1
|
Pang Y. Orientation dependent proton transverse relaxation in the human brain white matter: The magic angle effect on a cylindrical helix. Magn Reson Imaging 2023; 100:73-83. [PMID: 36965837 DOI: 10.1016/j.mri.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE To overcome some limitations of previous proton orientation-dependent transverse relaxation formalisms in human brain white matter (WM) by a generalized magic angle effect function. METHODS A cylindrical helix model was developed embracing anisotropic rotational and translational diffusion of restricted molecules in WM, with the former characterized by an axially symmetric system. Transverse relaxation rates R2 and R2∗ were divided into isotropic R2i and anisotropic parts, R2a ∗ f(α,Φ - ε0), with α denoting an open angle and ε0 an orientation (Φ) offset from DTI-derived primary diffusivity direction. The proposed framework (Fit A) was compared to prior models without ε0 on previously published water and methylene proton transverse relaxation rates from developing, healthy, and pathological WM at 3 T. Goodness of fit was represented by root-mean-square error (RMSE). F-test and linear correlation were used with statistical significance set to P ≤ 0.05. RESULTS Fit A significantly (P < 0.01) outperformed prior models as demonstrated by reduced RMSEs, e.g., 0.349 vs. 0.724 in myelin water. Fitted ε0 was in good agreement with calculated ε0 from directional diffusivities. Compared with those from healthy adult, the fitted R2i, R2a, and α from neonates were substantially reduced but ε0 increased, consistent with developing myelination. Significant positive (R2i) and negative (α and R2a) correlations were found with aging (demyelination) in elderly. CONCLUSION The developed framework can better characterize orientation dependences from a wide range of proton transverse relaxation measurements in the human brain WM, thus shedding new light on myelin microstructural alterations at the molecular level.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., UH B2 RM A205F, Ann Arbor, MI 48109-5030, USA.
| |
Collapse
|
2
|
Brumm T, Möps A, Dolainsky C, Brückner S, Bayerl TM. Macroscopic orientation effects in broadline NMR-spectra of model membranes at high magnetic field strength: A method preventing such effects. Biophys J 2010; 61:1018-24. [PMID: 19431822 DOI: 10.1016/s0006-3495(92)81909-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The partial orientation of multilamellar vesicles (MLV) in high magnetic fields has been studied and a method to prevent such effects is herewith proposed. The orientation effect was measured with (2)H-, (31)P-NMR and electron microscopy on MLVs of dipalmitoyl phosphatidylcholine with 30 mol% cholesterol. We present the first freeze-etch electron microscopy data obtained from MLV samples that were frozen directly in the NMR magnet at a field strength of 9.4 Tesla. These experiments clearly show that the MLVs adopt an ellipsoidal (but not a cylindrical) shape in the magnetic field. Best fit (31)P-NMR lineshape calculations assuming an ellipsoidal distribution of molecular director axes to the experimentally obtained spectra provide a quantitative measure of the average semiaxis ratio of the ellipsoidal MLVs and its change with temperature. The application of so-called spherical supported vesicles (SSV) is found to prevent any partial orientation effects so that undistorted NMR powder pattern of the bilayer can be measured independently of magnetic field strength and temperature.The usefulness of SSVs is further demonstrated by a direct comparison of spectral data such as (31)P-and (2)H-NMR lineshapes and relaxation times as well as (2)H-NMR dePaked spectra obtained for both model systems. These experiments show that spectral data obtained from partially oriented MLVs are not unambiguous to interpret, in particular, if an external parameter such as temperature is varied.
Collapse
Affiliation(s)
- T Brumm
- Technische Universität München, Physik Department E22, D-W 8046 Garching
| | | | | | | | | |
Collapse
|
3
|
Soubias O, Saurel O, Réat V, Milon A. High resolution 13C NMR spectra on oriented lipid bilayers: from quantifying the various sources of line broadening to performing 2D experiments with 0.2-0.3 ppm resolution in the carbon dimension. JOURNAL OF BIOMOLECULAR NMR 2002; 24:15-30. [PMID: 12449415 DOI: 10.1023/a:1020656611380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
13C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1-2 ppm, although T2 measurements indicate that 0.1-0.2 ppm could be obtained. We have prepared a DMPC-13C4-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90 degrees (or of the magic angle) with Bo. We have measured T2s, CSAs, and linewidths for the choline 13C-gamma-methyl, the cholesterol-C4 carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of Bo field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and 13C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of +/-0.30 degrees), 13C linewidth of 0.2-0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90 degrees, has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 +/- 2 Hz between the choline methyl carbons was determined.
