1
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
2
|
Parker JA, Volmar AY, Pavlopoulos S, Mattos C. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D. Structure 2018; 26:810-820.e4. [PMID: 29706533 DOI: 10.1016/j.str.2018.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Structures of wild-type K-Ras from crystals obtained in the presence of guanosine triphosphate (GTP) or its analogs have remained elusive. Of the K-Ras mutants, only K-RasG12D and K-RasQ61H are available in the PDB representing the activated form of the GTPase not in complex with other proteins. We present the crystal structure of wild-type K-Ras bound to the GTP analog GppCH2p, with K-Ras in the state 1 conformation. Signatures of conformational states obtained by one-dimensional proton NMR confirm that K-Ras has a more substantial population of state 1 in solution than H-Ras, which predominantly favors state 2. The oncogenic mutant K-RasG12D favors state 2, changing the balance of conformational states in favor of interactions with effector proteins. Differences in the population of conformational states between K-Ras and H-Ras, as well as between K-Ras and its mutants, can provide a structural basis for focused targeting of the K-Ras isoform in cancer-specific strategies.
Collapse
Affiliation(s)
- Jillian A Parker
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Alicia Y Volmar
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Carla Mattos
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GMC, Rottapel R, Stambolic V, Ikura M. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Methods 2012; 57:473-85. [PMID: 22750304 DOI: 10.1016/j.ymeth.2012.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/18/2023] Open
Abstract
The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.
Collapse
Affiliation(s)
- Christopher B Marshall
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, University Health Network, 101 College Street, Rm 4-804 Toronto Medical Discovery Tower, MaRS Building, Toronto, ON, Canada M5G 1L7
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Li G, Zhang XC. GTP hydrolysis mechanism of Ras-like GTPases. J Mol Biol 2004; 340:921-32. [PMID: 15236956 DOI: 10.1016/j.jmb.2004.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/30/2004] [Accepted: 06/04/2004] [Indexed: 11/19/2022]
Abstract
The Ras-like GTPases regulate diverse cellular functions via the chemical cycle of binding and hydrolyzing GTP molecules. They alternate between GTP- and GDP-bound conformations. The GTP-bound conformation is biologically active and promotes a cellular function, such as signal transduction, cytoskeleton organization, protein synthesis/translocation, or a membrane budding/fusion event. GTP hydrolysis turns off the GTPase switch by converting it to the inactive GDP-bound conformation. The fundamental GTP hydrolysis mechanism by these GTPases has generated considerable interest over the last two decades but remained to be firmly established. This review provides an update on the catalytic mechanism with discussions on recent developments from kinetic, structural, and model studies in the context of the various GTP hydrolysis models proposed over the years.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd, BMSB 853, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
5
|
Hitchens TK, McCallum SA, Rule GS. Data requirements for reliable chemical shift assignments in deuterated proteins. JOURNAL OF BIOMOLECULAR NMR 2003; 25:11-23. [PMID: 12566996 DOI: 10.1023/a:1021912002051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The information required for chemical shift assignments in large deuterated proteins was investigated using a Monte Carlo approach (Hitchens et al., 2002). In particular, the consequences of missing amide resonances on the reliability of assignments derived from C alpha and CO or from C alpha and C beta chemical shifts was investigated. Missing amide resonances reduce both the number of correct assignments as well as the confidence in these assignments. More significantly, a number of undetectable errors can arise when as few as 9% of the amide resonances are missing from the spectra. However, the use of information from residue specific labeling as well as local and long-range distance constraints improves the reliability and extent of assignment. It is also shown that missing residues have only a minor effect on the assignment of protein-ligand complexes using C alpha and CO chemical shifts and C alpha inter-residue connectivity, provided that the known chemical shifts of the unliganded protein are utilized in the assignment process.
