1
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
2
|
Kapinas K, Grandy R, Ghule P, Medina R, Becker K, Pardee A, Zaidi SK, Lian J, Stein J, van Wijnen A, Stein G. The abbreviated pluripotent cell cycle. J Cell Physiol 2013; 228:9-20. [PMID: 22552993 PMCID: PMC3667593 DOI: 10.1002/jcp.24104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.
Collapse
Affiliation(s)
- Kristina Kapinas
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodrigo Grandy
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Prachi Ghule
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ricardo Medina
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Klaus Becker
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Arthur Pardee
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Sayyed K. Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jane Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andre van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Gary Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
3
|
Stein GS, Stein JL, van J Wijnen A, Lian JB, Montecino M, Medina R, Kapinas K, Ghule P, Grandy R, Zaidi SK, Becker KA. The architectural organization of human stem cell cycle regulatory machinery. Curr Pharm Des 2012; 18:1679-85. [PMID: 22394165 DOI: 10.2174/138161212799859639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/08/2011] [Indexed: 01/19/2023]
Abstract
Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mitra P, Xie R, Harper JW, Stein JL, Stein GS, van Wijnen AJ. HiNF-P is a bifunctional regulator of cell cycle controlled histone H4 gene transcription. J Cell Biochem 2007; 101:181-91. [PMID: 17163457 DOI: 10.1002/jcb.21157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell cycle progression beyond the G1/S phase transition requires the activation of a transcription complex containing histone nuclear factor P (HiNF-P) and nuclear protein mapped to ataxia telangiectasia (p220(NPAT)) in response to cyclin dependent kinase 2 (CDK2)/cyclin E signaling. We show here that the potent co-activating properties of HiNF-P/p220(NPAT) on the histone H4 gene promoter, which are evident in the majority of human cell types, are sporadically neutralized in distinct somatic cell lines. In cells where HiNF-P and p220(NPAT) do not activate the H4 gene promoter, HiNF-P instead represses transcription. Our data suggest that the cell type specific expression of the cyclin-dependent kinase inhibitory (CKI) protein p57(KIP2) inhibits the HiNF-P dependent activation of the histone H4 promoter. We propose that, analogous to E2F proteins and other cell cycle regulatory proteins, HiNF-P is a bifunctional transcriptional regulator that can activate or repress cell cycle controlled genes depending on the cellular context.
Collapse
Affiliation(s)
- Partha Mitra
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
5
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
6
|
Hovhannisyan H, Cho B, Mitra P, Montecino M, Stein GS, Van Wijnen AJ, Stein JL. Maintenance of open chromatin and selective genomic occupancy at the cell cycle-regulated histone H4 promoter during differentiation of HL-60 promyelocytic leukemia cells. Mol Cell Biol 2003; 23:1460-9. [PMID: 12556504 PMCID: PMC141140 DOI: 10.1128/mcb.23.4.1460-1469.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the shutdown of proliferation and onset of differentiation of HL-60 promyelocytic leukemia cells, expression of the cell cycle-dependent histone genes is downregulated at the level of transcription. To address the mechanism by which this regulation occurs, we examined the chromatin structure of the histone H4/n (FO108, H4FN) gene locus. Micrococcal nuclease, DNase I, and restriction enzymes show similar cleavage sites and levels of sensitivity at the H4/n locus in both proliferating and differentiated HL-60 cells. In contrast, differentiation-related activation of the cyclin-dependent kinase inhibitor p21(cip1/WAF1) gene is accompanied by increased nuclease hypersensitivity. Chromatin immunoprecipitation assays of the H4/n gene reveal that acetylated histones H3 and H4 are maintained at the same levels in proliferating and postproliferative cells. Thus, the chromatin of the H4/n locus remains in an open state even after transcription ceases. Using ligation-mediated PCR to visualize genomic DNase I footprints at single-nucleotide resolution, we find that protein occupancy at the site II cell cycle element is selectively diminished in differentiated cells while the site I element remains occupied. Decreased occupancy of site II is reflected by loss of the site II binding protein HiNF-P. We conclude that H4 gene transcription during differentiation is downregulated by modulating protein interaction at the site II cell cycle element and that retention of an open chromatin conformation may be associated with site I occupancy.
Collapse
Affiliation(s)
- Hayk Hovhannisyan
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Lemercier C, Duncliffe K, Boibessot I, Zhang H, Verdel A, Angelov D, Khochbin S. Involvement of retinoblastoma protein and HBP1 in histone H1(0) gene expression. Mol Cell Biol 2000; 20:6627-37. [PMID: 10958660 PMCID: PMC86159 DOI: 10.1128/mcb.20.18.6627-6637.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The histone H1(0)-encoding gene is expressed in vertebrates in differentiating cells during the arrest of proliferation. In the H1(0) promoter, a specific regulatory element, which we named the H4 box, exhibits features which implicate a role in mediating H1(0) gene expression in response to both differentiation and cell cycle control signals. For instance, within the linker histone gene family, the H4 box is found only in the promoters of differentiation-associated subtypes, suggesting that it is specifically involved in differentiation-dependent expression of these genes. In addition, an element nearly identical to the H4 box is conserved in the promoters of histone H4-encoding genes and is known to be involved in their cell cycle-dependent expression. The transcription factors interacting with the H1(0) H4 box were therefore expected to link differentiation-dependent expression of H1(0) to the cell cycle control machinery. The aim of this work was to identify such transcription factors and to obtain information concerning the regulatory pathway involved. Interestingly, our cloning strategy led to the isolation of a retinoblastoma protein (RB) partner known as HBP1. HBP1, a high-mobility group box transcription factor, interacted specifically with the H1(0) H4 box and moreover was expressed in a differentiation-dependent manner. We also showed that the HBP1-encoding gene is able to produce different forms of HBP1. Finally, we demonstrated that both HBP1 and RB were involved in the activation of H1(0) gene expression. We therefore propose that HBP1 mediates a link between the cell cycle control machinery and cell differentiation signals. Through modulating the expression of specific chromatin-associated proteins such as histone H1(0), HBP1 plays a vital role in chromatin remodeling events during the arrest of cell proliferation in differentiating cells.
Collapse
Affiliation(s)
- C Lemercier
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différentiation-INSERM U309, Equipe, Chromatine et Expression des Gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, La Tronche Cedex, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, Jo JS, Ryoo HM. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 1996. [DOI: 10.1002/(sici)1097-4644(19960616)61:4<609::aid-jcb15>3.0.co;2-a] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, Jo JS, Ryoo HM. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 1996; 61:609-18. [PMID: 8806085 DOI: 10.1002/(sici)1097-4644(19960616)61:4%3c609::aid-jcb15%3e3.0.co;2-a] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bone formation involves several tightly regulated gene expression patterns of bone-related proteins. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, we used Northern blotting, enzymatic assay, and histochemistry. We found that the expression patterns of bone-related proteins were regulated in a temporal manner during the successive developmental stages including proliferation (days 4-10), bone matrix formation/maturation (days 10-16), and mineralization stages (days 16-30). During the proliferation period (days 4-10), the expression of cell-cycle related genes such as histone H3 and H4, and ribosomal protein S6 was high. During the bone matrix formation/maturation period (days 10-16), type I collagen expression and biosynthesis, fibronectin, TGF-beta 1 and osteonectin expressions were high and maximal around day 16. During this maturation period, we found that the expression patterns of bone matrix proteins were two types: one is the expression pattern of type I collagen and TGF-beta 1, which was higher in the maturation period than that in both the proliferation and mineralization periods. The other is the expression pattern of fibronectin and osteonectin, which was higher in the maturation and mineralization periods than in the proliferation period. Alkaline phosphatase activity was high during the early matrix formation/maturation period (day 10) and was followed by a decrease to a level still significantly above the baseline level seen at day 4. During the mineralization period (days 16-30), the number of nodules and the expression of osteocalcin were high. Osteocalcin gene expression was increased up to 28 days. Our results show that the expression patterns of bone-related proteins are temporally regulated during the MC3T3-E1 cell differentiation and their regulations are unique compared with other systems. Thus, this cell line provides a useful in vitro system to study the developmental regulation of bone-related proteins in relation to the different stages during the osteoblast differentiation.
