1
|
Tran A, Johnson DA. Mutational analysis identifies functional Rap1, Su(Hw), and CTCF insulator sites in Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1743-1753. [PMID: 32959125 DOI: 10.1007/s00299-020-02601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Genetic analysis identifies multiple, potential protein binding sites important for insulator function in Arabidopsis thaliana: Rap1 site in UASrpg, Su(Hw) site in UASrpg, and CTCF site in BEAD1c. Three non-plant insulators UASrpg, BEAD1c, and gypsy isolated from Ashbya gossypii, Homo sapiens and Drosophila melanogaster gypsy retrotransposon, respectively, demonstrate insulator function in transgenic Arabidopsis thaliana. Here, the hypothesis that DNA sequences functional in A. thaliana are the same as those in the original host as previously assumed, was tested. Genetic analyses of the cloned fragments in an enhancer blocking assay system was performed through deletions and mutations to identify more precisely which sequences within the cloned fragments function as insulators. Significant loss of insulator activity was observed when the UASrpg Rap1 binding site R2 was mutated but not R1. Cloned fragments containing BEAD1c are effective insulators in our assay system and the previously investigated gypsy insulator is non-functional. Further analyses identified potential Su(Hw) and CTCF sites within UASrpg, of which only the Su(Hw) site was functional. Thus, the activity of non-plant insulators in A. thaliana is context dependent. These results support the hypothesis that insulator function is conserved across kingdoms.
Collapse
Affiliation(s)
- Anh Tran
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
2
|
Golovnin A, Melnikova L, Shapovalov I, Kostyuchenko M, Georgiev P. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin. PLoS One 2015; 10:e0140991. [PMID: 26489095 PMCID: PMC4638101 DOI: 10.1371/journal.pone.0140991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/02/2015] [Indexed: 12/02/2022] Open
Abstract
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Igor Shapovalov
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| |
Collapse
|
3
|
Tikhonov MV, Georgiev PG, Maksimenko OG. Study of functional activity of the 1A2 insulator and polyadenylation signal in intron of the yellow gene of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2014; 456:96-100. [PMID: 24993965 DOI: 10.1134/s1607672914030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Indexed: 11/22/2022]
Affiliation(s)
- M V Tikhonov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | | | |
Collapse
|
4
|
Oliver D, Sheehan B, South H, Akbari O, Pai CY. The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions. BMC Cell Biol 2010; 11:101. [PMID: 21194420 PMCID: PMC3022720 DOI: 10.1186/1471-2121-11-101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/31/2010] [Indexed: 01/08/2023] Open
Abstract
Background Chromatin insulators or boundary elements are a class of functional elements in the eukaryotic genome. They regulate gene transcription by interfering with promoter-enhancer communication. The Cp190 protein of Drosophila melanogaster is essential to the function of at least three-types of chromatin insulator complexes organized by Su(Hw), CTCF and BEAF32. Results We mapped functional regions of Cp190 in vivo and identified three domains that are essential for the insulator function and for the viability of flies: the BTB/POZ domain, an aspartic acid-rich (D-rich) region and a C-terminal glutamic acid-rich (E-rich) region. Other domains including the centrosomal targeting domain and the zinc fingers are dispensable. The N-terminal CP190BTB-D fragment containing the BTB/POZ domain and the D-rich region is sufficient to mediate association with all three types of insulator complexes. The fragment however is not sufficient for insulator activity or viability. The Cp190 and CP190BTB-D are regulated differently in cells treated with heat-shock. The Cp190 dissociated from chromosomes during heat-shock, indicating that dissociation of Cp190 with chromosomes can be regulated. In contrast, the CP190BTB-D fragment didn't dissociate from chromosomes in the same heat-shocked condition, suggesting that the deleted C-terminal regions have a role in regulating the dissociation of Cp190 with chromosomes. Conclusions The N-terminal fragment of Cp190 containing the BTB/POZ domain and the D-rich region mediates association of Cp190 with all three types of insulator complexes and that the E-rich region of Cp190 is required for dissociation of Cp190 from chromosomes during heat-shock. The heat-shock-induced dissociation is strong evidence indicating that dissociation of the essential insulator protein Cp190 from chromosomes is regulated. Our results provide a mechanism through which activities of an insulator can be modulated by internal and external cues.
Collapse
Affiliation(s)
- Daniel Oliver
- Biology Department, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
5
|
Krivega M, Savitskaya E, Krivega I, Karakozova M, Parshikov A, Golovnin A, Georgiev P. Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster. Chromosoma 2010; 119:425-34. [PMID: 20354861 DOI: 10.1007/s00412-010-0268-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 02/20/2010] [Accepted: 02/20/2010] [Indexed: 01/07/2023]
Abstract
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.
Collapse
Affiliation(s)
- Margarita Krivega
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Silicheva M, Golovnin A, Pomerantseva E, Parshikov A, Georgiev P, Maksimenko O. Drosophila mini-white model system: new insights into positive position effects and the role of transcriptional terminators and gypsy insulator in transgene shielding. Nucleic Acids Res 2009; 38:39-47. [PMID: 19854952 PMCID: PMC2800232 DOI: 10.1093/nar/gkp877] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The white gene, which is responsible for eye pigmentation, is widely used to study position effects in Drosophila. As a result of insertion of P-element vectors containing mini-white without enhancers into random chromosomal sites, flies with different eye color phenotypes appear, which is usually explained by the influence of positive/negative regulatory elements located around the insertion site. We found that, in more than 70% of cases when mini-white expression was subject to positive position effects, deletion of the white promoter had no effect on eye pigmentation; in these cases, the transposon was inserted into the transcribed regions of genes. Therefore, transcription through the mini-white gene could be responsible for high levels of its expression in most of chromosomal sites. Consistently with this conclusion, transcriptional terminators proved to be efficient in protecting mini-white expression from positive position effects. On the other hand, the best characterized Drosophila gypsy insulator was poorly effective in terminating transcription and, as a consequence, only partially protected mini-white expression from these effects. Thus, to ensure maximum protection of a transgene from position effects, a perfect boundary/insulator element should combine three activities: to block enhancers, to provide a barrier between active and repressed chromatin, and to terminate transcription.
