1
|
Chernonosova V, Khlebnikova M, Popova V, Starostina E, Kiseleva E, Chelobanov B, Kvon R, Dmitrienko E, Laktionov P. Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection. Polymers (Basel) 2023; 15:3202. [PMID: 37571096 PMCID: PMC10421399 DOI: 10.3390/polym15153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterial-mediated, spatially localized gene delivery is important for the development of cell-populated scaffolds used in tissue engineering. Cells adhering to or penetrating into such a scaffold are to be transfected with a preloaded gene that induces the production of secreted proteins or cell reprogramming. In the present study, we produced silica nanoparticles-associated pDNA and electrospun scaffolds loaded with such nanoparticles, and studied the release of pDNA from scaffolds and cell-to-scaffold interactions in terms of cell viability and pDNA transfection efficacy. The pDNA-coated nanoparticles were characterized with dynamic light scattering and transmission electron microscopy. Particle sizes ranging from 56 to 78 nm were indicative of their potential for cell transfection. The scaffolds were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, stress-loading tests and interaction with HEK293T cells. It was found that the properties of materials and the pDNA released vary, depending on the scaffold's composition. The scaffolds loaded with pDNA-nanoparticles do not have a pronounced cytotoxic effect, and can be recommended for cell transfection. It was found that (pDNA-NPs) + PEI9-loaded scaffold demonstrates good potential for cell transfection. Thus, electrospun scaffolds suitable for the transfection of inhabiting cells are eligible for use in tissue engineering.
Collapse
Affiliation(s)
- Vera Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Marianna Khlebnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Victoriya Popova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ekaterina Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Elena Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Boris Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ren Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elena Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| |
Collapse
|
2
|
Lai A, Macdonald PM. Phospholipid lateral diffusion in the presence of cationic peptides as measured via 31P CODEX NMR. Biophys Chem 2023; 295:106964. [PMID: 36764129 DOI: 10.1016/j.bpc.2023.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The effects of two cationic peptides on phospholipid lateral diffusion in binary mixtures of POPC with various anionic phospholipids were measured via 31P CODEX NMR. Large unilamellar vesicles composed of POPC/POPG (70/30 mol/mol), or POPC/DOPS (70/30 mol/mol), or POPC/TOCL (85/15 mol/mol), or POPC/DOPA (50/50 mol/mol) were exposed to either polylysine (pLYS, N = 134 monomers) or KL-14 (KKLL KKAKK LLKKL), a model amphipathic helical peptide, in an amount corresponding to 80% neutralization of the anionic phospholipid charge by the cationic lysine residues. In the absence of added peptide, phospholipid lateral diffusion coefficients (all measured at 10 °C) increased with increasing reduced temperature (T-Tm). The POPC/DOPA mixture was an exception to this generalization, in that lateral diffusion for both components was far slower than any other mixture investigated, an effect attributed to intermolecular hydrogen bonding. The addition of pLYS or KL-14 decreased lateral diffusion in the POPC/DOPS LUV, but had minimal effects in the POPC/POPG LUV, indicating that ease of access of the cationic peptide residues to the anionic phospholipid groups was important. Both cationic peptides produced the opposite effect in the POPC/DOPA case, in that lateral diffusion increased significantly in their presence, with KL-14 being most effective. This latter observation was interpreted in terms of the electrostatic / H-bond model proposed by Kooijman et al. [Journal of Biological Chemistry, 282:11356-11,364, 2007] to describe the mechanism of interaction between the phosphomonoester head group of PA and the tertiary amine of lysine.
Collapse
Affiliation(s)
- Angel Lai
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Peter M Macdonald
- Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
3
|
Matrices Activated with Messenger RNA. J Funct Biomater 2023; 14:jfb14010048. [PMID: 36662095 PMCID: PMC9864744 DOI: 10.3390/jfb14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Over two decades of preclinical and clinical experience have confirmed that gene therapy-activated matrices are potent tools for sustained gene modulation at the implantation area. Matrices activated with messenger RNA (mRNA) are the latest development in the area, and they promise an ideal combination of efficiency and safety. Indeed, implanted mRNA-activated matrices allow a sustained delivery of mRNA and the continuous production of therapeutic proteins in situ. In addition, they are particularly interesting to generate proteins acting on intracellular targets, as the translated protein can directly exert its therapeutic function. Still, mRNA-activated matrices are incipient technologies with a limited number of published records, and much is still to be understood before their successful implementation. Indeed, the design parameters of mRNA-activated matrices are crucial for their performance, as they affect mRNA stability, device immunogenicity, translation efficiency, and the duration of the therapy. Critical design factors include matrix composition and its mesh size, mRNA chemical modification and sequence, and the characteristics of the nanocarriers used for mRNA delivery. This review aims to provide some background relevant to these technologies and to summarize both the design space for mRNA-activated matrices and the current knowledge regarding their pharmaceutical performance. Furthermore, we will discuss potential applications of mRNA-activated matrices, mainly focusing on tissue engineering and immunomodulation.