Collapse
Affiliation(s)
- O Soubias
- Institut de Pharmacologie et de Biologie Structurale, IPBS CNRS, Toulouse, France
| | | | | | | |
Collapse
|
4
|
Talley CE, Dunn RC. Single Molecules as Probes of Lipid Membrane Microenvironments. J Phys Chem B 1999. [DOI: 10.1021/jp992639z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chad E. Talley
- Department of Chemistry, University of Kansas, Malott Hall, Lawrence, Kansas 66045
| | - Robert C. Dunn
- Department of Chemistry, University of Kansas, Malott Hall, Lawrence, Kansas 66045
| |
Collapse
|
5
|
Patyal BR, Crepeau RH, Freed JH. Lipid-gramicidin interactions using two-dimensional Fourier-transform electron spin resonance. Biophys J 1997; 73:2201-20. [PMID: 9336217 PMCID: PMC1181122 DOI: 10.1016/s0006-3495(97)78252-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The application of two-dimensional Fourier-transform electron-spin-resonance (2D-FT-ESR) to the study of lipid/gramicidin A (GA) interactions is reported. It is shown that 2D-FT-ESR spectra provide substantially enhanced spectral resolution to changes in the dynamics and ordering of the bulk lipids (as compared with cw-ESR spectra), that result from addition of GA to membrane vesicles of dipalmitoylphosphatidylcholine (DPPC) in excess water containing 16-PC as the lipid spin label. The agreement between the theory of Lee, Budil, and Freed and experimental results is very good in the liquid crystalline phase. Both the rotational and translational diffusion rates of the bulk lipid are substantially decreased by addition of GA, whereas the ordering is only slightly increased, for a 1:5 ratio of GA to lipid. The slowing effect on the diffusive rates of adding GA in the gel phase is less pronounced. It is suggested that the spectral fits in this phase would be improved with a more detailed dynamic model. No significant evidence is found in the 2D-FT-ESR spectra for a second immobilized component upon addition of GA, which is in contrast to cw-ESR. It is shown from simulations of the observed 2D-FT-ESR spectra that the additional component seen in cw-ESR spectra, and usually attributed to "immobilized" lipid, is inconsistent with its being characterized by increased ordering, according to a model proposed by Ge and Freed, but it would be consistent with the more conventional model of a significantly reduced diffusional rate. This is because the 2D-FT-ESR spectra exhibit a selectivity, favoring components with longer homogeneous relaxation times, T2. The homogeneous linewidths of the 2D-FT-ESR autopeaks appear to broaden as a function of mixing time. This apparent broadening is very likely due to the process of cooperative order director fluctuations (ODF) of the lipids in the vesicle. This real-time observation of ODF is distinct from, but appears in reasonable agreement with, NMR results. It is found that addition of GA to give the 1:5 ratio has only a small effect on the ODF, but there is a significant temperature dependence.