Collapse
Affiliation(s)
- Margarita Silicheva
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
7
|
Drosophila translational elongation factor-1gamma is modified in response to DOA kinase activity and is essential for cellular viability. Genetics 2009; 184:141-54. [PMID: 19841092 DOI: 10.1534/genetics.109.109553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo.
Collapse
|
8
|
Kurshakova MM, Kopytova DV, Nabirochkina EN, Soshnikova NV, Georgieva SG, Krasnov AN. Conservative E(y)2/Sus1 protein interacts with the Su(Hw)-dependent insulators in Drosophila. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Melnikova L, Kostuchenko M, Silicheva M, Georgiev P. Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element. Chromosoma 2007; 117:137-45. [PMID: 17994318 DOI: 10.1007/s00412-007-0132-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/09/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
There is ample evidence that the enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted, which is indicative of a high specificity of the enhancer-promoter interaction in yellow. In this paper, we have found that the yellow sequence from -100 to -69 is essential for stimulation of the heterologous eve (TATA-containing) and white (TATA-less) promoters by the yellow enhancers from a distance. However, the presence of this sequence is not required when the yellow enhancers are directly fused to the heterologous promoters or are activated by the yeast GAL4 activator. Unexpectedly, the same promoter proximal region defines previously described promoter-specific, long-distance repression of the yellow promoter by the gypsy insulator on the mod(mdg4) ( u1 ) background. These finding suggest that proteins bound to the -100 to -69 sequence are essential for communication between the yellow promoter and upstream regulatory elements.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | |
Collapse
|
10
|
Melnikova L, Biryukova I, Kan T, Georgiev P. Long-distance interactions between regulatory elements are suppressed at the end of a terminally deficient chromosome in Drosophila melanogaster. Chromosoma 2007; 117:41-50. [PMID: 17876596 DOI: 10.1007/s00412-007-0124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 01/13/2023]
Abstract
In Drosophila melanogaster, broken chromosome ends behave as real telomeres and are believed to be covered with telomere-specific chromatin. It has been shown previously that the telomeric chromatin represses normal activity of enhancers that regulate yellow expression in wings and body cuticle. In this paper, we have found that a modified yellow promoter is fully active in the wing and body cuticle when it is located at the chromosome end, which is evidence that the telomeric chromatin does not repress transcription. Substitution of the yellow core promoter region, including TATA and Inr, with the promoter regions of the eve, hsp70 (TATA-containing), and white (TATA-less) promoters does not affect the ability of the promoter to be cis- or trans-activated by the yellow enhancers if the heterologous promoter is located at a distance of about 6 kb from the chromosome end. The best characterized Drosophila insulator found in the gypsy retrotransposon can specifically repress the yellow promoter at a distance when one component of the insulator complex, Mod(mdg4)-67.2 protein, is inactive. We have also found that, in the mod(mdg4) mutant background, the gypsy insulator can repress the heterologous promoters, indicating that the core promoter elements are not critical for specificity of repression. However, long-distance functional enhancer-promoter and gypsy-promoter interactions were suppressed when the distance between the yellow promoter and the end of the deficient chromosome was less than 6 kb. These results suggest that Drosophila telomeric chromatin does not generally repress transcription but is somehow involved in suppression of some long-distance interactions between regulatory elements.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov st, Moscow, 119334, Russia
| | | | | | | |
Collapse
|
11
|
Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A. Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 2007; 27:332-338. [PMID: 17643381 DOI: 10.1016/j.molcel.2007.05.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/12/2007] [Accepted: 05/25/2007] [Indexed: 11/28/2022]
Abstract
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for spreading of repressive chromatin. The Su(Hw) protein is responsible for activity of the best-studied Drosophila insulators. Here we demonstrate that an evolutionarily conserved protein, E(y)2/Sus1, is recruited to the Su(Hw) insulators via binding to the zinc-finger domain of Su(Hw). Partial inactivation of E(y)2 in a weak mutation, e(y)2(u1), impairs only the barrier, but not the enhancer-blocking, activity of the Su(Hw) insulators. Whereas neither su(Hw)(-) nor e(y)2(u1) affects fly viability, their combination proves lethal, testifying to functional interaction between Su(Hw) and E(y)2 in vivo. Apparently, different domains of Su(Hw) recruit proteins responsible for enhancer-blocking and for the barrier activity.
Collapse
Affiliation(s)
- Maria Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anton Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia
| | - Maria Pulina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia; Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Aleksey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia.
| |
Collapse
|
12
|
Golovnin A, Mazur A, Kopantseva M, Kurshakova M, Gulak PV, Gilmore B, Whitfield WGF, Geyer P, Pirrotta V, Georgiev P. Integrity of the Mod(mdg4)-67.2 BTB domain is critical to insulator function in Drosophila melanogaster. Mol Cell Biol 2006; 27:963-74. [PMID: 17101769 PMCID: PMC1800699 DOI: 10.1128/mcb.00795-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila gypsy insulator contains binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Enhancer and silencer blocking require Su(Hw) recruitment of Mod(mdg4)-67.2, a BTB/POZ domain protein that interacts with Su(Hw) through a carboxyl-terminal acidic domain. Here we conducted mutational analyses of the Mod(mdg4)-67.2 BTB domain. We demonstrate that this domain is essential for insulator function, in part through direction of protein dimerization. Our studies revealed the presence of a second domain (DD) that contributes to Mod(mdg4)-67.2 dimerization when the function of the BTB domain is compromised. Additionally, we demonstrate that mutations in amino acids of the charged pocket in the BTB domain that retain dimerization of the mutated protein cause a loss of insulator function. In these cases, the mutant proteins failed to localize to chromosomes, suggesting a role for the BTB domain in chromosome association. Interestingly, replacement of the Mod(mdg4)-67.2 BTB domain with the GAF BTB domain produced a nonfunctional protein. Taken together, these data suggest that the Mod(mdg4)-67.2 BTB domain confers novel activities to gypsy insulator function.