Collapse
Affiliation(s)
- T Kevin Hitchens
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
6
|
Guignard L, Ozawa K, Pursglove SE, Otting G, Dixon NE. NMR analysis of in vitro-synthesized proteins without purification: a high-throughput approach. FEBS Lett 2002; 524:159-62. [PMID: 12135760 DOI: 10.1016/s0014-5793(02)03048-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cell-free protein expression system was established that provides protein samples of adequate concentration and purity for direct NMR analysis. The Escherichia coli peptidyl-prolyl cis-trans isomerase PpiB was expressed in this system with dual amino acid-selective isotope labeling to identify the NMR signal from the active site-residue Arg87. Addition of the substrate succinyl-Ala-Ala-Pro-Phe-p-nitroanilide selectively shifted its (15)N-HSQC cross peak, confirming binding to the active site. As cell-free protein expression provides high yields of protein per unit mass of labeled amino acid and sample handling is minimal, this strategy presents an exceptionally inexpensive and rapid approach to protein analysis.
Collapse
Affiliation(s)
- Laurent Guignard
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
7
|
Farrar CT, Ma J, Singel DJ, Halkides CJ. Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation. Structure 2000; 8:1279-87. [PMID: 11188692 DOI: 10.1016/s0969-2126(00)00532-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The means by which the protein GAP accelerates GTP hydrolysis, and thereby downregulates growth signaling by p21Ras, is of considerable interest, particularly inasmuch as p21 mutants are implicated in a number of human cancers. A GAP "arginine finger," identified by X-ray crystallography, has been suggested as playing the principal role in the GTP hydrolysis. Mutagenesis studies, however, have shown that the arginine can only partially account for the 10(5)-fold increase in the GAP-accelerated GTPase rate of p21. RESULTS We report electron spin-echo envelope modulation (ESEEM) studies of GAP-334 complexed with GMPPNP bound p21 in frozen solution, together with molecular-dynamics simulations. Our results indicate that, in solution, the association of GAP-334 with GTP bound p21 induces a conformational change near the metal ion active site of p21. This change significantly reduces the distances from the amide groups of p21 glycine residues 60 and 13 to the divalent metal ion. CONCLUSIONS The movement of glycine residues 60 and 13 upon the binding of GAP-334 in solution provides a physical basis to interpret prior mutagenesis studies, which indicated that Gly-60 and Gly-13 of p21 play important roles in the GAP-dependent GTPase reaction. Gly-60 and Gly-13 may play direct catalytic roles and stabilize the attacking water molecule and beta,gamma-bridging oxygen, respectively, in p21. The amide proton of Gly-60 could also play an indirect role in catalysis by supplying a crucial hydrogen bonding interaction that stabilizes loop L4 and therefore the position of other important catalytic residues.
Collapse
Affiliation(s)
- C T Farrar
- Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
8
|
Liang Z, Mather T, Li G. GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Biochem J 2000; 346 Pt 2:501-8. [PMID: 10677372 PMCID: PMC1220879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Structural and biochemical data indicate the importance of the phosphate-binding loop residues Gly(12) and Gly(13) of Ras both in the GTP hydrolysis reaction and in biological activity, but these two residues are not conserved in other Ras-related GTPases. To gain a better understanding of this region in GTP hydrolysis and GTPase function, we used the Ras-related Rab5 GTPase as a model for comparison, and substituted the Ala(30) residue (the equivalent of Gly(13) of Ras) with all the other 19 amino acids. The resulting mutants were analysed for GTP hydrolysis, GTP binding, GTP dissociation and biological activity. Only the substitution of alanine with proline reduced the GTPase activity by an order of magnitude. This effect is in sharp contrast with the observation that a proline substitution at the neighbouring position (Gly(12) of Ras) has little effect on the GTPase activity. Whereas most other substitutions showed either a small negative effect or no effect on the GTPase activity, the arginine substitution surprisingly stimulated the GTPase activity by 5-fold. Molecular modelling suggests that this built-in arginine mimics the catalytic arginine residues found in trimeric GTPases and GTPase-activating proteins in providing the positive charge to facilitate the GTP hydrolysis reaction. We investigated further the biological activity of the Rab5 mutants in relation to stimulating endocytosis. When expressed in cultured baby hamster kidney cells, both arginine and proline mutants, like wild-type Rab5, stimulated endocytosis. However, the arginine mutant was a more potent stimulator than the proline mutant (3-fold stimulation as against 1.7-fold). The tryptophan mutant, on the other hand, was completely deficient in activity in terms of the stimulation of endocytosis, demonstrating the importance of the phosphate-binding loop in Rab GTPase function.