Collapse
Affiliation(s)
- B R Patyal
- Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
6
|
Heaton NJ, Althoff G, Kothe G. Observation of Lateral Diffusion in Biomembranes by Excitation Transfer 31P NMR: Estimation of Vesicle Size Distributions. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp952301e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas J. Heaton
- Department of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Gerhard Althoff
- Department of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Gerd Kothe
- Department of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Dolainsky C, Unger M, Bloom M, Bayerl TM. Two-dimensional exchange 2H NMR experiments of phospholipid bilayers on a spherical solid support. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1995; 51:4743-4750. [PMID: 9963187 DOI: 10.1103/physreve.51.4743] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
8
|
Peng X, Jonas A, Jonas J. High pressure 2H-NMR study of the order and dynamics of selectively deuterated dipalmitoyl phosphatidylcholine in multilamellar aqueous dispersions. Biophys J 1995; 68:1137-44. [PMID: 7756533 PMCID: PMC1281836 DOI: 10.1016/s0006-3495(95)80288-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
High pressure 2H multipulse NMR techniques were used to investigate the effects of pressure on the structure and dynamics of selectively deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) multilamellar aqueous dispersions. The samples were deuterated on both chains at positions 2, 9, or 13. The deuterium lineshapes, the spin-lattice relaxation times, T1, and the spin-spin relaxation times, T2, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for the three deuterated DPPC samples. This pressure range permitted us to explore the phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as the Gel I (P beta), Gel II (L beta), Gel III, Gel X, and the interdigitated, Gel i, gel phase. Pressure had an ordering effect on all chain segments both in the LC phase and various high pressure gel phases as indicated by the increase in SCD bond order parameter and the first moment, M1, with pressure. Compared with the adjacent gel phases, the Gel i phase had the highest order. Also, in all gel phases the carbon-9 segment of the chains had the most restricted motions in contrast to the LC phase, where the carbon-2 segment was the most restricted. In the LC phase, T1 and T2 values for all segments decreased with pressure, indicative of the fast correlation time regime. Similarly, T1 decreased with pressure in the Gel I and the interdigitated Gel i gel phases but changed to the slow correlation time regime at the Gel i/Gel II phase transition. For T2, which reflects slow motions, the transition to the slow correlation time regime occurred already at LC/Gel I phase transition. Considering the various motions which contribute to relaxation, the behavior of T1 and T2 in the Gel 11 through Gel X phases showing discontinuities and slope changes at the phase transitions was, as expected, quite complex.In addition we found a straight line relationship for T-1 vs. S2D, and T-1 vs. S2CD for the deuterons in the 9 and 13 positions in the LC phase in the pressure range investigated.
Collapse
Affiliation(s)
- X Peng
- Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
9
|
Orädd G, Lindblom G, Arvidson G, Gunnarsson K. Phase equilibria and molecular packing in the N,N-dimethyldodecylamine oxide/gramicidin D/water system studied by 2H nuclear magnetic resonance spectroscopy. Biophys J 1995; 68:547-57. [PMID: 7535115 PMCID: PMC1281719 DOI: 10.1016/s0006-3495(95)80216-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the hydrocarbon chain orients parallel to the magnetic field. This is explained by the fact that gramicidin aligns with its helical axis parallel to the magnetic field, thereby forcing also the DDAO-d31 molecules to obtain such an orientation.
Collapse
Affiliation(s)
- G Orädd
- Department of Physical Chemistry, University of Umeä, Sweden
| | | | | | | |
Collapse
|
10
|
Halle B. Surface forces, undulating bilayers, and nuclear-spin relaxation. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1994; 50:2415-2418. [PMID: 9962271 DOI: 10.1103/physreve.50.r2415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
11
|
Trouard TP, Alam TM, Brown MF. Angular dependence of deuterium spin‐lattice relaxation rates of macroscopically oriented dilauroylphosphatidylcholine in the liquid‐crystalline state. J Chem Phys 1994. [DOI: 10.1063/1.467378] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Spooner PJ, Duralski AA, Rankin SE, Pinheiro TJ, Watts A. Dynamics in a protein-lipid complex: nuclear magnetic resonance measurements on the headgroup of cardiolipin when bound to cytochrome c. Biophys J 1993; 65:106-12. [PMID: 8396450 PMCID: PMC1225705 DOI: 10.1016/s0006-3495(93)81048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Deuterium and phosphorus nuclear magnetic resonance (NMR) has been used to investigate the dynamics of slow motional processes induced in bilayer cardiolipin upon binding with cytochrome c. 31P NMR line shapes suggest that protein binding induces less restricted, isotropic-like motions in the lipid phosphates within the ms time scale of this measurement. However, these motions impart rapid transverse relaxation to methylene deuterons adjacent to the phosphate in the lipid headgroup and so did not feature strongly in the NMR line shapes recorded from these nuclei by using the quadrupolar echo. Nonetheless, motional characteristics of the headgroup deuterons were accessible to a dynamic NMR approach using the Carr-Purcell-Meiboom-Gill multiple-pulse experiment. Compared to the well-studied case of deuterons in fatty acyl chains of bilayer phosphatidylcholine, the motions determining the 2H spin transverse relaxation in the headgroup of bilayer cardiolipin were much faster, having a lower limit in the 5-10 kHz range. On binding with cytochrome c, the T2 effecting motions in the cardiolipin headgroup became faster still, with rates comparable to the residual quadrupolar coupling frequency of the headgroup deuterons (approximately 25 kHz) and so coincided with the time scale for recording the quadrupolar echo (approximately 40 microseconds). It is concluded that the headgroup of cardiolipin does not exclusively report localized dynamic information but is particularly sensitive to collective motions occurring throughout the bilayer molecules. Although the rates of collective modes of motion may be dependent on the lipid type in pure lipid bilayers, these low-frequency fluctuations appear to occupy a similar dynamic range in a variety of lipid-protein systems, including the natural membranes.