Collapse
Affiliation(s)
- Anton Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ramos E, Ghosh D, Baxter E, Corces VG. Genomic organization of gypsy chromatin insulators in Drosophila melanogaster. Genetics 2006; 172:2337-49. [PMID: 16452134 PMCID: PMC1456363 DOI: 10.1534/genetics.105.054742] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators have been implicated in the regulation of higher-order chromatin structure and may function to compartmentalize the eukaryotic genome into independent domains of gene expression. To test this possibility, we used biochemical and computational approaches to identify gypsy-like genomic-binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein, a component of the gypsy insulator. EMSA and FISH analyses suggest that these are genuine Su(Hw)-binding sites. In addition, functional tests indicate that genomic Su(Hw)-binding sites can inhibit enhancer-promoter interactions and thus function as bona fide insulators. The insulator strength is dependent on the genomic location of the transgene and the number of Su(Hw)-binding sites, with clusters of two to three sites showing a stronger effect than individual sites. These clusters of Su(Hw)-binding sites are located mostly in intergenic regions or in introns of large genes, an arrangement that fits well with their proposed role in the formation of chromatin domains. Taken together, these data suggest that genomic gypsy-like insulators may provide a means for the compartmentalization of the genome within the nucleus.
Collapse
Affiliation(s)
- Edward Ramos
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
14
|
Schoenfelder S, Paro R. Drosophila Su(Hw) regulates an evolutionarily conserved silencer from the mouse H19 imprinting control region. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:47-54. [PMID: 16117632 DOI: 10.1101/sqb.2004.69.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S Schoenfelder
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
15
|
Yang G, Lee YH, Jiang Y, Shi X, Kertbundit S, Hall TC. A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. THE PLANT CELL 2005; 17:1559-68. [PMID: 15805485 PMCID: PMC1091774 DOI: 10.1105/tpc.104.030528] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Miniature inverted repeat transposable elements (MITEs) are thought to be a driving force for genome evolution. Although numerous MITEs are found associated with genes, little is known about their function in gene regulation. Whereas the rice ubiquitin2 (rubq2) promoter in rice (Oryza sativa) line IR24 contains two nested MITEs (Kiddo and MDM1), that in line T309 has lost Kiddo, providing an opportunity to understand the role of MITEs in promoter function. No difference in endogenous rubq2 transcript levels between T309 and IR24 was evident using RT-PCR. However, promoter analysis using both transient and stably transformed calli revealed that Kiddo contributed some 20% of the total expression. Bisulfite genomic sequencing of the rubq2 promoters revealed specific DNA methylation at both symmetric and asymmetric cytosine residues on the MITE sequences, possibly induced by low levels of homologous transcripts. When methylation of the MITEs was blocked by 5-azacytidine treatment, a threefold increase in the endogenous rubq2 transcript level was detected in IR24 compared with that in T309. Together with the observed MITE methylation pattern, the detection of low levels of transcripts, but not small RNAs, corresponding to Kiddo and MDM1 suggested that RNA-dependent DNA methylation is induced by MITE transcripts. We conclude that, although Kiddo enhances transcription from the rubq2 promoter, this effect is mitigated by sequence-specific epigenetic modification.
Collapse
Affiliation(s)
- Guojun Yang
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station, Texas 77843-3155, USA
| | | | | | | | | | | |
Collapse
|
16
|
Golovnin A, Melnick E, Mazur A, Georgiev P. Drosophila Su(Hw) insulator can stimulate transcription of a weakened yellow promoter over a distance. Genetics 2004; 170:1133-42. [PMID: 15520254 PMCID: PMC1451172 DOI: 10.1534/genetics.104.034587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insulator element from the gypsy transposon is a DNA sequence that blocks activation of a promoter by a transcriptional enhancer when placed between them. The insulator contains reiterated binding sites for the Suppressor of Hairy-wing [Su(Hw)] zinc-finger protein. A protein encoded by another gene, modifier of mdg4 [mod(mdg4)], is also required for the enhancer-blocking activity of the Su(Hw) insulator. Here we present evidence that the Su(Hw) insulator activates a weakened yellow promoter at a distance. Deletion of the upstream promoter region (UPR), located close by the TATA box, significantly reduces yellow expression. The Su(Hw) insulator placed at different positions relative to the yellow promoter partially compensates for loss of the UPR. Su(Hw) is able to stimulate yellow expression even if it is located at a 5-kb distance from the promoter. The stimulatory activity depends on the number of Su(Hw)-binding sites. Mutational analysis demonstrates that only the DNA-binding domain and adjacent regions of the Su(Hw) protein are required for stimulation of yellow transcription.
Collapse
Affiliation(s)
- Anton Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Medical Studies of Oslo University, Moscow 199334, Russia
| | - Elena Melnick
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander Mazur
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Corresponding author: Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia. E-mail:
| |
Collapse
|
17
|
Karakozova M, Savitskaya E, Melnikova L, Parshikov A, Georgiev P. The Mod(mdg4) component of the Su(Hw) insulator inserted in the P transposon can repress its mobility in Drosophila melanogaster. Genetics 2004; 167:1275-80. [PMID: 15280241 PMCID: PMC1470935 DOI: 10.1534/genetics.104.027037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable element P of Drosophila melanogaster is one of the best-characterized eukaryotic transposons. Successful transposition requires the interaction between transposase complexes at both termini of the P element. Here we found that insertion of one or two copies of the Su(Hw) insulator in the P transposon reduces the frequency of its transposition. Inactivation of a Mod(mdg4) component of the Su(Hw) insulator suppresses the insulator effect. Thus, the Su(Hw) insulator can modulate interactions between transposase complexes bound to the ends of the P transposon in germ cells.
Collapse
Affiliation(s)
- Marina Karakozova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
18
|
Golovnin A, Biryukova I, Birukova I, Romanova O, Silicheva M, Parshikov A, Savitskaya E, Pirrotta V, Georgiev P. An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Development 2003; 130:3249-58. [PMID: 12783795 DOI: 10.1242/dev.00543] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yellow gene and the Achaete-scute gene complex form a functional insulator. Genetic analysis shows that at least two proteins, Suppressor of Hairy wing and Modifier of MDG4, required for the activity of this insulator, are involved in the transcriptional regulation of Achaete-scute.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Savitsky M, Kahn T, Pomerantseva E, Georgiev P. Transvection at the end of the truncated chromosome in Drosophila melanogaster. Genetics 2003; 163:1375-87. [PMID: 12702682 PMCID: PMC1462527 DOI: 10.1093/genetics/163.4.1375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phenomenon of transvection is well known for the Drosophila yellow locus. Thus enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted. In this report, we examined the requirements for trans-activation of the yellow promoter at the end of the deficient chromosome. A number of truncated chromosomes ending in different areas of the yellow regulatory region were examined in combination with the promoterless y alleles. We found that trans-activation of the yellow promoter at the end of a deficient chromosome required approximately 6 kb of an additional upstream sequence. The nature of upstream sequences affected the strength of transvection: addition of gypsy sequences induced stronger trans-activation than addition of HeT-A or yellow sequences. Only the promoter proximal region (within -158 bp of the yellow transcription start) was essential for trans-activation; i.e., transvection did not require extensive homology in the yellow upstream region. Finally, the yellow enhancers located on the two pairing chromosomes could cooperatively activate one yellow promoter.