Collapse
Affiliation(s)
- Z Liang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd., BMSB 853, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
9
|
Maegley KA, Admiraal SJ, Herschlag D. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Proc Natl Acad Sci U S A 1996; 93:8160-6. [PMID: 8710841 PMCID: PMC38640 DOI: 10.1073/pnas.93.16.8160] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.
Collapse
Affiliation(s)
- K A Maegley
- Department of Biochemistry, Beckman Center, Stanford University, CA 94305-5307, USA
| | | | | |
Collapse
|
10
|
Halkides CJ, Redfield AG. The effect of 17O on the relaxation of an amide proton within a hydrogen bond. JOURNAL OF BIOMOLECULAR NMR 1995; 5:362-366. [PMID: 7647555 DOI: 10.1007/bf00182279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The relaxation rates of the multiple-quantum coherence for the amide hydrogen of Gly13 in ras p21.GDP were determined in the presence and absence of 17O labeling in the beta-phosphate of GDP. No significant difference could be observed between labeled and unlabeled samples, in spite of the fact that the hydrogen bond from the amide group of Gly13 to the beta-phosphate is shorter than is typical, based on its chemical shift. For macromolecules in which an oxygen atom is the acceptor of a hydrogen bond, dipolar coupling between 17O and hydrogen is unlikely to be observable, except for extremely short H-bonds.
Collapse
Affiliation(s)
- C J Halkides
- Department of Biochemistry, Brandeis University, Waltham, MA 02254, USA
| | | |
Collapse
|
11
|
Ramesh V, Frederick RO, Syed SE, Gibson CF, Yang JC, Roberts GC. The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:601-8. [PMID: 7957174 DOI: 10.1111/j.1432-1033.1994.00601.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of the binding of the corepressor L-tryptophan and an operator oligonucleotide to Escherichia coli trp repressor have been studied, using selective 15N labelling to permit observation of the backbone amide resonances of 50 of the 107 residues of the protein monomer. Repressor molecules selectively labelled in turn with [15N]alanine, [15N]glutamate, [15N]isoleucine, [15N]leucine and [15N]methionine were prepared by isolating them from prototrophic E. coli cells grown in media containing a mixture of unlabelled and the appropriate 15N-enriched amino acids. Analysis of the heteronuclear correlation spectra of the labelled repressors shows the value of selective labelling in resolving the crosspeaks of, for example, the 19 leucine and 12 glutamate residues. All 50 residues studied show measurable changes in amide 1H and/or 15N chemical shift on the binding of tryptophan and/or the operator oligonucleotide, showing clearly that ligand binding has effects which are transmitted throughout almost the whole protein. Large chemical shift changes on ligand binding are seen in residues in the tryptophan binding site and in the 'helix-turn-helix' DNA-binding domain, but also in residues in helices C and F remote from the ligand binding sites. On operator binding there is selective broadening of the signals of residues in the N-terminal region of the protein and in the DNA-binding domain, perhaps reflecting a conformational equilibrium.