Collapse
Affiliation(s)
- P J Spooner
- Department of Biochemistry, University of Oxford, England
| | | | | | | | | |
Collapse
|
13
|
Köchy T, Bayerl TM. Lateral diffusion coefficients of phospholipids in spherical bilayers on a solid support measured by 2H-nuclear-magnetic-resonance relaxation. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1993; 47:2109-2116. [PMID: 9960231 DOI: 10.1103/physreve.47.2109] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
14
|
Dolainsky C, Möps A, Bayerl TM. Transverse relaxation in supported and nonsupported phospholipid model membranes and the influence of ultraslow motions: A31P‐NMR study. J Chem Phys 1993. [DOI: 10.1063/1.464286] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry 1992; 31:1100-12. [PMID: 1734959 DOI: 10.1021/bi00119a019] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of cholesterol on the dynamic organization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers was studied by deuteron nuclear magnetic resonance (2H NMR) using unoriented and macroscopically aligned samples. Analysis of the various temperature- and orientation-dependent experiments were performed using a comprehensive NMR model based on the stochastic Liouville equation. Computer simulations of the relaxation data obtained from phospholipids deuterated at the 6-, 13- and 14-position of the sn-2 chain and cholesterol labeled at the 3 alpha-position of the rigid steroid ring system allowed the unambiguous assignment of the various motional modes and types of molecular order present in the system. Above the phospholipid gel-to-liquid-crystalline phase transition, TM, 40 mol % cholesterol was found to significantly increase the orientational and conformational order of the phospholipid with substantially increased trans populations even at the terminal sn-2 acyl chain segments. Lowering the temperature continuously increases both inter- and intramolecular ordering, yet indicates less ordered chains than found for the pure phospholipid in its paracrystalline gel phase. Trans-gauche isomerization rates on all phospholipid alkyl chain segments are slowed down by incorporated cholesterol to values characteristic of gel-state lipid. However, intermolecular dynamics remain fast on the NMR time scale up to 30 K below TM, with rotational correlation times tau R parallel for DMPC ranging from 10 to 100 ns and an activation energy of ER = 35 kJ/mol. Below 273 K a continuous noncooperative condensation of both phospholipid and cholesterol is observed in the mixed membranes, and at about 253 K only a motionally restricted component is left, exhibiting slow fluctuations with correlation times of tau R perpendicular greater than 1 microsecond. In the high-temperature region (T greater than TM), order director fluctuations are found to constitute the dominant transverse relaxation process. Analysis of these collective lipid motions provides the viscoelastic parameters of the membranes. The results (T = 318 K) show that cholesterol significantly reduces the density of the cooperative motions by increasing the average elastic constant of the membrane from K = 1 x 10(-11) N for the pure phospholipid bilayers to K = 3.5 x 10(-11) N for the mixed system.