Collapse
Affiliation(s)
- Mikhail Savitsky
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | |
Collapse
|
20
|
Melnikova L, Gause M, Georgiev P. The gypsy insulators flanking yellow enhancers do not form a separate transcriptional domain in Drosophila melanogaster: the enhancers can activate an isolated yellow promoter. Genetics 2002; 160:1549-60. [PMID: 11973309 PMCID: PMC1462042 DOI: 10.1093/genetics/160.4.1549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The best-characterized insulator in Drosophila melanogaster is the Su(Hw)-binding region contained within the gypsy retrotransposon. In the y(2) mutant, Su(Hw) protein partially inhibits yellow transcription by blocking the function of transcriptional enhancers located distally from the yellow promoter with respect to gypsy. Previously we have shown that yellow enhancers can overcome inhibition by a downstream insulator in the y(rh1) allele, when a second gypsy element is located upstream of the enhancers. To understand how two insulators neutralize each other, we isolated various deletions that terminate in the regulatory region of the y(rh1) allele. To generate these alleles we used DNA elongation by gene conversion of the truncated chromosomes at the end of the yellow regulatory region. We found that gypsy insulator can function at the end of the truncated chromosome. Addition of the gypsy insulator upstream of the yellow enhancers overcomes the enhancer-blocking activity of the gypsy insulator inserted between the yellow enhancers and promoter. These results suggest that the gypsy insulators do not form separate transcriptional domains that delimit the interactions between enhancers and promoters.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | |
Collapse
|
21
|
Yun B, Lee K, Farkas R, Hitte C, Rabinow L. The LAMMER protein kinase encoded by the Doa locus of Drosophila is required in both somatic and germline cells and is expressed as both nuclear and cytoplasmic isoforms throughout development. Genetics 2000; 156:749-61. [PMID: 11014821 PMCID: PMC1461269 DOI: 10.1093/genetics/156.2.749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activity of the Darkener of apricot (Doa) locus of Drosophila melanogaster is required for development of the embryonic nervous system, segmentation, photoreceptor maintenance, normal transcription, and sexual differentiation. The gene encodes a protein kinase, with homologues throughout eukaryotes known as the LAMMER kinases. We show here that DOA is expressed as at least two different protein isoforms of 105 and 55 kD throughout development, which are primarily localized to the cytoplasm and nucleus, respectively. Doa transcripts and protein are expressed in all cell types both during embryogenesis and in imaginal discs. Although it was recently shown that DOA kinase is essential for normal sexual differentiation, levels of both kinase isoforms are equal between the sexes during early pupal development. The presence of the kinase on the cell membrane and in the nuclei of polytene salivary gland cells, as well as exclusion from the nuclei of specific cells, may be indicative of regulated kinase localization. Mosaic analysis in both the soma and germline demonstrates that Doa function is essential for cell viability. Finally, in contrast to results reported in other systems and despite some phenotypic similarities, genetic data demonstrate that the LAMMER kinases do not participate in the ras-MAP kinase signal transduction pathway.
Collapse
Affiliation(s)
- B Yun
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | | | | | |
Collapse
|
22
|
Girard L, Freeling M. Mutator-suppressible alleles of rough sheath1 and liguleless3 in maize reveal multiple mechanisms for suppression. Genetics 2000; 154:437-46. [PMID: 10629001 PMCID: PMC1460886 DOI: 10.1093/genetics/154.1.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insertions of Mutator transposons into maize genes can generate suppressible alleles. Mu suppression is when, in the absence of Mu activity, the phenotype of a mutant allele reverts to that of its progenitor. Here we present the characterization of five dominant Mu-suppressible alleles of the knox (knotted1-like homeobox) genes liguleless3 and rough sheath1, which exhibit neomorphic phenotypes in the leaves. RNA blot analysis suggests that Mu suppression affects only the neomorphic aspect of the allele, not the wild-type aspect. Additionally, Mu suppression appears to be exerting its effects at the level of transcription or transcript accumulation. We show that truncated transcripts are produced by three alleles, implying a mechanism for Mu suppression of 5' untranslated region insertion alleles distinct from that which has been described previously. Additionally, it is found that Mu suppression can be caused by at least three different types of Mutator elements. Evidence presented here suggests that whether an allele is suppressible or not may depend upon the site of insertion. We cite previous work on the knox gene kn1, and discuss our results in the context of interactions between Mu-encoded products and the inherently negative regulation of neomorphic liguleless3 and rough sheath1 transcription.