Collapse
Affiliation(s)
- V Ramesh
- Department of Biochemistry, University of Leicester, England
| | | | | | | | | | | |
Collapse
|
12
|
Yamasaki K, Shirouzu M, Muto Y, Fujita-Yoshigaki J, Koide H, Ito Y, Kawai G, Hattori S, Yokoyama S, Nishimura S. Site-directed mutagenesis, fluorescence, and two-dimensional NMR studies on microenvironments of effector region aromatic residues of human c-Ha-Ras protein. Biochemistry 1994; 33:65-73. [PMID: 8286364 DOI: 10.1021/bi00167a009] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Tyr residues in positions 32 and 40 of human c-Ha-Ras protein were replaced by site-directed mutagenesis (Y32F, Y32W, Y40K, and Y40W) to examine their roles in the signal-transducing activity and the sensitivity to the GTPase activating protein (GAP). The signal-transducing activity of the oncogenic Ras protein in PC12 cells was lost upon mutations Y32F and Y40K, but retained upon mutations Y32W and Y40W. These results suggest that residues 32 and 40 are both required to have aromatic groups and residue 32 is further required to have a hydrogen donor. On the other hand, three mutations (Y32F, Y32W, and Y40W) caused no appreciable reduction in either GAP-binding affinity or GAP sensitivity. By the Y40K mutation, GAP-binding affinity was slightly lowered, while GAP sensitivity was drastically impaired. Therefore, for residues 32 and 40 of Ras, interactions with GAP appear to be different from those with the target of signal transduction in the PC12 cell. As for the Y32W-Ras protein bound with an unhydrolyzable GTP analogue (GMPPNP), the Trp32 fluorescence is appreciably red-shifted, weaker, and more susceptible to KI quenching as compared to that of the GDP-bound form. Two-dimensional NMR spectroscopy with selectively deuterated Ras proteins revealed fewer and weaker nuclear Overhauser effects on the aromatic protons of Trp32 in the GMPPNP-bound form than in the GDP-bound form. This indicates that the side chain of Trp32 is more exposed to the solvent in the GMPPNP-bound form than in the GDP-bound form.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Yamasaki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hazlett TL, Moore KJ, Lowe PN, Jameson DM, Eccleston JF. Solution dynamics of p21ras proteins bound with fluorescent nucleotides: a time-resolved fluorescence study. Biochemistry 1993; 32:13575-83. [PMID: 8257693 DOI: 10.1021/bi00212a025] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The solution dynamics of normal and transforming p21ras proteins in both the GTP- and GDP-bound forms were examined with time-resolved fluorescence spectroscopy. The fluorescent 2'(3')-O-(N-methylanthraniloyl) derivatives (mant derivatives) of GTP, dGTP, and GDP and the aminocoumarin and fluorescein derivatives of GTP and GDP were synthesized and used as reporter groups. The fluorescence lifetimes at 5 degrees C of the mant nucleotide derivatives increased from approximately 4 ns in solution to approximately 9 ns when bound to p21ras. At 30 degrees C, there was a 7.8% difference in lifetime between normal p21ras.mantGTP and p21ras.mantGDP, but no difference between similar complexes of the [Asp-12]p21ras protein. These data are consistent with steady-state fluorescence intensity differences among p21ras.mantGTP, p21ras.mantGDP, and the free nucleotides. Rotational correlation times for the mantGTP- and mantGDP-bound p21 proteins, N-ras, K-ras, and H-ras, were similar at 26 ns (5 degrees C), which is significantly longer than the 15-ns rotational correlation time predicted for a globular 21,000-Da protein. The p21-bound fluorescein and aminocoumarin nucleotide derivatives reported correlation times of 19 and 29 ns, respectively. Global analysis of the three fluorophore.p21 complexes with linked protein rotational correlation functions were best fit with a common rotational correlation time of 28 ns. Gel permeation chromatography of the GDP and mantGDP complexes of normal p21N-ras also showed greater apparent molecular weights than were expected in both cases, demonstrating that the high rotational correlation times obtained from time-resolved fluorescence measurements were not a result of the introduction of the fluorophore.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T L Hazlett
- Department of Physics, University of Illinois at Urbana, Champaign 61801