Collapse
Affiliation(s)
- K Weisz
- Institut für Physikalische Chemie, Universität Stuttgart, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
16
|
Dufourc EJ, Mayer C, Stohrer J, Althoff G, Kothe G. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys J 1992; 61:42-57. [PMID: 1540698 PMCID: PMC1260221 DOI: 10.1016/s0006-3495(92)81814-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Phospholipid head group dynamics have been studied by pulsed phosphorus-31 nuclear magnetic resonance (31P-NMR) of unoriented and macroscopically aligned dimyristoylphosphatidylcholine model membranes in the temperature range, 203-343 K. Lineshapes and echo intensities have been recorded as a function of interpulse delay times, temperature and macroscopic orientation of the bilayer normal with respect to the magnetic field. The dipolar proton-phosphorus (1H-31P) contribution to the transverse relaxation time, T2E, and to lineshapes was eliminated by means of a proton spin-lock sequence. In case of longitudinal spin relaxation, T1Z, the amount of dipolar coupling was evaluated by measuring the maximum nuclear Overhauser enhancement. Hence, the results could be analyzed by considering chemical shift anisotropy as the only relaxation mechanism. The presence of various minima both in T1Z and T2E temperature plots as well as the angular dependence of these relaxation times allowed description of the dynamics of the phosphate head group in the 31P-NMR time window, by three different motional classes, i.e., intramolecular, intermolecular and collective motions. The intramolecular motions consist of two hindered rotations and one free rotation around the bonds linking the phosphate head group to the glycerol backbone. These motions are the fastest in the hierarchy of time with correlation times varying from less than 10(-12) to 10(-6) s in the temperature range investigated. The intermolecular motions are assigned to phospholipid long axis rotation and fluctuation. They have correlation times ranging from 10(-11) s at high temperatures to 10(-3) s at low temperatures. The slowest motion affecting the 31P-NMR observables is assigned to viscoelastic modes, i.e., so called order director fluctuations and is only detected at high temperatures, above the main transition in pulse frequency dependent T2ECP experiments. Comprehensive analysis of the phosphate head group dynamics is achieved by a dynamic NMR model based on the stochastic Liouville equation. In addition to correlation times, this analysis provides activation energies and order parameters for the various motions, and a value for the bilayer elastic constant.
Collapse
Affiliation(s)
- E J Dufourc
- Centre de Recherche Paul Pascal, CNRS, Pessac France
| | | | | | | | | |
Collapse
|
17
|
Bloom M, Evans E, Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 1991; 24:293-397. [PMID: 1749824 DOI: 10.1017/s0033583500003735] [Citation(s) in RCA: 617] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The motivation for this review arises from the conviction that, as a result of the mass of experimental data and observations collected in recent years, the study of the physical properties of membranes is now entering a new stage of development. More and more, experiments are being designed to answer specific, detailed questions about membranes which will lead to a quantitative understanding of the way in which the physical properties of membranes are related to and influence their biological function.
Collapse
Affiliation(s)
- M Bloom
- Department of Physics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
18
|
Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G. Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys 1991. [DOI: 10.1063/1.461417] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Bloom M, Evans E. Observation of Surface Undulations on the Mesoscopic Length Scale by NMR. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-1-4757-9483-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
20
|
Abstract
Gramicidin A' (GA') has been added to three lipid systems of varying hydrophobic thicknesses: dimyristoyllecithin (DML), dipalmitoyllecithin (DPL), and distearoyllecithin (DSL). The similarity in length between the hydrophobic portion of GA' and the hydrocarbon chains of the lipid bilayers has been studied by using 31P and 2H NMR. Hydrophobic mismatch has been found to be most severe in the DML bilayer system and minimal in the case of DSL. In addition, the effects of hydrophobic mismatch on the cooperative properties of the bilayer have been obtained from 2H NMR relaxation measurements. The results indicate that incorporation of the peptide into the bilayer disrupts the cooperative director fluctuations characteristic of pure multilamellar lipid dispersions. Finally, the GA'/lecithin ratio at which the well-known transformation from bilayer to reverse hexagonal (HII) phase occurs (Van Echteld et al., 1982; Chupin et al., 1987) is shown to depend on the acyl chain length of the phospholipid. A rationale is proposed for this chain length dependence.
Collapse
Affiliation(s)
- P I Watnick
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|