Collapse
Affiliation(s)
- L Girard
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- L Girard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
24
|
Rollins RA, Morcillo P, Dorsett D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 1999; 152:577-93. [PMID: 10353901 PMCID: PMC1460629 DOI: 10.1093/genetics/152.2.577] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
How enhancers are able to activate promoters located several kilobases away is unknown. Activation by the wing margin enhancer in the cut gene, located 85 kb from the promoter, requires several genes that participate in the Notch receptor pathway in the wing margin, including scalloped, vestigial, mastermind, Chip, and the Nipped locus. Here we show that Nipped mutations disrupt one or more of four essential complementation groups: l(2)41Ae, l(2)41Af, Nipped-A, and Nipped-B. Heterozygous Nipped mutations modify Notch mutant phenotypes in the wing margin and other tissues, and magnify the effects that mutations in the cis regulatory region of cut have on cut expression. Nipped-A and l(2)41Af mutations further diminish activation by a wing margin enhancer partly impaired by a small deletion. In contrast, Nipped-B mutations do not diminish activation by the impaired enhancer, but increase the inhibitory effect of a gypsy transposon insertion between the enhancer and promoter. Nipped-B mutations also magnify the effect of a gypsy insertion in the Ultrabithorax gene. Gypsy binds the Suppressor of Hairy-wing insulator protein [Su(Hw)] that blocks enhancer-promoter communication. Increased insulation by Su(Hw) in Nipped-B mutants suggests that Nipped-B products structurally facilitate enhancer-promoter communication. Compatible with this idea, Nipped-B protein is homologous to a family of chromosomal adherins with broad roles in sister chromatid cohesion, chromosome condensation, and DNA repair.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Drosophila/embryology
- Drosophila/genetics
- Drosophila Proteins
- Enhancer Elements, Genetic
- Gene Deletion
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Genes, Insect/genetics
- Genes, Lethal
- Genetic Complementation Test
- Heterozygote
- Homeodomain Proteins/genetics
- Insect Proteins/genetics
- Membrane Proteins/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Nerve Tissue Proteins/genetics
- Nuclear Proteins/genetics
- Phenotype
- Receptors, Notch
- Retroelements
- Sequence Analysis, DNA
- Transcription Factors
- Wings, Animal/embryology
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- R A Rollins
- Molecular Biology Program, Sloan-Kettering Institute-Cornell University Medical College, Weill Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | | |
Collapse
|
25
|
Udvardy A. Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J 1999; 18:1-8. [PMID: 9878044 PMCID: PMC1171096 DOI: 10.1093/emboj/18.1.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A Udvardy
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Hungary
| |
Collapse
|
26
|
Shoresh M, Orgad S, Shmueli O, Werczberger R, Gelbaum D, Abiri S, Segal D. Overexpression Beadex mutations and loss-of-function heldup-a mutations in Drosophila affect the 3' regulatory and coding components, respectively, of the Dlmo gene. Genetics 1998; 150:283-99. [PMID: 9725847 PMCID: PMC1460330 DOI: 10.1093/genetics/150.1.283] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LIM domains function as bridging modules between different members of multiprotein complexes. We report the cloning of a LIM-containing gene from Drosophila, termed Dlmo, which is highly homologous to the vertebrate LIM-only (LMO) genes. The 3' untranslated (UTR) of Dlmo contains multiple motifs implicated in negative post-transcriptional regulation, including AT-rich elements and Brd-like boxes. Dlmo resides in polytene band 17C1-2, where Beadex (Bx) and heldup-a (hdp-a) mutations map. We demonstrate that Bx mutations disrupt the 3'UTR of Dlmo, and thereby abrogate the putative negative control elements. This results in overexpression of Dlmo, which causes the wing scalloping that is typical of Bx mutants. We show that the erect wing phenotype of hdp-a results from disruption of the coding region of Dlmo. This provides molecular grounds for the suppression of the Bx phenotype by hdp-a mutations. Finally, we demonstrate phenotypic interaction between the LMO gene Dlmo, the LIM homeodomain gene apterous, and the Chip gene, which encodes a homolog of the vertebrate LIM-interacting protein NLI/Ldb1. We propose that in analogy to their vertebrate counterparts, these proteins form a DNA-binding complex that regulates wing development.
Collapse
Affiliation(s)
- M Shoresh
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Gause M, Hovhannisyan H, Kan T, Kuhfittig S, Mogila V, Georgiev P. hobo Induced rearrangements in the yellow locus influence the insulation effect of the gypsy su(Hw)-binding region in Drosophila melanogaster. Genetics 1998; 149:1393-405. [PMID: 9649529 PMCID: PMC1460218 DOI: 10.1093/genetics/149.3.1393] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The su(Hw) protein is responsible for the insulation mediated by the su(Hw)-binding region present in the gypsy retrotransposon. In the y2 mutant, su(Hw) protein partially inhibits yellow transcription by repressing the function of transcriptional enhancers located distally from the yellow promoter with respect to gypsy. y2 mutation derivatives have been induced by the insertion of two hobo copies on the both sides of gypsy: into the yellow intron and into the 5' regulatory region upstream of the wing and body enhancers. The hobo elements have the same structure and orientation, opposite to the direction of yellow transcription. In the sequence context, where two copies of hobo are separated by the su(Hw)-binding region, hobo-dependent rearrangements are frequently associated with duplications of the region between the hobo elements. Duplication of the su(Hw)-binding region strongly inhibits the insulation of the yellow promoter separated from the body and wing enhancers by gypsy. These results provide a better insight into mechanisms by which the su(Hw)-binding region affects the enhancer function.
Collapse
Affiliation(s)
- M Gause
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Morcillo P, Rosen C, Baylies MK, Dorsett D. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev 1997; 11:2729-40. [PMID: 9334334 PMCID: PMC316608 DOI: 10.1101/gad.11.20.2729] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/1997] [Accepted: 08/12/1997] [Indexed: 02/05/2023]
Abstract
The mechanisms allowing remote enhancers to regulate promoters several kilobase pairs away are unknown but are blocked by the Drosophila suppressor of Hairy-wing protein (Suhw) that binds to gypsy retrovirus insertions between enhancers and promoters. Suhw bound to a gypsy insertion in the cut gene also appears to act interchromosomally to antagonize enhancer-promoter interactions on the homologous chromosome when activity of the Chip gene is reduced. This implicates Chip in enhancer-promoter communication. We cloned Chip and find that it encodes a homolog of the recently discovered mouse Nli/Ldb1/Clim-2 and Xenopus Xldb1 proteins that bind nuclear LIM domain proteins. Chip protein interacts with the LIM domains in the Apterous homeodomain protein, and Chip interacts genetically with apterous, showing that these interactions are important for Apterous function in vivo. Importantly, Chip also appears to have broad functions beyond interactions with LIM domain proteins. Chip is present in all nuclei examined and at numerous sites along the salivary gland polytene chromosomes. Embryos without Chip activity lack segments and show abnormal gap and pair-rule gene expression, although no LIM domain proteins are known to regulate segmentation. We conclude that Chip is a ubiquitous chromosomal factor required for normal expression of diverse genes at many stages of development. We suggest that Chip cooperates with different LIM domain proteins and other factors to structurally support remote enhancer-promoter interactions.