Collapse
|
4
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
5
|
Yamasaki Y, Kumekawa D, Yamauchi S, Omuro H. Re-examination of Peptide-Sequence-Dependent Gene Expression of Cysteine-Installed Pegylated Oligolysine/DNA Complexes. ACS OMEGA 2022; 7:15478-15487. [PMID: 35571853 PMCID: PMC9096824 DOI: 10.1021/acsomega.2c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
We previously synthesized cysteine-installed C-terminally PEGylated oligolysines with 20 amino acid residues to form cross-linked polymeric micelles (PMs) with luciferase-coding plasmid DNA as a candidate for artificial gene vectors. Luciferase gene expression in HeLa cells mediated by PEG-CK18C, PEG-CK9CK9, and PEG-K9CK9C was reported to be 35-, 5.4-, and 1.3-fold higher than that mediated by cysteine-uninstalled PEGylated oligolysine PEG-K20, respectively. However, after the publication, the survival rate of HeLa cells used in the previous study was found to be lower than usual when subcutaneously implanted into mice to create a xenograft model. In this study, to re-examine the peptide sequence-dependent gene expression, gene expression efficacy mediated by PEG-peptide PMs was compared with the PM cellular uptake results using newly obtained HeLa cell lines and the additional cell lines Huh-7, PANC-1, and BxPC3. As a result, PEG-K9CK9C PMs mediated the maximum gene expression in all cell lines, and the corresponding cellular uptake was also obtained. Therefore, we concluded that our previous results were erroneously obtained due to normality-depleted HeLa cells. A comparison of physicochemical characterizations, gene expression efficacy, and cellular uptake of PEG-peptide PMs is discussed in detail.
Collapse
|
6
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
7
|
Khorsand B, Acri TM, Do A, Femino JE, Petersen E, Fredericks DC, Salem AK. A Multi-Functional Implant Induces Bone Formation in a Diabetic Model. Adv Healthc Mater 2020; 9:e2000770. [PMID: 32815306 DOI: 10.1002/adhm.202000770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Patients with diabetes mellitus (DM) have defective healing of bone fractures. It was previously shown that nonviral gene delivery of plasmid DNA (pDNA) that independently encodes bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2), acts synergistically to promote bone regeneration in a DM animal model. Additionally, both insulin (INS) and the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ) (VD3) have independently been shown to play key roles in regulating bone fracture healing in DM patients. However, these individual therapies fail to adequately stimulate bone regeneration, illustrating a need for novel treatment of bone fractures in diabetic patients. Here, the ability of local delivery of INS and VD3 along with BMP-2 and FGF-2 genes is investigated to promote bone formation ectopically in Type-2 diabetic rats. A composite consisting of VD3 and INS is developed that contains poly(lactic-co-glycolic acid) microparticles (MPs) embedded in a fibrin gel surrounded by a collagen matrix that is permeated with polyethylenimine (PEI)-(pBMP-2+pFGF-2) nanoplexes. Using a submuscular osteoinduction model, it is demonstrated that local delivery of INS, VD3, and PEI-(pBMP-2+pFGF-2) significantly improves bone generation compared to other treatments, thusimplicating this approach as a method to promote bone regeneration in DM patients with bone fractures.