Collapse
Affiliation(s)
- J Y Choi
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Taegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Colchicine inhibits integrin α5β1 gene expression during PMA-induced differentiation of U937 cells. Arch Pharm Res 1995. [DOI: 10.1007/bf02976338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Shakoori AR, van Wijnen AJ, Cooper C, Aziz F, Birnbaum M, Reddy GP, Grana X, De Luca A, Giordano A, Lian JB. Cytokine induction of proliferation and expression of CDC2 and cyclin A in FDC-P1 myeloid hematopoietic progenitor cells: regulation of ubiquitous and cell cycle-dependent histone gene transcription factors. J Cell Biochem 1995; 59:291-302. [PMID: 8567748 DOI: 10.1002/jcb.240590302] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To evaluate transcriptional mechanisms during cytokine induction of myeloid progenitor cell proliferation, we examined the expression and activity of transcription factors that control cell cycle-dependent histone genes in interleukin-3 (IL-3)-dependent FDC-P1 cells. Histone genes are transcriptionally upregulated in response to a series of cellular regulatory signals that mediate competency for cell cycle progression of the G1/S-phase transition. We therefore focused on factors that are functionally related to activity of the principal cell cycle regulatory element of the histone H4 promoter: CDC2, cyclin A, as well as RB- and IRF-related proteins. Comparisons were made with activities of ubiquitous transcription factors that influence a broad spectrum of promoters independent of proliferation or expression of tissue-specific phenotypic properties. Northern blot analysis indicates that cellular levels of cyclin A and CDC2 mRNAs increase when DNA synthesis and H4 gene expression are initiated, supporting involvement in cell cycle progression. Using gel-shift assays, incorporating factor-specific antibody and oligonucleotide competition controls, we define three sequential period following cytokine stimulation of FDC-P1 cells when selective upregulation of a subset of transcription factors is observed. In the initial period, the levels of SP1 and HiNF-P are moderately elevated; ATF, AP-1, and HiNF-M/IRF-2 are maximal during the second period; while E2F and HiNF-D, which contain cyclin A as a component, predominate during the third period, coinciding with maximal H4 gene expression and DNA synthesis. Differential regulation of H4 gene transcription factors following growth stimulation is consistent with a principal role of histone gene promoter elements in integrating cues from multiple signaling pathways that control cell cycle induction and progression. Regulation of transcription factors controlling histone gene promoter activity within the context of a staged cascade of responsiveness to cyclins and other physiological mediators of proliferation in FDC-P1 cells provides a paradigm for experimentally addressing interdependent cell cycle and cell growth parameters that are operative in hematopoietic stem cells.
Collapse
Affiliation(s)
- A R Shakoori
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wright KL, Birnbaum MJ, van Wijnen AJ, Stein GS, Stein JL. Bipartite structure of the proximal promoter of a human H4 histone gene. J Cell Biochem 1995; 58:372-9. [PMID: 7593258 DOI: 10.1002/jcb.240580310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proximal promoter of the human H4 histone gene FO108 contains two regions of in vivo protein-DNA interaction, Sites I and II. Electrophoretic mobility shift assays using a radiolabeled DNA probe revealed that several proteins present in HeLa cell nuclear extracts bound specifically to Site I (nt-125 to nt-86). The most prominent complex, designated HiNF-C, and a complex of greater mobility, HiNF-C', were specifically compatable by an Sp1 consensus oligonucleotide. Fractionation of HiNF-C using wheat germ agglutinin affinity chromatography suggested that, like Sp1, HiNF-C contains N-acetylglucosamine moieties. Two minor complexes of even greater mobility, designated HiNF-E and F, were compatable by ATF consensus oligonucleotides. A DNA probe carrying a site-specific mutation in the distal portion of Site I failed to bind HiNF-E, indicating that this protein associated specifically to this region. UV cross-linking analysis showed that several proteins of different molecular weights interact specifically with Site I. These data indicate that Site I possesses a bipartite structure and that multiple proteins present in HeLa cell nuclear extracts interact specifically with Site I sequences.
Collapse
Affiliation(s)
- K L Wright
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
13
|
Ramsey-Ewing AL, Bortell R, Stein GS, Stein JL. Histone H4 proximal promoter mediates a complex transcriptional response during differentiation of 3T3L1 adipocytes. J Cell Physiol 1995; 163:312-20. [PMID: 7706376 DOI: 10.1002/jcp.1041630212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the promoter element(s) required by the cell cycle regulated FO108 human histone H4 gene for control of gene expression during adipocyte proliferation and differentiation. Stable 3T3L1 cell lines were established that express fusion genes in which the histone H4 promoter is joined to chloramphenicol acetyltransferase (cat) as a reporter gene. Expression of the H4CAT fusion genes was monitored in proliferating and confluent 3T3L1 preadipocytes and in differentiating 3T3L1 adipocytes. The results indicate that the H4 cell cycle element (CCE), which mediates S phase-specific stimulation of H4 gene transcription, is not required for transcriptional regulation during differentiation. Instead, a minimal H4 promoter (nucleotides -46 to -11) is sufficient to mediate the complex transcriptional response of H4 gene expression observed during the process of adipocyte differentiation of 3T3L1 cells. In addition, the data suggest that down-regulation of histone gene expression during cellular differentiation may be mediated by passive inactivation of the promoter due to loss of positive regulatory factor(s).
Collapse
Affiliation(s)
- A L Ramsey-Ewing
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
14
|
Kroeger PE, van Wijnen AJ, Pauli U, Wright KL, Stein GS, Stein JL. In vivo occupancy of histone gene proximal promoter elements reflects gene copy number-dependent titratable transactivation factors and cross-species compatibility of regulatory sequences. J Cell Biochem 1995; 57:191-207. [PMID: 7759557 DOI: 10.1002/jcb.240570204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To assess systematically the structural and functional aspects of histone gene transcription within a chromosomal context, we stably integrated an extensive set of human histone H4 gene constructs into mouse C127 cells. Levels of expression were determined by S1 nuclease protection assays for multiple mouse monoclonal cell lines containing these human H4 genes. For each cell line, we quantitated the number of integrated human H4 genes by Southern blot analysis. The results indicate that the expression of the human H4 gene is in part copy number dependent at low gene dosages. However, the level of expression varies among different cell lines containing similar numbers of copies of the same H4 gene construct. This result suggests that position-dependent chromosomal integration effects contribute to H4 gene transcription, consistent with the roles of long-range gene organization and nuclear architecture in gene regulation. At high copy number, the level of human H4 gene expression per copy decreased, and endogenous mouse H4 mRNA levels were also reduced. Furthermore, in vivo occupancy at the human H4 gene immediate 5' regulatory elements, as defined by genomic fingerprinting, showed copy number-dependent protein/DNA interactions. Hence, human and mouse H4 genes compete for titratable transcription factors in a cellular environment. Taken together, these results indicate cross-species compatibility and suggest limited representation in vivo of the factors involved in regulating histone H4 gene transcription.