Collapse
Affiliation(s)
- P Morcillo
- Molecular Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 USA
| | | | | | | |
Collapse
|
29
|
Georgiev P, Tikhomirova T, Yelagin V, Belenkaya T, Gracheva E, Parshikov A, Evgen'ev MB, Samarina OP, Corces VG. Insertions of hybrid P elements in the yellow gene of Drosophila cause a large variety of mutant phenotypes. Genetics 1997; 146:583-94. [PMID: 9178008 PMCID: PMC1207999 DOI: 10.1093/genetics/146.2.583] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A series of yellow mutations associated with a great variety of tissue-specific phenotypes were obtained from several highly unstable Drosophila melanogaster strains carrying the gypsy-induced y2 allele. These mutations are caused by insertion of additional DNA sequences of variable size 69 bp upstream of the yellow transcription start site. These sequences are flanked by identical copies of a deleted 1.2-kb P element arranged in the same or inverted orientation. The central part of the inserted element consists of genomic sequences originating from different regions of the X chromosome. The mutant phenotype caused by these chimeric elements depends on the nature of the sequences present either in the P element or in the central part of the insertion, suggesting that these sequences are able to affect expression of the yellow gene. In addition, sequences present in the central region of the insertions strongly modify the effects of the gypsy-bound suppressor of Hairy-wing [su(Hw)] and modifier of mdg4 [mod(mdg4)] proteins on yellow transcription. Analyses of these mutations give new insights into the mechanisms by which su (Hw) and mod(mdg4) affect enhancer function.
Collapse
Affiliation(s)
- P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Melnikova L, Kulikov A, Georgiev P. Interactions between cut wing mutations and mutations in zeste, and the enhancer of yellow and Polycomb group genes of Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:230-6. [PMID: 8842142 DOI: 10.1007/bf02173768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phenotypic expression of several mutations in the cut locus of Drosophila melanogaster is modified by mutations in the zeste, e(y)2 and e(y)3 genes and in some genes of the Polycomb group. All tested sensitive cut mutations have a partially inactivated cut wing enhancer. e(y)3u1, Zv77h and Su(z)2(5) mutations enhance, while e(y)2u1, ZOp6, PSC1, Su(z)301, Su(z)302 and ScmD1 mutations suppress the ct mutant phenotype. The results are discussed in terms of the role of long-distance interactions and DNA compaction in transcriptional control of the cut locus.
Collapse
Affiliation(s)
- L Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
31
|
Gdula DA, Gerasimova TI, Corces VG. Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila. Proc Natl Acad Sci U S A 1996; 93:9378-83. [PMID: 8790337 PMCID: PMC38435 DOI: 10.1073/pnas.93.18.9378] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Boundary or insulator elements set up independent territories of gene activity by establishing higher order domains of chromatin structure. The gypsy retrotransposon of Drosophila contains an insulator element that represses enhancer-promoter interactions and is responsible for the mutant phenotypes caused by insertion of this element. The gypsy insulator inhibits the interaction of promoter-distal enhancers with the transcription complex without affecting the functionality of promoter-proximal enhancers; in addition, these sequences can buffer a transgene from chromosomal position effects. Two proteins have been identified that bind gypsy insulator sequences and are responsible for their effects on transcription. The suppressor of Hairy-wing [su(Hw)] protein affects enhancer function both upstream and downstream of its binding site by causing a silencing effect similar to that of heterochromatin. The modifier of mdg4 [mod(mdg4)] protein interacts with su(Hw) to transform this bi-directional repression into the polar effect characteristic of insulators. These effects seem to be modulated by changes in chromatin structure.
Collapse
Affiliation(s)
- D A Gdula
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
32
|
Kim J, Shen B, Rosen C, Dorsett D. The DNA-binding and enhancer-blocking domains of the Drosophila suppressor of Hairy-wing protein. Mol Cell Biol 1996; 16:3381-92. [PMID: 8668153 PMCID: PMC231332 DOI: 10.1128/mcb.16.7.3381] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the suppressor of Hairy-wing [su(Hw)] gene of Drosophila melanogaster can cause female sterility and suppress mutations that are insertions of the gypsy retrotransposon. Gypsy binds the protein (SUHW) encoded by su(Hw), and SUHW prevents enhancers promoter-distal to gypsy from activating gene transcription. SUHW contains 12 zinc fingers flanked by acidic N- and C-terminal domains. We examined the roles of each of the 12 zinc fingers in binding gypsy DNA and classified them into four groups: essential (fingers 6 through 10); beneficial but nonessential (fingers 1, 2, 3, and 11); unimportant (fingers 5 and 12); and inhibitory (finger 4). Because finger 10 is not required for female fertility but is essential for binding gypsy, these results imply that the SUHW-binding sites required for oogenesis differ in sequence from the gypsy-binding sites. We also examined the functions of the N- and C-terminal domains of SUHW by determining the ability of various deletion mutants to support female fertility and to alter expression of gypsy insertion alleles of the yellow, cut, forked, and Ultrabithorax genes. No individual segment of the N- and C-terminal domains of SUHW is absolutely required to alter expression of gypsy insertion alleles. However, the most important domain lies between residues 737 and 880 in the C-terminal domain. This region also contains the residues required for female fertility, and the fertility domain may be congruent with the enhancer-blocking domain. These results imply that SUHW blocks different enhancers and supports oogenesis by the same or closely related molecular mechanisms.
Collapse
Affiliation(s)
- J Kim
- Molecular Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
33
|
Beeman RW, Thomson MS, Clark JM, DeCamillis MA, Brown SJ, Denell RE. Woot, an active gypsy-class retrotransposon in the flour beetle, Tribolium castaneum, is associated with a recent mutation. Genetics 1996; 143:417-26. [PMID: 8722793 PMCID: PMC1207274 DOI: 10.1093/genetics/143.1.417] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposen into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor approximately 25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.