| | | | | | | | | |
Collapse
|
14
|
Miller AF, Halkides CJ, Redfield AG. An NMR comparison of the changes produced by different guanosine 5'-triphosphate analogs in wild-type and oncogenic mutant p21ras. Biochemistry 1993; 32:7367-76. [PMID: 8338834 DOI: 10.1021/bi00080a006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have used nuclear magnetic resonance spectroscopy to compare the conformational changes produced by replacement of bound GDP by the GTP analogs guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanylyl (beta, gamma-imido)diphosphate (GMPPNP) in wild-type p21ras as well as the oncogenic mutant (G12D)p21ras. We have used isotope-edited nuclear magnetic resonance spectroscopy to observe the amide resonances of selectively [15N]glycine and [15N]isoleucine labeled p21ras-nucleotide complexes. We find that eight of the nine resonances that respond strongly to GTP gamma S and GMPPNP binding are the same but that the nature of the effect appears different. With GTP gamma S, seven new resonances replace the eight resonances specifically associated with GDP-p21ras, but in GMPPNP-p21ras only two resonances replace the GDP-specific resonances that are lost. The resonance of Gly 60 is clearly shown to be responsive to replacement of GDP by GMPPNP, in addition to glycines 10, 12, 13, 15, and 75 and isoleucines 36, 21, and one other, that were found to respond to GTP gamma S by Miller et al. [Miller, A.-F., Papastavros, M. Z., & Redfield, A.G. (1992) Biochemistry 31, 10208-10216). The two GMPPNP-specific resonances observed appear in positions similar to GTP gamma S-specific resonances, and the GTP gamma S-specific resonances, although not lost altogether, are weaker than the GDP-specific resonances they replace. Thus, the two GTP analogs have similar effects on the spectrum of p21ras, suggesting that the effects are due to features common to both analogs. We propose that active site resonance intensities are specifically attenuated when GTP analogs are bound because interactions with the gamma-phosphate of GTP analogs couple the flexible loops 2 and 4 to the rigid loop 1 of the active site. The conformational heterogeneity and dynamics of loops 2 and 4 would be constrained by loop 1 but also transmitted to it. Coupled conformational exchange on a common intermediate time scale could explain the simultaneous loss of resonances from all three loops in the active site. In our comparison of wild-type and (G12D) GDP-p21ras, we find that the resonance of Ile 36 is not visible in (G12D)p21ras. In (G12D)p21ras, replacement of GDP by GTP gamma S causes the resonances of glycines 10, 13, 15, 60, and 75 and isoleucine 21 and four others to shift from their GDP-specific positions. GTP gamma S-specific resonances are observed for all but two of these.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A F Miller
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
15
|
Löw A, Sprinzl M, Limmer S. Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:781-8. [PMID: 8386636 DOI: 10.1111/j.1432-1033.1993.tb17820.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proton-NMR signals in the downfield region (below approximately 10 ppm) have been shown to provide a useful spectroscopic window to monitor the binding of guanine nucleotides to the active site of GTP/GDP-binding proteins via H-bonds, as specified here by the 21-kDa product of the c-H-ras gene (p21). The time course of the intensity change of certain peaks upon addition of GTP to nucleotide-free p21 corresponds to the GTP hydrolysis rate as determined by HPLC. Though there are fewer potential H-bond acceptors in the GDP-bound protein than in the GTP complex, more downfield peaks are found in the former complex, suggesting tighter binding of GDP. Moreover, inspection of the downfield proton-NMR spectra permits rapid detection of subtle changes of the active site induced by complexation with slowly hydrolyzing GTP analogues resulting from mutations of the amino acid sequence, especially in the phosphate binding loop. Our studies strongly suggest that no major conformational change of the phosphate-binding region occurs upon nucleotide complexation that precedes the catalytic step. Besides, it is suspected that the Ser17 hydroxyl group is involved in nucleotide binding and GTP hydrolysis.