Collapse
Affiliation(s)
- P E Kroeger
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
15
|
van den Ent FM, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Cell cycle controlled histone H1, H3, and H4 genes share unusual arrangements of recognition motifs for HiNF-D supporting a coordinate promoter binding mechanism. J Cell Physiol 1994; 159:515-30. [PMID: 8188766 DOI: 10.1002/jcp.1041590316] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell cycle and growth control of the DNA binding and transactivation functions of regulatory factors provides a direct mechanism by which cells may coordinate transcription of a multitude of genes in proliferating cells. The promoters of human DNA replication dependent histone H4, H3, and H1 genes interact with at least seven distinct proteins. One of these proteins is a proliferation-specific nuclear factor, HiNF-D, that interacts with a key cis-regulatory element (H4-Site II; 41 bp) present in H4 genes. Here we describe binding sites for HiNF-D in the promoters of H3 and H1 genes using cross-competition, deletion analysis, and methylation interference assays, and we show that HiNF-D recognizes intricate arrangements of at least two sequence elements (CA- and AG-motifs). These recognition motifs are irregularly dispersed and distantly positioned in the proximal promoters (200 bp) of both the H3 and H1 genes. In all cases, these motifs either overlap or are in close proximity to other established transcriptional elements, including ATF and CCAAT sequences. Although HiNF-D can interact with low affinity to a core recognition domain, auxiliary elements in both the distal and proximal portions of each promoter cooperatively enhance HiNF-D binding. Thus, HiNF-D appears to bridge remote regulatory regions, which may juxtapose additional trans-activating proteins interacting within histone gene promoters. Consistent with observations in many cell culture systems, the interactions of HiNF-D with the H4, H3, and H1 promoters are modulated in parallel during the cessation of proliferation in both osteosarcoma cells and normal diploid osteoblasts, and these events occur in conjunction with concerted changes in histone gene expression. Thus, HiNF-D represents a candidate participant in coordinating transcriptional control of several histone gene classes.
Collapse
Affiliation(s)
- F M van den Ent
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
16
|
Ramsey-Ewing A, Van Wijnen AJ, Stein GS, Stein JL. Delineation of a human histone H4 cell cycle element in vivo: the master switch for H4 gene transcription. Proc Natl Acad Sci U S A 1994; 91:4475-9. [PMID: 8183933 PMCID: PMC43808 DOI: 10.1073/pnas.91.10.4475] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Histone gene expression is cell cycle regulated at the transcriptional and the post-transcriptional levels. Upon entry into S phase, histone gene transcription is stimulated 2- to 5-fold and peaks within 1-3 hr of the initiation of DNA synthesis. We have delineated the proximal promoter element responsible for cell cycle-dependent transcription of a human histone H4 gene in vivo. Our results indicate that H4 cell cycle-dependent transcriptional regulation is mediated by an 11-base-pair element, the cell cycle element (5'-CTTTCG-GTTTT-3'), that resides in the in vivo protein-DNA interaction site, site II (nucleotides -64 to -24). The H4 cell cycle element functions as a master switch for expression of the FO108 human histone H4 gene in vivo; mutations within the H4 cell cycle element drastically reduce the level of expression as well as abrogate cell cycle-regulated transcription. Furthermore, these mutations result in a loss of binding in vitro of the cognate nuclear factor HiNF-M. In vivo competition analysis indicates that the cell cycle element mediates specific competition for a DNA-binding factor, presumably HiNF-M, that is a rate-limiting step in transcription of this H4 gene.
Collapse
Affiliation(s)
- A Ramsey-Ewing
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
17
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB. Histone gene transcription: a model for responsiveness to an integrated series of regulatory signals mediating cell cycle control and proliferation/differentiation interrelationships. J Cell Biochem 1994; 54:393-404. [PMID: 8014188 DOI: 10.1002/jcb.240540406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone gene expression is restricted to the S-phase of the cell cycle. Control is at multiple levels and is mediated by the integration of regulatory signals in response to cell cycle progression and the onset of differentiation. The H4 gene promoter is organized into a series of independent and overlapping regulatory elements which exhibit selective, phosphorylation-dependent interactions with multiple transactivation factors. The three-dimensional organization of the promoter and, in particular, its chromatin structure, nucleosome organization, and interactions with the nuclear matrix may contribute to interrelationships of activities at multiple promoter elements. Molecular mechanisms are discussed that may participate in the coordinate expression of S-phase-specific core and H1 histone genes, together with other genes functionally coupled with DNA replication.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
18
|
Mannironi C, Orr A, Hatch C, Pilch D, Ivanova V, Bonner W. The relative expression of human histone H2A genes is similar in different types of proliferating cells. DNA Cell Biol 1994; 13:161-70. [PMID: 8179821 DOI: 10.1089/dna.1994.13.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To help elucidate the factors regulating the expression of histone multigene families in proliferating cells, we asked whether the relative expression of different members of such a family was dependent upon or independent of the type of proliferating cell. This question was examined by measuring the relative expression of seven members of the human histone H2A multigene family in four cell lines of diverse origin. Two previously uncharacterized members of the H2A gene family were found to be the most abundantly expressed of the seven in all four cell lines. One of these encodes an H2A.2 species containing methionine. The lines examined in the study were Jurkat (a lymphoma line), N-tera (a pluripotent embryonic carcinoma line), HeLa (originally isolated as a cervical carcinoma), and IMR90 (a normal embryonic fibroblastic line). The amount of each mRNA species was quantitated using oligonucleotides about 30 bases long complementary to the 5' or 3' untranslated regions. In each cell line, there was at least an eight-fold difference in the amount of the most and least highly expressed of the seven H2A mRNA species. In addition, there were up to five-fold differences among the cell lines in the amount of the H2A mRNA species as a fraction of total RNA. However, in contrast to those differences, the four cell lines were found to express the seven H2A mRNAs in similar relative amounts. These findings suggest that the relative expression of the individual members of a histone gene family is independent of the type of replicating cell.