Collapse
Affiliation(s)
- R W Beeman
- U.S. Grain Marketing Research Laboratory, U.S. Department of Agriculture, ARS, Manhattan, Kansas 66502, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Georgiev P, Kozycina M. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. Genetics 1996; 142:425-36. [PMID: 8852842 PMCID: PMC1206977 DOI: 10.1093/genetics/142.2.425] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The suppressor of Hairy-wing [su(Hw)] protein mediates the mutagenic effect of the gypsy retrotransposon by repressing the function of transcriptional enhancers located distally from the promoter with respect to the position of the su(Hw)-binding region. Mutations in a second gene, modifier of mdg4, also affect the gypsy-induced phenotype. Two major effects of the mod(mdg4)1u1 mutation can be distinguished: the interference with insulation by the su(Hw)-binding region and direct inhibition of gene expression that is not dependent on the su(Hw)-binding region position. The mod(mdg4)1u1 mutation partially suppresses ct6, scD1 and Hw1 mutations, possibly by interfering with the insulation effect of the su(Hw)-binding region. An example of the second effect of mod(mdg4)1u1 is a complete inactivation of yellow expression in combination with the y2 allele. Phenotypic analyses of flies with combinations of mod(mdg4)1u1 and different su(Hw) mutations, or with constructions carrying deletions of the acidic domains of the su(Hw) protein, suggest that the carboxy-terminal acidic domain is important for direct inhibition of yellow transcription in bristles, while the amino-terminal acidic domain is more essential for insulation.
Collapse
Affiliation(s)
- P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow. georg&biogen.msk.su
| | | |
Collapse
|
35
|
Wilanowski TM, Gibson JB, Symonds JE. Retrotransposon insertion induces an isozyme of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster. Proc Natl Acad Sci U S A 1995; 92:12065-9. [PMID: 8618845 PMCID: PMC40297 DOI: 10.1073/pnas.92.26.12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The insertion of the blood retrotransposon into the untranslated region of exon 7 of the sn-glycerol-3-phosphate dehydrogenase-encoding gene (Gpdh) in Drosophila melanogaster induces a GPDH isozyme-GPDH-4-and alters the pattern of expression of the three normal isozymes-GPDH-1 to GPDH-3. The process of transcript terminus formation inside the retrotransposon insertion reduces the level of the Gpdh transcript that contains exon 8 and increases the level of the transcript that contains exons 1-7. The induced GPDH-4 isozyme is a translation product of the three transcripts that contain fragments of the blood retrotransposon. The mechanism of mutagenesis by the blood insertion is postulated to involve the pause or termination of transcription within the blood sequence, which in turn is caused by the interference of a DNA-binding protein with the RNA polymerase. Thus, we show the formation of a new functional GPDH protein by the insertion of a transposable element and discuss the evolutionary significance of this phenomenon.
Collapse
Affiliation(s)
- T M Wilanowski
- Molecular and Population Genetics Group, Research School of Biological Sciences, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
36
|
Smith PA, Corces VG. The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 1995; 139:215-28. [PMID: 7705625 PMCID: PMC1206320 DOI: 10.1093/genetics/139.1.215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gypsy retrotransposon of Drosophila melanogaster causes mutations that show temporal and tissue-specific phenotypes. These mutant phenotypes can be reversed by mutations in su(Hw), a gene that also regulates the transcription of the gypsy element. Gypsy encodes a full-length 7.0-kb RNA that is expressed in the salivary gland precursors and fat body of the embryo, imaginal discs and fat body of larvae, and fat body and ovaries of adult females. The su(Hw)-binding region inserted upstream of the promoter of a lacZ reporter gene can induce beta-galactosidase expression in a subset of the embryonic and larval tissues where gypsy is normally transcribed. This expression is dependent on the presence of a functional su(Hw) product, suggesting that this protein is a positive activator of gypsy transcription. Flies transformed with a construct in which the 5' LTR and leader sequences of gypsy are fused to lacZ show beta-galactosidase expression in all tissues where gypsy is normally expressed, indicating that sequences other than the su(Hw)-binding site are required for proper spatial and temporal expression of gypsy. Mutations in the zinc fingers of su(Hw) affect its ability to bind DNA and to induce transcription of the lacZ reporter gene. Two other structural domains of su(Hw) also play an important role in transcriptional regulation of gypsy. Deletion of the amino-terminal acidic domain results in the loss of lacZ expression in larval fat body and adult ovaries, whereas mutations in the leucine zipper region result in an increase of lacZ expression in larval fat body and a decrease in adult ovaries. These effects might be the result of interactions of su(Hw) with activator and repressor proteins through the acidic and leucine zipper domains to produce the final pattern of tissue-specific expression of gypsy.
Collapse
Affiliation(s)
- P A Smith
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
37
|
The enhancer-blocking suppressor of Hairy-wing zinc finger protein of Drosophila melanogaster alters DNA structure. Mol Cell Biol 1994. [PMID: 8065301 DOI: 10.1128/mcb.14.9.5645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion of the gypsy retrotransposon of Drosophila melanogaster into a gene control region can repress gene expression. The zinc finger protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene binds to gypsy and prevents gene enhancers from activating transcription. SUHW blocks an enhancer only when positioned between the enhancer and promoter. Although position dependent, SUHW enhancer blocking is distance independent. These properties indicate that SUHW does not interact with the transcription activator proteins that bind to enhancers. To explore if DNA distortions are involved in enhancer blocking, the ability of SUHW to alter DNA structure was examined in gel mobility assays. Indeed, SUHW induces an unusual change in the structure of the binding-site DNA. The change is not a directed DNA bend but correlates with loss of sequence-directed bends in the unbound DNA. The DNA distortion requires a SUHW protein domain not required for DNA binding, and mutant proteins that fail to alter DNA structure also fail to eliminate the sequence-directed bends. These results suggest that SUHW increases DNA flexibility. The DNA distortion is not sufficient to block enhancers, and therefore it is suggested that increased DNA flexibility may help SUHW interact and interfere with proteins that support long-distance enhancer-promoter interactions.