Collapse
Affiliation(s)
- A Löw
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
16
|
Muto Y, Yamasaki K, Ito Y, Yajima S, Masaki H, Uozumi T, Wälchli M, Nishimura S, Miyazawa T, Yokoyama S. Sequence-specific 1H and 15N resonance assignments and secondary structure of GDP-bound human c-Ha-Ras protein in solution. JOURNAL OF BIOMOLECULAR NMR 1993; 3:165-184. [PMID: 8477185 DOI: 10.1007/bf00178260] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
All the backbone 1H and 15N magnetic resonances (except for Pro residues) of the GDP-bound form of a truncated human c-Ha-ras proto-oncogene product (171 amino acid residues, the Ras protein) were assigned by 15N-edited two-dimensional NMR experiments on selectively 15N-labeled Ras proteins in combination with three-dimensional NMR experiments on the uniformly 15N-labeled protein. The sequence-specific assignments were made on the basis of the nuclear Overhauser effect (NOE) connectivities of amide protons with preceding amide and/or C alpha protons. In addition to sequential NOEs, vicinal spin coupling constants for amide protons and C alpha protons and deuterium exchange rates of amide protons were used to characterize the secondary structure of the GDP-bound Ras protein; six beta stands and five helices were identified and the topology of these elements was determined. The secondary structure of the Ras protein in solution was mainly consistent with that in crystal as determined by X-ray analyses. The deuterium exchange rates of amide protons were examined to elucidate the dynamic properties of the secondary structure elements of the Ras protein in solution. In solution, the beta-sheet structure in the Ras protein is rigid, while the second helix (A66-R73) is much more flexible, and the first and fifth helices (S17-124 and V152-L171) are more rigid than other helices. Secondary structure elements at or near the ends of the effector-region loop were found to be much more flexible in solution than in the crystalline state.
Collapse
Affiliation(s)
- Y Muto
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fujita-Yoshigaki J, Ito Y, Yamasaki K, Muto Y, Miyazawa T, Nishimura S, Yokoyama S. Guanine-nucleotide binding activity, interaction with GTPase-activating protein and solution conformation of the human c-Ha-Ras protein catalytic domain are retained upon deletion of C-terminal 18 amino acid residues. JOURNAL OF PROTEIN CHEMISTRY 1992; 11:731-9. [PMID: 1466766 DOI: 10.1007/bf01024974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A truncated human c-Ha-Ras protein that lacks the C-terminal 18 amino acid residues and the truncated Ras protein with the amino acid substitution Gly-->Val in position 12 were prepared by an E. coli overexpression system. The truncated Ras protein showed the same guanine-nucleotide binding activity and GTPase activity as those of the full-length Ras protein. Further, the same extent of GTPase activity enhancement due to GTPase-activating protein was observed for the truncated and full-length Ras proteins. In fact, two-dimensional proton NMR analyses indicated that the tertiary structure of the truncated Ras protein (GDP-bound or GMPPNP-bound) was nearly the same as that of the corresponding catalytic domain of the full-length Ras protein. Moreover, a conformational change around the effector region upon GDP-->GMPPNP exchange occurred in the same manner for both proteins. These observations indicate that the C-terminal flanking region (18 amino acid residues) of the Ras protein does not appreciably interact with the catalytic domain. Therefore, the truncated Ras protein is suitable for studying the molecular mechanism involved in the GTPase activity and the interaction with the GTPase-activating protein. On the other hand, an active form of the truncated Ras protein, unlike that of the full-length Ras protein, did not induce neurite outgrowth of rat pheochromocytoma PC12 cells. Thus, membrane anchoring of the Ras protein through its C-terminal four residues is not required for the interaction of Ras and GAP, but may be essential for the following binding of the Ras-GAP complex with the putative downstream target.
Collapse
Affiliation(s)
- J Fujita-Yoshigaki
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
McIntosh LP, Wand AJ, Lowry DF, Redfield AG, Dahlquist FW. Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 1990; 29:6341-62. [PMID: 2207079 DOI: 10.1021/bi00479a003] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.