Collapse
Affiliation(s)
- C Mannironi
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
19
|
Kockx M, McCabe L, Stein JL, Lian JB, Stein GS. Influence of DNA replication inhibition on expression of cell growth and tissue-specific genes in osteoblasts and osteosarcoma cells. J Cell Biochem 1994; 54:47-55. [PMID: 8126086 DOI: 10.1002/jcb.240540106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interrelationships between proliferation and expression of cell growth as well as bone cell-related genes were examined from two standpoints. First, the consequence of downregulating proliferation by DNA synthesis inhibition on expression of a cell cycle-regulated histone gene and genes associated with development of the bone cell phenotype (type I collagen, alkaline phosphatase, osteopontin, and osteocalcin) was investigated. Second, the requirement for stringent growth control to support functional relationships between expression of proliferation and differentiation-related genes was explored. Parameters of cell growth and osteoblast-related gene expression in primary cultures of normal diploid osteoblasts, that initially express proliferation-dependent genes and subsequently postproliferative genes associated with mature bone cell phenotypic properties, were compared to those operative in ROS 17/2.8 osteosarcoma cells that concomitantly express cell growth and mature osteoblast phenotypic genes. Our findings indicate that in both normal diploid osteoblasts and osteosarcoma cells, expression of the cell cycle regulated histone genes is tightly coupled with DNA synthesis and controlled predominantly at a posttranscriptional level. Inhibition of proliferation by blocking DNA synthesis with hydroxyurea upregulates a subset of developmentally expressed genes that postproliferatively support progressive establishment of mature osteoblast phenotypic properties (e.g., alkaline phosphatase, type 1 collagen, and osteopontin). However, the osteocalcin gene, which is expressed during the final stage of osteoblast differentiation when extracellular matrix mineralization occurs, is not upregulated. Variations in the extent to which inhibition of proliferation in normal diploid osteoblasts and in ROS 17/2.8 osteosarcoma cells selectively affects transcription and cellular levels of mRNA transcripts from bone cell-related genes (e.g., osteocalcin) may reflect modifications in proliferation/differentiation interrelationships when stringent growth control is abrogated.
Collapse
Affiliation(s)
- M Kockx
- University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
20
|
Transcription of the histone H5 gene is regulated by three differentiation-specific enhancers. Mol Cell Biol 1993. [PMID: 8336726 DOI: 10.1128/mcb.13.8.4904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H5, an early marker of the avian erythroid lineage, is expressed at low levels in early erythroid precursors and at higher levels in more mature cells. We show that the increase in H5 expression is due to transcriptional activation of the H5 gene following differentiation of precursor CFU(E). We have found and characterized two upstream enhancers, E1 (between -2233 and -1878 from the site of transcription initiation, +1) and E3 (between -1321 and -1163), and confirmed the presence of a downstream enhancer (C. D. Trainor, S. J. Stamler, and J. D. Engel, Nature [London] 328:827-830, 1987) E7 (between +846 and +1181) which are responsible for the increase in H5 gene transcription. The enhancers had a weak effect in nondifferentiated CFU(E) but a strong effect when the cells were induced to differentiate. Cooperation among the three enhancers, however, was not required for H5 gene activity in the differentiated cells. The enhancers contain binding sites for several ubiquitous and erythroid cell-specific nuclear proteins, including GATA-1, as demonstrated with GATA-1-specific antibodies. Although the GATA sites were required for enhancer function, the concentration of GATA-1, GATA-2, and GATA-3 decreased during cell differentiation, and overexpression of these factors had little effect on H5 transcription. Hence, the differentiation-specific effect of the enhancers is not mediated by changes in relative levels of the GATA factors. Functional analysis of the H5 promoter indicated that the requirement of several elements, including a GC box necessary for transcription enhancement, did not change during the early stages of CFU(E) differentiation. However, the UPE, a positive element in proliferating CFU(E) recognized by the transcription factor H4TF2, was dispensable in the differentiated cells. These results suggest that as the cells enter the final stages of differentiation, there is a reprogramming of the regulatory factors that control H5 transcription and that the enhancers rescue and increase the activity of the promoter.
Collapse
|
21
|
Rousseau S, Asselin M, Renaud J, Ruiz-Carrillo A. Transcription of the histone H5 gene is regulated by three differentiation-specific enhancers. Mol Cell Biol 1993; 13:4904-17. [PMID: 8336726 PMCID: PMC360129 DOI: 10.1128/mcb.13.8.4904-4917.1993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Histone H5, an early marker of the avian erythroid lineage, is expressed at low levels in early erythroid precursors and at higher levels in more mature cells. We show that the increase in H5 expression is due to transcriptional activation of the H5 gene following differentiation of precursor CFU(E). We have found and characterized two upstream enhancers, E1 (between -2233 and -1878 from the site of transcription initiation, +1) and E3 (between -1321 and -1163), and confirmed the presence of a downstream enhancer (C. D. Trainor, S. J. Stamler, and J. D. Engel, Nature [London] 328:827-830, 1987) E7 (between +846 and +1181) which are responsible for the increase in H5 gene transcription. The enhancers had a weak effect in nondifferentiated CFU(E) but a strong effect when the cells were induced to differentiate. Cooperation among the three enhancers, however, was not required for H5 gene activity in the differentiated cells. The enhancers contain binding sites for several ubiquitous and erythroid cell-specific nuclear proteins, including GATA-1, as demonstrated with GATA-1-specific antibodies. Although the GATA sites were required for enhancer function, the concentration of GATA-1, GATA-2, and GATA-3 decreased during cell differentiation, and overexpression of these factors had little effect on H5 transcription. Hence, the differentiation-specific effect of the enhancers is not mediated by changes in relative levels of the GATA factors. Functional analysis of the H5 promoter indicated that the requirement of several elements, including a GC box necessary for transcription enhancement, did not change during the early stages of CFU(E) differentiation. However, the UPE, a positive element in proliferating CFU(E) recognized by the transcription factor H4TF2, was dispensable in the differentiated cells. These results suggest that as the cells enter the final stages of differentiation, there is a reprogramming of the regulatory factors that control H5 transcription and that the enhancers rescue and increase the activity of the promoter.
Collapse
Affiliation(s)
- S Rousseau
- Department of Biochemistry, Medical School, Laval University, L'Hôtel-Dieu de Québec, Canada
| | | | | | | |
Collapse
|
22
|
Borellini F, Glazer R. Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53046-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Bortell R, Owen TA, Shalhoub V, Heinrichs A, Aronow MA, Rochette-Egly C, Lutz Y, Stein JL, Lian JB, Stein GS. Constitutive transcription of the osteocalcin gene in osteosarcoma cells is reflected by altered protein-DNA interactions at promoter regulatory elements. Proc Natl Acad Sci U S A 1993; 90:2300-4. [PMID: 8460137 PMCID: PMC46074 DOI: 10.1073/pnas.90.6.2300] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The bone-specific osteocalcin (OC) gene is transcribed only after completion of proliferation in normal diploid calvarial-derived osteoblasts during extracellular matrix mineralization. In contrast, the OC gene is expressed constitutively in both proliferating and nonproliferating ROS 17/2.8 osteosarcoma cells. To address molecular mechanisms associated with these tumor-related modifications in transcriptional control, we examined sequence-specific interactions of transactivation factors at key basal and hormone-responsive elements in the OC gene promoter. In ROS 17/2.8 cells compared to normal diploid osteoblasts, the absence of a stringent requirement for cessation of proliferation to support both induction of OC transcription and steroid hormone-mediated transcriptional modulation is reflected by modifications in transcription factor binding at (i) the two primary basal regulatory elements, the OC box (which contains a CCAAT motif as a central core) and the TATA/glucocorticoid-responsive element domain, and (ii) the vitamin D-responsive element. Particularly striking are two forms of the vitamin D receptor complex that are present in proliferating osteoblasts and osteosarcoma cells. Both forms of the complex are sensitive to vitamin D receptor antibody and retinoic X receptor antibody. After the down-regulation of proliferation, only the lower molecular weight complex is found in normal diploid osteoblasts. Both forms of the complex are present in nonproliferating ROS 17/2.8 cells with increased representation of the complex exhibiting reduced electrophoretic mobility that is phosphorylation-dependent.