Collapse
Affiliation(s)
- Behnoush Khorsand
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - Timothy M. Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - Anh‐Vu Do
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| | - John E. Femino
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Emily Petersen
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Douglas C. Fredericks
- Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics University of Iowa College of Pharmacy Iowa City IA 52242 USA
| |
Collapse
|
8
|
Chen L, Li J, Fan Y, Qiu J, Cao L, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules 2020; 21:2502-2511. [DOI: 10.1021/acs.biomac.0c00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- Universite′ Paris Descartes, PRES Sorbonne Paris Cite′, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
9
|
Electrospun gelatin matrices with bioactive pDNA polyplexes. Int J Biol Macromol 2020; 149:296-308. [DOI: 10.1016/j.ijbiomac.2020.01.252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
|
10
|
Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, Kesharwani P, Chellappan DK, Dua K, Tambuwala MM. Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System. Curr Drug Deliv 2020; 17:101-111. [PMID: 31906837 DOI: 10.2174/1567201817666200106104332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression. OBJECTIVE This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed. METHODS Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers. CONCLUSION The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Hamid A Bakshi
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), India
| | - Faruck L Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimicay de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuña McKenna 4860, Macul, Santiago 7820436, Chile
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| |
Collapse
|
11
|
Dendrimers in gene delivery. PHARMACEUTICAL APPLICATIONS OF DENDRIMERS 2020. [DOI: 10.1016/b978-0-12-814527-2.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
13
|
Khorsand B, Elangovan S, Hong L, Kormann MSD, Salem AK. A bioactive collagen membrane that enhances bone regeneration. J Biomed Mater Res B Appl Biomater 2019; 107:1824-1832. [PMID: 30466196 PMCID: PMC6531367 DOI: 10.1002/jbm.b.34275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Membranes are an integral component of guided bone regeneration protocols. This pre-clinical study was aimed at enhancing the bioactivity of collagen membranes by incorporating plasmid DNA (pDNA) or chemically modified RNA (cmRNA) encoding bone morphogenetic protein-9 (BMP-9). In addition, we also endeavored to harness the regenerative potential of the periosteum by creating perforations in the membrane. Nanoplexes of polyethylenimine (PEI)-nucleic acids (PEI-pDNA or PEI-cmRNA encoding BMP-9) were incorporated into commercially obtained and perforated collagen membranes (PCM) to produce PCM-pDNA(BMP-9) or PCM-cmRNA(BMP-9). After structural characterization, the biodegradation kinetics of PCM, PCM-pDNA(BMP-9) and PCM-cmRNA(BMP-9) were assessed in simulated body fluid in vitro. Using a 24-well transwell plate system with bone marrow stromal cells (BMSCs) in the lower chamber and the PCM to be tested in the upper chamber, the in vitro bioactivity of different PCMs was evaluated by measuring various markers for osteogenesis in BMSCs. Alkaline phosphatase activity was assessed in BMSCs, after 7 and 11 days of exposure to PCM, PCM-pDNA(BMP-9), or PCM-cmRNA(BMP-9). Similarly, calcium deposition and Alizarin red staining in BMSCs were assessed after 14 days of exposure to the three different types of PCM. PCMs were then tested in vivo using the calvarial defect model in rats. After 4 weeks, animals were euthanized and bone specimens were harvested for micro-computed tomography and histological assessments. Incorporation of pDNA or cmRNA did not alter the biodegradation profile of PCMs. Alkaline phosphatase activity trended toward being higher in BMSCs exposed to PCM-cmRNA(BMP-9) or PCM-pDNA(BMP-9), when compared to BMSCs alone. Similar trends were observed when calcium deposition and alizarin red staining was evaluated. Calvarial bone defects treated with PCM-cmRNA(BMP-9) resulted in significantly higher bone volume/total volume % (BV/TV%), when compared to empty defects and trended toward being higher than defects treated with PCM-pDNA(BMP-9) and PCM alone. We demonstrate for the first time that resorbable PCM can be utilized to efficiently deliver pDNA and cmRNA of interest. The released pDNA and cmRNA encoding BMP-9 in this assessment was shown to be functional in vitro as well as in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1824-1832, 2019.
Collapse
Affiliation(s)
- Behnoush Khorsand
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa
| | - Satheesh Elangovan
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Liu Hong
- Department of Prosthodontics University of Iowa College of Dentistry, Iowa City, Iowa
| | - Michael S D Kormann
- Department of Translational Genomics and Gene Therapy, University of Tübingen, Wilhelmstr. 56, Tübingen, Germany
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| |
Collapse
|
14
|
Ueno M, Yamauchi S, Kumekawa D, Yamasaki Y. Peptide Sequence-Dependent Gene Expression of PEGylated Peptide/DNA Complexes. Mol Pharm 2019; 16:3072-3082. [PMID: 31173498 DOI: 10.1021/acs.molpharmaceut.9b00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oligolysine-based PEG-peptides with 15 or 20 amino acid residues including two cysteines were synthesized to formulate cross-linked polyplex micelles (PMs) incorporating luciferase-coding plasmid DNA (pDNA). Two cysteine residues were separately allocated at the C-terminal, center, or N-terminal of peptide moieties. Although TEM observation showed that all PEG-peptides condensed pDNA into rod-like or toroidal morphologies, the rod length distribution of PMs was affected by both the amino acid sequence and the peptide length of PEG-peptides. In comparison to the cysteine-uninstalled PEG-peptides, the cysteine-installed PEG-peptides exhibited a reductive environment-responsive pDNA release, which was observed in a gel retardation assay. From physicochemical characterizations, a relationship between the amino acid sequence and the in vitro gene expression efficacy of PMs in a cell-free protein synthesis system has been clearly demonstrated. Finally, the cell-based assay using HeLa cells has been tested, and the differences between both results of cell-free and cell-based systems are discussed.