Collapse
Affiliation(s)
- L P McIntosh
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
19
|
Neal SE, Eccleston JF, Webb MR. Hydrolysis of GTP by p21NRAS, the NRAS protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc Natl Acad Sci U S A 1990; 87:3562-5. [PMID: 2185475 PMCID: PMC53942 DOI: 10.1073/pnas.87.9.3562] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
2'(3')-O-(N-Methyl)anthraniloylguanosine 5'-triphosphate (mantGTP) is a fluorescent analogue of GTP that has similar properties to the physiological substrate in terms of its binding constant and the kinetics of its interactions with p21NRAS, the NRAS protooncogene product. There is a 3-fold increase in fluorescence intensity when mantGTP binds to p21NRAS. The rate constant for the cleavage of mantGTP complexed with the protein is similar to that of GTP, and cleavage is accompanied by a fluorescence intensity change in the wild-type protein complex. A two-phase fluorescence change also occurs when the nonhydrolyzable analogue 2'(3')-O-(N-methyl)anthraniloylguanosine 5'-[beta, gamma-imido]triphosphate (mantp[NH]ppG) binds to wild-type p21NRAS. The second phase occurs at the same rate as the second phase observed after mantGTP binding. Thus this second phase is probably a conformation change of the p21NRAS nucleotiside triphosphate complex and that the change controls the rate of GTP hydrolysis on the protein. With a transforming mutant, [Asp12]-p21NRAS, there is no second phase of the fluorescence change after mantGTP or mantp[NH]ppG binding, even though mantGTP is hydrolyzed. This shows that an equivalent conformational change does not occur and thus the mutant may stay in a "GTP-like" conformation throughout the GTPase cycle. These results are discussed in terms of the proposed role of p21NRAS in signal transduction and the transforming properties of the mutant.
Collapse
Affiliation(s)
- S E Neal
- National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
20
|
McIntosh LP, Dahlquist FW. Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 1990; 23:1-38. [PMID: 2188278 DOI: 10.1017/s0033583500005400] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of isotopic substitution is a time-honoured method for simplifying the nuclear magnetic resonance spectra of biological macromolecules. For example, the biosynthetic incorporation of a heteronucleus such as15N or13C into a specific amino acid residue in a protein followed by direct observation of the15N or13C NMR spectrum could provide a means to specifically observe a given amino acid type in that protein. By observation of the chemical shift or relaxation properties as a function of pH, ligand concentration, etc. a number of important conclusions concerning the pKavalues of specific residues, the affinity of the protein for various ligands, or dynamic properties of the protein can be deduced. (See Henryet al.1986a,b; 1987 for an elegant modern example). In such situations, direct observation of the heteronucleus is a powerful means to observe environmental changes (Niuet al.1979) but often these measurements are not readily interpretable in terms of alterations of protein structure. Although proton-proton dipolar interactions (NOEs) typically provide the richest source of such structural information, these interactions are not monitored in most experiments which directly observe the heteronucleus.
Collapse
Affiliation(s)
- L P McIntosh
- Department of Chemistry, University of Oregon, Eugene 97403
| | | |
Collapse
|
21
|
Ha JM, Ito Y, Kawai G, Miyazawa T, Miura K, Ohtsuka E, Noguchi S, Nishimura S, Yokoyama S. Conformation of guanosine 5'-diphosphate as bound to a human c-Ha-ras mutant protein: a nuclear Overhauser effect study. Biochemistry 1989; 28:8411-6. [PMID: 2690941 DOI: 10.1021/bi00447a021] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1H NMR spectra of a GDP/GTP-binding domain of human c-Ha-ras gene product (residues 1-171) in which glutamine-61 was replaced by leucine [ras(L61/1-171) protein] were analyzed. By one-dimensional and two-dimensional homonuclear Hartmann-Hahn spectroscopy and nuclear Overhauser effect (NOE) spectroscopy of the complex of the ras(L61/1-171) protein and GDP, the ribose H1', H2', H3', and H4' proton resonances of the bound GDP were identified. The guanine H8 proton resonance of the bound GDP was identified by substituting [8-2H]GDP for GDP. The dependences of the H1' and H8 proton resonance intensities on the duration of irradiation of the H1', H2', H3', and H8 protons were measured. By numerical simulation of these time-dependent NOE profiles, the conformation of the protein-bound GDP was elucidated; the guanosine moiety takes the anti form about the N-glycosidic bond with a dihedral angle of chi = -124 +/- 2 degrees and the ribose ring takes the C2'-endo form. Such an analysis of the conformation of a guanine nucleotide as bound to a GTP-binding protein will be useful for further studies on the molecular mechanism of the conformational activation of ras proteins on ligand substitution of GDP with GTP.
Collapse
Affiliation(s)
- J M Ha
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|