Collapse
Affiliation(s)
- R Bortell
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- S Ferrari
- Experimental Hematology Center, University of Modena, Italy
| | | | | | | |
Collapse
|
25
|
Ferrari S, Manfredini R, Grande A, Torelli U. Antisense strategies to characterize the role of genes and oncogenes involved in myeloid differentiation. Ann N Y Acad Sci 1992; 660:11-26. [PMID: 1340115 DOI: 10.1111/j.1749-6632.1992.tb21053.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Ferrari
- Experimental Hematology Center, II Medical Clinic, University of Modena, Italy
| | | | | | | |
Collapse
|
26
|
Bortell R, van Wijnen AJ, Ramsey-Ewing AL, Stein GS, Stein JL. Differential regulation of H4 histone gene expression in 3T3-L1 pre-adipocytes during arrest of proliferation following contact inhibition or differentiation and its modulation by TGF beta 1. J Cell Biochem 1992; 50:62-72. [PMID: 1429875 DOI: 10.1002/jcb.240500111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to address whether there is a fundamental difference in regulation of histone gene expression in cells that have become quiescent but retain the ability to proliferate, compared with those cells that have differentiated. We compared multiple levels of regulation of histone gene expression during 3T3-L1 pre-adipocyte differentiation. Confluent cells induced to differentiate by treatment with insulin, dexamethasone, and isobutylmethylxanthine initially exhibited an increased proliferative response compared with cells given serum alone. This initial differentiation response was associated with a twofold increase in both histone gene transcription and cellular histone mRNA levels, as well as with enhanced sequence-specific binding of nuclear factors to the proximal cell-cycle-regulatory element of the H4 histone promoter. Transforming growth factor beta 1, an inhibitor of 3T3-L1 differentiation, increased both the percentage of proliferating cells and the cellular levels of histone mRNA when given in addition to serum stimulation, but no enhancement of these parameters was observed upon addition of TGF beta 1 to the differentiation treatment. Interestingly, although TGF beta 1 enhanced binding of nuclear factors to the proximal cell cycle regulatory element of the histone promoter, these protein/DNA interactions were not associated with an increase in histone transcription. Our results are consistent with the down-regulation of histone gene expression at confluency being controlled primarily at the post-transcriptional level, in contrast to an increased involvement of transcriptional down-regulation at the onset of differentiation.
Collapse
Affiliation(s)
- R Bortell
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
27
|
Overlapping and CpG methylation-sensitive protein-DNA interactions at the histone H4 transcriptional cell cycle domain: distinctions between two human H4 gene promoters. Mol Cell Biol 1992. [PMID: 1620129 DOI: 10.1128/mcb.12.7.3273] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of vertebrate histone genes during the cell cycle is mediated by several factors interacting with a series of cis-acting elements located in the 5' regions of these genes. The arrangement of these promoter elements is different for each gene. However, most histone H4 gene promoters contain a highly conserved sequence immediately upstream of the TATA box (H4 subtype consensus sequence), and this region in the human H4 gene FO108 is involved in cell cycle control. The sequence-specific interaction of nuclear factor HiNF-D with this key proximal promoter element of the H4-FO108 gene is cell cycle regulated in normal diploid cells (J. Holthuis, T.A. Owen, A.J. van Wijnen, K.L. Wright, A. Ramsey-Ewing, M.B. Kennedy, R. Carter, S.C. Cosenza, K.J. Soprano, J.B. Lian, J.L. Stein, and G.S. Stein, Science, 247:1454-1457, 1990). Here, we show that this region of the H4-FO108 gene represents a composite protein-DNA interaction domain for several distinct sequence-specific DNA-binding activities, including HiNF-D, HiNF-M, and HiNF-P. Factor HiNF-P is similar to H4TF-2, a DNA-binding activity that is not cell cycle regulated and that interacts with the analogous region of the H4 gene H4.A (F. LaBella and N. Heintz, Mol. Cell. Biol. 11:5825-5831, 1991). The H4.A gene fails to interact with factors HiNF-M and HiNF-D owing to two independent sets of specific nucleotide variants, indicating differences in protein-DNA interactions between these H4 genes. Cytosine methylation of a highly conserved CpG dinucleotide interferes with binding of HiNF-P/H4TF-2 to both the H4-FO108 and H4.A promoters, but no effect is observed for either HiNF-M or HiNF-D binding to the H4-FO108 gene. Thus, strong evolutionary conservation of the H4 consensus sequence may be related to combinatorial interactions involving overlapping and interdigitated recognition nucleotides for several proteins, whose activities are regulated independently. Our results also suggest molecular complexity in the transcriptional regulation of distinct human H4 genes.
Collapse
|
28
|
van Wijnen AJ, van den Ent FM, Lian JB, Stein JL, Stein GS. Overlapping and CpG methylation-sensitive protein-DNA interactions at the histone H4 transcriptional cell cycle domain: distinctions between two human H4 gene promoters. Mol Cell Biol 1992; 12:3273-87. [PMID: 1620129 PMCID: PMC364541 DOI: 10.1128/mcb.12.7.3273-3287.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcriptional regulation of vertebrate histone genes during the cell cycle is mediated by several factors interacting with a series of cis-acting elements located in the 5' regions of these genes. The arrangement of these promoter elements is different for each gene. However, most histone H4 gene promoters contain a highly conserved sequence immediately upstream of the TATA box (H4 subtype consensus sequence), and this region in the human H4 gene FO108 is involved in cell cycle control. The sequence-specific interaction of nuclear factor HiNF-D with this key proximal promoter element of the H4-FO108 gene is cell cycle regulated in normal diploid cells (J. Holthuis, T.A. Owen, A.J. van Wijnen, K.L. Wright, A. Ramsey-Ewing, M.B. Kennedy, R. Carter, S.C. Cosenza, K.J. Soprano, J.B. Lian, J.L. Stein, and G.S. Stein, Science, 247:1454-1457, 1990). Here, we show that this region of the H4-FO108 gene represents a composite protein-DNA interaction domain for several distinct sequence-specific DNA-binding activities, including HiNF-D, HiNF-M, and HiNF-P. Factor HiNF-P is similar to H4TF-2, a DNA-binding activity that is not cell cycle regulated and that interacts with the analogous region of the H4 gene H4.A (F. LaBella and N. Heintz, Mol. Cell. Biol. 11:5825-5831, 1991). The H4.A gene fails to interact with factors HiNF-M and HiNF-D owing to two independent sets of specific nucleotide variants, indicating differences in protein-DNA interactions between these H4 genes. Cytosine methylation of a highly conserved CpG dinucleotide interferes with binding of HiNF-P/H4TF-2 to both the H4-FO108 and H4.A promoters, but no effect is observed for either HiNF-M or HiNF-D binding to the H4-FO108 gene. Thus, strong evolutionary conservation of the H4 consensus sequence may be related to combinatorial interactions involving overlapping and interdigitated recognition nucleotides for several proteins, whose activities are regulated independently. Our results also suggest molecular complexity in the transcriptional regulation of distinct human H4 genes.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
29
|