Collapse
|
38
|
Shen B, Kim J, Dorsett D. The enhancer-blocking suppressor of Hairy-wing zinc finger protein of Drosophila melanogaster alters DNA structure. Mol Cell Biol 1994; 14:5645-52. [PMID: 8065301 PMCID: PMC359089 DOI: 10.1128/mcb.14.9.5645-5652.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insertion of the gypsy retrotransposon of Drosophila melanogaster into a gene control region can repress gene expression. The zinc finger protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene binds to gypsy and prevents gene enhancers from activating transcription. SUHW blocks an enhancer only when positioned between the enhancer and promoter. Although position dependent, SUHW enhancer blocking is distance independent. These properties indicate that SUHW does not interact with the transcription activator proteins that bind to enhancers. To explore if DNA distortions are involved in enhancer blocking, the ability of SUHW to alter DNA structure was examined in gel mobility assays. Indeed, SUHW induces an unusual change in the structure of the binding-site DNA. The change is not a directed DNA bend but correlates with loss of sequence-directed bends in the unbound DNA. The DNA distortion requires a SUHW protein domain not required for DNA binding, and mutant proteins that fail to alter DNA structure also fail to eliminate the sequence-directed bends. These results suggest that SUHW increases DNA flexibility. The DNA distortion is not sufficient to block enhancers, and therefore it is suggested that increased DNA flexibility may help SUHW interact and interfere with proteins that support long-distance enhancer-promoter interactions.
Collapse
Affiliation(s)
- B Shen
- Cornell University Graduate School of Medical Sciences, New York, New York
| | | | | |
Collapse
|
39
|
Harrison DA, Gdula DA, Coyne RS, Corces VG. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes Dev 1993; 7:1966-78. [PMID: 7916729 DOI: 10.1101/gad.7.10.1966] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The suppressor of Hairy-wing [su(Hw)] protein mediates the mutagenic effect of the gypsy retrotransposon by repressing the function of transcriptional enhancers controlling the expression of the mutant gene. A structural and functional analysis of su(Hw) was carried out to identify domains of the protein responsible for its negative effect on enhancer action. Sequence comparison among the su(Hw) proteins from three different species allows the identification of evolutionarily conserved domains with possible functional significance. An acidic domain located in the carboxy-terminal end of the Drosophila melanogaster protein is not present in su(Hw) from other species, suggesting a nonessential role for this part of the protein. A second acidic domain located in the amino-terminal region of su(Hw) is present in all species analyzed. This domain is dispensable in the D. melanogaster protein when the carboxy-terminal acidic domain is present, but the protein is nonfunctional when both regions are simultaneously deleted. Mutations in the zinc fingers result in su(Hw) protein unable to interact with DNA in vivo, indicating a functional role for this region of the protein in DNA binding. Finally, a region of su(Hw) homologous to the leucine zipper motif is necessary for the negative effect of this protein on enhancer function, suggesting that su(Hw) might exert this effect by interacting, directly or indirectly, with transcription factors bound to these enhancers.
Collapse
Affiliation(s)
- D A Harrison
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
40
|
Rabbitts KG, Morgan GT. Alternative 3' processing of Xenopus alpha-tubulin mRNAs; efficient use of a CAUAAA polyadenylation signal. Nucleic Acids Res 1992; 20:2947-53. [PMID: 1620589 PMCID: PMC312421 DOI: 10.1093/nar/20.12.2947] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Xenopus laevis alpha-tubulin gene X alpha T14 produces two mRNAs of 1.7 and 2.15 kb and we have shown that this is due to the use, at approximately equal frequency, of alternative 3' processing sites. Unusually, the hexanucleotide polyadenylation signal responsible for use of the downstream site, pA2, is CAUAAA in contrast to the consensus AAUAAA used at the upstream site, pA1. Since such a variant hexanucleotide would normally be expected to reduce drastically the efficiency of 3' processing, we have examined the 3' flanking sequences involved in pA2 usage in injected oocytes. In deletion mutants with 40 bp or 440 bp of 3' flanking DNA use of pA2 was almost totally abolished whereas when 770 bp of the natural flank was present pA2 was used normally. This polyadenylation signal therefore requires an unexpectedly large amount of flanking DNA and we have identified in the required region a member of a novel family of 450 bp interspersed repeats that we have termed Pir elements. We speculate that because of the variant hexanucleotide efficient use of pA2 has to be potentiated by the Pir element, perhaps through an effect on transcriptional pausing or termination.
Collapse
Affiliation(s)
- K G Rabbitts
- Department of Genetics, University of Nottingham, Queens Medical Centre, UK
| | | |
Collapse
|
41
|
Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster. Mol Cell Biol 1991. [PMID: 1900919 DOI: 10.1128/mcb.11.4.1894] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. We found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. We propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.
Collapse
|
42
|
Holdridge C, Dorsett D. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster. Mol Cell Biol 1991; 11:1894-900. [PMID: 1900919 PMCID: PMC359869 DOI: 10.1128/mcb.11.4.1894-1900.1991] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. We found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. We propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.
Collapse
Affiliation(s)
- C Holdridge
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
43
|
Määttä A, Bornstein P, Penttinen RP. Highly conserved sequences in the 3'-untranslated region of the COL1A1 gene bind cell-specific nuclear proteins. FEBS Lett 1991; 279:9-13. [PMID: 1995349 DOI: 10.1016/0014-5793(91)80237-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sequencing of the 3' untranslated region (3'-UTR) of the human COL1A1 gene revealed numerous putative regulatory motifs and two highly conserved regions flanking the two polyadenylation sites. The conserved regions were separated by about 700 bp of less conserved sequences. The first region consists of almost all the 3'-UTR of the shorter (4.8 kbp) COL1A1 transcript. The second conserved domain includes a motif shared with several collagen genes. Both conserved domains bind cell-specific nuclear proteins suggesting that the 3'-UTR is important for cell specific expression of the COL1A1 gene.
Collapse
Affiliation(s)
- A Määttä
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | |
Collapse
|
44
|
Maniak M, Nellen W. 3' processing in Dictyostelium: unusual sequence requirements and interaction with a downstream promoter. Mol Microbiol 1991; 5:245-51. [PMID: 2041469 DOI: 10.1111/j.1365-2958.1991.tb02105.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the sequence requirements for 3'-processing in Dictyostelium and find that a single AATAAA site, embedded in an A/T-rich environment is sufficient. A synthetic oligonucleotide containing the additional GT/T-rich element, which is necessary for 3'-processing in higher eukaryotes, is not used in Dictyostelium. On the basis of reports suggesting termination signals (upstream terminators) in Dictyostelium promoters, we investigated possible interactions between processing signals and regulatory elements. Our data suggest that upstream termination enhances transcription from a downstream promoter.
Collapse
Affiliation(s)
- M Maniak
- Abteilung Zellbiologie, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|