to be essential for the translocation of a model secretory protein, uncleavable OmpF-Lpp. Phospholipids were found to play roles not only in liposome formation but also in the stabilization of membrane proteins during the octylglucoside extraction. The effects of IgGs specific to five distinct regions of the SecY molecule on protein translocation into proteoliposomes were examined. IgGs specific to the amino- and carboxyl-terminal regions of the SecY molecule strongly inhibited the translocation activity, indicating the participation of SecY in the translocation. Generation of a proton motive force due to the simultaneous reconstitution of F0F1-ATPase was also observed in the presence of ATP. An ATP-generating system consisting of creatine phosphate and creatine kinase significantly enhanced the formation of the proton motive force and the protein translocation activity of the proteoliposomes. Collapse of the proton motive force thus generated partially inhibited the translocation.
Collapse
Affiliation(s)
- H Tokuda
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
25
|
Abstract
Attachment of ribosomes to the membrane of the endoplasmic reticulum is one of the crucial first steps in the transport and secretion of intracellular proteins in mammalian cells. The process is mediated by an integral membrane protein of relative molecular mass 180,000 (Mr 180K), having a large (at least 160K) cytosolic domain that, when proteolytically detached from the membrane, can competitively inhibit the binding of ribosomes to intact membranes. Isolation of this domain has led to the identification, purification and characterization of the intact ribosome receptor, as well as its functional reconstitution into lipid vesicles.
Collapse
Affiliation(s)
- A J Savitz
- Department of Biological Chemistry, UCLA School of Medicine 90024
| | | |
Collapse
|
26
|
Behal A, Prakash K, D'Eustachio P, Adesnik M, Sabatini DD, Kreibich G. Structure and chromosomal location of the rat ribophorin I gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39065-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|