van der Houven van Oordt CW, van Wijnen AJ, Carter R, Soprano K, Lian JB, Stein GS, Stein JL. Protein-DNA interactions at the H4-site III upstream transcriptional element of a cell cycle regulated histone H4 gene: differences in normal versus tumor cells. J Cell Biochem 1992; 49:93-110. [PMID: 1644858 DOI: 10.1002/jcb.240490115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Upstream sequences of the H4 histone gene FO108 located between nt -418 to -213 are stimulatory for in vivo transcription. This domain contains one protein/DNA interaction site (H4-Site III) that binds factor H4UA-1. Based on methylation interference, copper-phenanthroline protection, and competition assays, we show that H4UA-1 interacts with sequences between nt -345 to -332 containing an element displaying sequence-similarity with the thyroid hormone response element (TRE). Using gel retardation assays, we also demonstrate that H4UA-1 binding activity is abolished at low concentrations of Zn2+ (0.75 mM), a characteristic shared with the thyroid hormone (TH) receptor DNA binding protein. Interestingly, phosphatase-treatment of nuclear proteins inhibits formation of the H4UA-1 protein/DNA complex, although a complex with higher mobility (H4UA-1b) can be detected; both complexes share identical protein-DNA contacts and competition behaviors. These findings suggest that phosphorylation may be involved in the regulation of H4-Site III protein/DNA interactions by directly altering protein/protein associations. H4-Site III interactions were examined in several cell culture systems during cell growth and differentiation. We find that H4UA-1 binding activity is present during the cell cycle of both normal diploid and transformed cells. However, during differentiation of normal diploid rat calvarial osteoblasts, we observe a selective loss of the H4UA-1/H4-Site III interaction, concomitant with an increase of the H4UA-1b/H4-Site III complex, indicating modifications in the heteromeric nature of protein/DNA interactions during downregulation of transcription at the cessation of proliferation. Transformed cells have elevated levels of H4UA-1, whereas H4UA-1b is predominantly present in normal diploid cells; this alteration in the ratio of H4UA-1 and H4UA-1b binding activities may reflect deregulation of H4-Site III interactions in transformed cells. We propose that H4-Site III interactions may contribute, together with protein/DNA interactions at proximal regulatory sequences, in determining the level of H4-FO108 histone gene transcription.
Collapse
|
30
|
Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1992; 3:269-305. [PMID: 1571474 DOI: 10.1177/10454411920030030501] [Citation(s) in RCA: 417] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The combined application of molecular, biochemical, histochemical, and ultrastructural approaches has defined a temporal sequence of gene expression associated with development of the bone cell phenotype in primary osteoblast cultures. The peak levels of expressed genes reflect a developmental sequence of bone cell differentiation characterized by three principal periods: proliferation, extracellular matrix maturation and mineralization, and two restriction points to which the cells can progress but cannot pass without further signals. The regulation of cell growth and bone-specific gene expression has been examined during this developmental sequence and is discussed within the context of several unique concepts. These are (1) that oncogene expression in proliferating osteoblasts contributes to the suppression of genes expressed postproliferatively, (2) that hormone modulation of a gene is dependent upon the maturational state of the osteoblast, and (3) that chromatin structure and the presence of nucleosomes contribute to three-dimensional organization of gene promoters that support synergistic and/or antagonistic activities of physiologic mediators of bone cell growth and differentiation.
Collapse
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | |
Collapse
|
31
|
Wright KL, Dell'Orco RT, van Wijnen AJ, Stein JL, Stein GS. Multiple mechanisms regulate the proliferation-specific histone gene transcription factor HiNF-D in normal human diploid fibroblasts. Biochemistry 1992; 31:2812-8. [PMID: 1547221 DOI: 10.1021/bi00125a023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The proliferation-specific transcription factor complex HiNF-D interacts with sequence specificity in a proximal promoter element of the human H4 histone gene FO108, designated Site II. The occupancy of Site II by HiNF-D has been implicated in proper transcription initiation and as a component of the cell cycle regulation of this gene. In the present study we have investigated the role of the HiNF-D/Site II interaction in controlling the level of H4 histone gene transcription during modifications of normal cellular growth. HiNF-D binding activity is present at high levels in rapidly proliferating cultures of human diploid fibroblasts and is reduced to less than 2% upon the cessation of proliferation induced by serum deprivation of sparsely population fibroblast cultures. Density-dependent quiescence also abolishes HiNF-D binding activity. Downregulation of transcription from the H4 gene occurs concomitant with the loss of the HiNF-D/Site II interaction, further suggesting a functional relationship between Site II occupancy and the capacity for transcription. Serum stimulation of quiescent preconfluent cells results in an increase in HiNF-D binding activity as the cells are resuming DNA synthesis and H4 histone gene transcription. Density-inhibited quiescent cells respond to serum stimulation with only a minimal increase in the HiNF-D binding activity, 30% of maximal levels. However, H4 histone gene transcription is stimulated to a level equal to that detected in extracts of the sparsely populated serum-stimulated cultures. These results suggest that there is a threshold level of HiNF-D binding activity necessary for the activation of H4 histone gene transcription.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K L Wright
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
32
|
Shakoori AR, Oberdorf AM, Owen TA, Weber LA, Hickey E, Stein JL, Lian JB, Stein GS. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem 1992; 48:277-87. [PMID: 1400614 DOI: 10.1002/jcb.240480308] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.
Collapse
Affiliation(s)
- A R Shakoori
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The potential biological effects of electric and/or magnetic fields on cells and tissues must be addressed systematically within a context of perturbations in cell cycle control. Such studies should not be pursued in an isolated manner but as a component of the fundamental relationship between proliferation and differentiation, the multi-step process by which structural and functional properties of specialized cells, tissues, and organs progressively develop. It is necessary to quantitatively establish the influence of electric and magnetic fields on the integrated signalling mechanisms which transduce regulatory information for 1) control of the proliferative process and 2) down-regulation of proliferation associated with the initiation of gene expression that mediates the development and maintenance of phenotypic properties characteristic of differentiated cells. We will present an overview of our current understanding of regulatory mechanisms that control proliferation and cell specialization in normal diploid cells with emphasis on rate limiting steps that may be the basis for biological perturbations by electric and magnetic fields. Addressing such questions in normal diploid cells is essential since the loss of growth control in transformed and tumor cells is accompanied by an abrogation of developmental regulatory mechanisms that are functionally coupled to proliferation.
Collapse
Affiliation(s)
- G S Stein
- University of Massachusetts Medical Center, Department of Cell Biology, Worcester 01655
| | | |
Collapse
|
34
|
van Wijnen AJ, Lian JB, Stein JL, Stein GS. Protein/DNA interactions involving ATF/AP1-, CCAAT-, and HiNF-D-related factors in the human H3-ST519 histone promoter: cross-competition with transcription regulatory sites in cell cycle controlled H4 and H1 histone genes. J Cell Biochem 1991; 47:337-51. [PMID: 1795016 DOI: 10.1002/jcb.240470408] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein/DNA interactions of the H3-ST519 histone gene promoter were analyzed in vitro. Using several assays for sequence specificity, we established binding sites for ATF/AP1-, CCAAT-, and HiNF-D related DNA binding proteins. These binding sites correlate with two genomic protein/DNA interaction domains previously established for this gene. We show that each of these protein/DNA interactions has a counterpart in other histone genes: H3-ST519 and H4-F0108 histone genes interact with ATF- and HiNF-D related binding activities, whereas H3-ST519 and H1-FNC16 histone genes interact with the same CCAAT-box binding activity. These factors may function in regulatory coupling of the expression of different histone gene classes. We discuss these results within the context of established and putative protein/DNA interaction sites in mammalian histone genes. This model suggests that heterogeneous permutations of protein/DNA interaction elements, which involve both general and cell cycle regulated DNA binding proteins, may govern the cellular competency to express and coordinately control multiple distinct histone genes.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
35
|
van Wijnen AJ, Owen TA, Holthuis J, Lian JB, Stein JL, Stein GS. Coordination of protein-DNA interactions in the promoters of human H4, H3, and H1 histone genes during the cell cycle, tumorigenesis, and development. J Cell Physiol 1991; 148:174-89. [PMID: 1860895 DOI: 10.1002/jcp.1041480120] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coordinate transcriptional control of replication-dependent human H4, H3, and H1 histone genes was studied by comparing levels of H3 and H1 histone promoter binding activities with those of H4 histone promoter factor HiNF-D during the cell cycle of both normal diploid and tumor-derived cells, as well as in fetal and adult mammalian tissues. Both H3 and H1 histone promoters interact with binding activities that, as with HiNF-D, are maximal during S-phase but at low levels in the G1-phase of normal diploid cells. However, these analogous DNA binding activities are constitutively maintained at high levels throughout the cell cycle in four different transformed and tumor-derived cells. Downregulation of the H3 and H1 histone promoter factors in conjunction with HiNF-D is observed in vivo at the onset of quiescence and differentiation during hepatic development. Hence, our results indicate a tight temporal coupling of three separate protein-DNA interactions in different histone promoters during the cell cycle, development, and tumorigenesis. This suggests that a key oscillatory, cell-growth-control mechanism modulates three analogous histone gene promoter protein-DNA interactions in concert. The derangement of this mechanism in four distinct tumor cells implies that concerted deregulation of these histone promoter factors is a common event resulting from heterogeneous aberrations in normal cell growth mechanisms during tumorigenesis. We postulate that this mechanism may be involved in the coordinate regulation of the human H4, H3, and H1 histone multigene families.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | |
Collapse
|
36
|
van Wijnen AJ, Ramsey-Ewing AL, Bortell R, Owen TA, Lian JB, Stein JL, Stein GS. Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: involvement of phosphorylation. J Cell Biochem 1991; 46:174-89. [PMID: 1655821 DOI: 10.1002/jcb.240460211] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
37
|
van Wijnen AJ, Choi TK, Owen TA, Wright KL, Lian JB, Jaenisch R, Stein JL, Stein GS. Involvement of the cell cycle-regulated nuclear factor HiNF-D in cell growth control of a human H4 histone gene during hepatic development in transgenic mice. Proc Natl Acad Sci U S A 1991; 88:2573-7. [PMID: 2006193 PMCID: PMC51275 DOI: 10.1073/pnas.88.6.2573] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of the cell cycle-controlled histone gene promoter factor HiNF-D was examined in vivo. Proliferative activity was measured by DNA replication-dependent histone mRNA levels, and HiNF-D binding activity was found to correlate with cell proliferation in most tissues. Furthermore, HiNF-D is down-regulated during hepatic development, reflecting the onset of differentiation and quiescence. The contribution of transcription to histone gene expression was directly addressed in transgenic mice by using a set of fusion constructs containing a human H4 histone gene promoter linked to three different genes. Transgene expression in both fetal and adult mice paralleled endogenous mouse histone mRNA levels in most tissues, consistent with this promoter conferring developmental, cell growth-related transcriptional regulation. Our results suggest that HiNF-D is stringently regulated in vivo in relation to cell growth and support a primary role for HiNF-D in the proliferation-specific expression of H4 histone genes in the intact animal. Further, the data presented here provide an example in which apparent tissue specificity of gene expression reflects the proliferative state of various tissues and demonstrate that multiple levels of histone gene regulation are operative in vivo.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Increased expression and DNA-binding activity of transcription factor Sp1 in doxorubicin-resistant HL-60 leukemia cells. Mol Cell Biol 1990. [PMID: 2204818 DOI: 10.1128/mcb.10.10.5541] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The processes responsible for the multidrug-resistant (Mdr) phenotype in Adriamycin (doxorubicin)-resistant HL-60 leukemia cells (HL-60/AR) are not defined. Since enhanced transcription of resistance-related proteins is associated with Mdr cells, we sought to determine whether changes in the expression of specific transcription factors were a feature characteristic of the Mdr process. Nuclear extracts were prepared from wild-type and resistant cells and compared for their ability to bind DNA consensus sequences for the transcription factors Sp1 and NF kappa B contained in the 5' long terminal repeat region of human immunodeficiency virus type 1. Southwestern (DNA-protein) blots showed a family of DNA-binding proteins of 105 kilodaltons (kDa) that were present only in HL-60/AR cells. Competitive gel shift assays indicated that these factors were related to transcription factor Sp1, and immunoblotting with an Sp1 antibody identified this factor as Sp1. DNase footprinting of the promoter region in the human immunodeficiency virus type 1 5' long terminal repeat showed that protection occurred at two Sp1 sites as well as two NF kappa B sites and the trans-acting region with nuclear extracts only from resistant cells. Preliminary evidence also suggests that phosphorylation may play a negative regulatory role in the activity of Sp1, since calf intestine alkaline phosphatase stimulated the DNA-binding activity of Sp1 in vitro. These results indicate that HL-60/AR cells contain an abundance of DNA-binding proteins, particularly Sp1, which probably interact with other cis-acting regulatory proteins in a cooperative manner.
Collapse
|
39
|
Borellini F, Aquino A, Josephs SF, Glazer RI. Increased expression and DNA-binding activity of transcription factor Sp1 in doxorubicin-resistant HL-60 leukemia cells. Mol Cell Biol 1990; 10:5541-7. [PMID: 2204818 PMCID: PMC361271 DOI: 10.1128/mcb.10.10.5541-5547.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The processes responsible for the multidrug-resistant (Mdr) phenotype in Adriamycin (doxorubicin)-resistant HL-60 leukemia cells (HL-60/AR) are not defined. Since enhanced transcription of resistance-related proteins is associated with Mdr cells, we sought to determine whether changes in the expression of specific transcription factors were a feature characteristic of the Mdr process. Nuclear extracts were prepared from wild-type and resistant cells and compared for their ability to bind DNA consensus sequences for the transcription factors Sp1 and NF kappa B contained in the 5' long terminal repeat region of human immunodeficiency virus type 1. Southwestern (DNA-protein) blots showed a family of DNA-binding proteins of 105 kilodaltons (kDa) that were present only in HL-60/AR cells. Competitive gel shift assays indicated that these factors were related to transcription factor Sp1, and immunoblotting with an Sp1 antibody identified this factor as Sp1. DNase footprinting of the promoter region in the human immunodeficiency virus type 1 5' long terminal repeat showed that protection occurred at two Sp1 sites as well as two NF kappa B sites and the trans-acting region with nuclear extracts only from resistant cells. Preliminary evidence also suggests that phosphorylation may play a negative regulatory role in the activity of Sp1, since calf intestine alkaline phosphatase stimulated the DNA-binding activity of Sp1 in vitro. These results indicate that HL-60/AR cells contain an abundance of DNA-binding proteins, particularly Sp1, which probably interact with other cis-acting regulatory proteins in a cooperative manner.
Collapse
Affiliation(s)
- F Borellini
- Department of Pharmacology, Georgetown University School of Medicine, Washington, D.C. 20007
| | | | | | | |
Collapse
|
40
|
|
41
|
Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci U S A 1990; 87:5129-33. [PMID: 2367528 PMCID: PMC54275 DOI: 10.1073/pnas.87.13.5129] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A temporal sequence of interrelated cellular, biochemical, and molecular events which occurs during the progressive expression of the differentiated osteoblast phenotype in primary cultures of fetal rat calvarial cells results in the development of a bone-tissue-like organization. This ordered developmental sequence encompasses three periods: proliferation, matrix maturation, and mineralization. Initially, the cells actively proliferate and synthesize type I collagen. This is followed by a period of matrix organization and maturation and then by a period of extracellular matrix mineralization. At the completion of proliferation, when expression of osteoblast phenotype markers such as alkaline phosphatase is observed, the cell-cycle-related histone genes are down-regulated transcriptionally, suggesting that a key signaling mechanism at this transition point involves modifications of protein-DNA interactions in the regulatory elements of these growth-regulated genes. Our results demonstrate that there is a selective loss of interaction of the promoter binding factor HiNF-D with the site II region of an H4 histone gene proximal promoter that regulates the specificity and level of transcription only when the down-regulation of proliferation is accompanied by modifications in the extracellular matrix that contribute to progression of osteoblast differentiation. Thus, this specific loss of protein-DNA interaction serves as a marker for a key transition point in the osteoblast developmental sequence, where the down-regulation of proliferation is functionally coupled to the appearance of osteoblast phenotypic properties associated with the organization and maturation of an extracellular matrix that becomes competent to mineralize.
Collapse
Affiliation(s)
- T A Owen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zambetti G, Stein J, Stein G. Role of messenger RNA subcellular localization in the posttranscriptional regulation of human histone gene expression. J Cell Physiol 1990; 144:175-82. [PMID: 2365742 DOI: 10.1002/jcp.1041440123] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone mRNAs are naturally localized on non-membrane-bound polysomes and selectively destabilized during inhibition of DNA replication. Targeting histone mRNA to membrane-bound polysomes, by incorporating sequences coding for a signal peptide into the message, results in the stabilization of the histone fusion mRNA when DNA synthesis is interrupted (Zambetti et al.: Proceedings of the National Academy of Sciences of the United States of America 84:2683-2687, 1987). A single nucleotide substitution that abolishes the synthesis of the signal peptide results in the localization of the histone fusion mRNA on non-membrane-bound polysomes to the same extent as endogenous histone mRNA and fully restores the coupling of histone fusion mRNA stability to DNA replication. Signal peptide-histone fusion mRNAs containing two point mutations that result in the incorporation of two positively charged amino acids into the hydrophobic domain of the signal peptide are partially retained on non-membrane-bound polysomes and are partially destabilized during inhibition of DNA synthesis. These data indicate that the degree to which the signal peptide-histone fusion mRNAs are associated with non-membrane-bound polysomes is correlated with the extent to which the mRNAs are degraded during inhibition of DNA synthesis. These results suggest that the subcellular location of histone mRNA plays an important role in the posttranscriptional regulation of histone gene expression.
Collapse
Affiliation(s)
- G Zambetti
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | |
Collapse
|
43
|
Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990; 143:420-30. [PMID: 1694181 DOI: 10.1002/jcp.1041430304] [Citation(s) in RCA: 1130] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods--proliferation, extracellular matrix maturation, and mineralization--and 2) two restriction points to which the cells can progress but cannot pass without further signals--the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle- and cell growth-regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phosphatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.
Collapse
Affiliation(s)
- T A Owen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Holthuis J, Owen TA, van Wijnen AJ, Wright KL, Ramsey-Ewing A, Kennedy MB, Carter R, Cosenza SC, Soprano KJ, Lian JB, et A. Tumor cells exhibit deregulation of the cell cycle histone gene promoter factor HiNF-D. Science 1990. [DOI: 10.1126/science.2321007] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell cycle-regulated gene expression is essential for normal cell growth and development and loss of stringent growth control is associated with the acquisition of the transformed phenotype. The selective synthesis of histone proteins during the S phase of the cell cycle is required to render cells competent for the ordered packaging of replicating DNA into chromatin. Regulation of H4 histone gene transcription requires the proliferation-specific promoter binding factor HiNF-D. In normal diploid cells, HiNF-D binding activity is regulated during the cell cycle; nuclear protein extracts prepared from normal cells in S phase contain distinct and measurable HiNF-D binding activity, while this activity is barely detectable in G1 phase cells. In contrast, in tumor-derived or transformed cell lines, HiNF-D binding activity is constitutively elevated throughout the cell cycle and declines only with the onset of differentiation. The change from cell cycle-mediated to constitutive interaction of HiNF-D with the promoter of a cell growth-controlled gene is consistent with, and may be functionally related to, the loss of stringent cell growth regulation associated with neoplastic transformation.
Collapse
|
45
|
Holthuis J, Owen TA, van Wijnen AJ, Wright KL, Ramsey-Ewing A, Kennedy MB, Carter R, Cosenza SC, Soprano KJ, Lian JB. Tumor cells exhibit deregulation of the cell cycle histone gene promoter factor HiNF-D. Science 1990; 247:1454-7. [PMID: 2321007 DOI: 10.1126/science.247.4949.1454] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell cycle-regulated gene expression is essential for normal cell growth and development and loss of stringent growth control is associated with the acquisition of the transformed phenotype. The selective synthesis of histone proteins during the S phase of the cell cycle is required to render cells competent for the ordered packaging of replicating DNA into chromatin. Regulation of H4 histone gene transcription requires the proliferation-specific promoter binding factor HiNF-D. In normal diploid cells, HiNF-D binding activity is regulated during the cell cycle; nuclear protein extracts prepared from normal cells in S phase contain distinct and measurable HiNF-D binding activity, while this activity is barely detectable in G1 phase cells. In contrast, in tumor-derived or transformed cell lines, HiNF-D binding activity is constitutively elevated throughout the cell cycle and declines only with the onset of differentiation. The change from cell cycle-mediated to constitutive interaction of HiNF-D with the promoter of a cell growth-controlled gene is consistent with, and may be functionally related to, the loss of stringent cell growth regulation associated with neoplastic transformation.
Collapse
Affiliation(s)
- J Holthuis
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van Wijnen AJ, Wright KL, Lian JB, Stein JL, Stein GS. Human H4 Histone Gene Transcription Requires the Proliferation-Specific Nuclear Factor HiNF-D. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63807-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|