Collapse
Affiliation(s)
- Mikiko Ueno
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , Hongo 7-3-1 , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Satoshi Yamauchi
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , Hongo 7-3-1 , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Daiki Kumekawa
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , Hongo 7-3-1 , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yuichi Yamasaki
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , Hongo 7-3-1 , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
15
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 838] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
16
|
Li Z, Wang X, Tian Z, Chen Z. Fluorescent protein nanovessels packing DNA into a nucleosome-like gene carrier. NEW J CHEM 2018. [DOI: 10.1039/c7nj04750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By forming a nucleosome-like structure, BBNCs can function as DNA carriers.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaoliang Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhuo Tian
- Jilin Agricultural University Information Teaching and Management Center
- Changchun
- P. R. China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
17
|
Li X, Sun D, Chen Y, Wang K, He Q, Wang G. Studying compaction-decompaction of DNA molecules induced by surfactants. Biochem Biophys Res Commun 2017; 495:2559-2565. [PMID: 29288663 DOI: 10.1016/j.bbrc.2017.12.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 11/30/2022]
Abstract
The mechanism and detailed processes of DNA compaction and decompaction are essential for the life activities, as well as for the researches in the molecular biology, genetics and biomedicine. The compaction of two kinds of DNA molecules caused by Cetyltrimethyl Ammonium Bromide (CTAB) and their decompaction induced with sodium dodecyl sulfate (SDS) or excessive amount of CTAB have been investigated with multiple perspectives such as the UV-VIS spectrophotometry, dynamic light scattering, and zeta potential. The compaction phenomenon of DNA can easily be observed when the CTAB combines with the DNA, not just when the molar ratio QCTAB/QDNA is approximately equal to 1 as the conventional recognition, but also when QCTAB/QDNA <1,DNA can be compacted; Molecular state of DNA is only changed in the conformational structure, but not in the chemical structure. Finally, a model is suggested to help catch on the biophysical mechanism of DNA chain conformational change.
Collapse
Affiliation(s)
- Xiaoyan Li
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China; Physics Department, Northwest University, Xi'an 710069, China
| | - Dan Sun
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yanyan Chen
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Kaige Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Qingli He
- Physics Department, Northwest University, Xi'an 710069, China
| | - Guiren Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China; Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208, USA
| |
Collapse
|
18
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
19
|
Dey A, Reddy G. Toroidal Condensates by Semiflexible Polymer Chains: Insights into Nucleation, Growth and Packing Defects. J Phys Chem B 2017; 121:9291-9301. [PMID: 28892379 DOI: 10.1021/acs.jpcb.7b07600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deciphering the principles of DNA condensation is important to understand problems such as genome packing and DNA compaction for delivery in gene therapy. DNA molecules condense into toroids and spindles upon the addition of multivalent ions. Nucleation of a loop in the semiflexible DNA chain is critical for both the toroid and spindle formation. To understand the structural differences in the nucleated loop, which cause bifurcation in the condensation pathways leading to toroid or spindle formation, we performed molecular dynamics simulations using a coarse-grained bead-spring polymer model. We find that the formation of a toroid or a spindle is correlated with the orientation of the chain segments close to the loop closure in the nucleated loop. Simulations show that toroids grow in size when spindles in solution interact with a pre-existing toroid and merge into it by spooling around the circumference of the toroid, forming multimolecular toroidal condensates. The merging of spindles with toroids is facile, indicating that this should be the dominant pathway through which the toroids grow in size. The Steinhardt bond order parameter analysis of the toroid cross section shows that the chains pack in a hexagonal fashion. In agreement with the experiments there are regions in the toroid with good hexagonal packing and also with considerable disorder. The disorder in packing is due to the defects, which are propagated during the growth of toroids. In addition to the well-known crossover defect, we have identified three other forms of defects, which perturb hexagonal packing. The new defects identified in the simulations are amenable to experimental verification.
Collapse
Affiliation(s)
- Atreya Dey
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bengaluru, Karnataka 560012, India
| |
Collapse
|
20
|
Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget 2017; 8:59068-59085. [PMID: 28938619 PMCID: PMC5601715 DOI: 10.18632/oncotarget.19146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
The present study investigated the synthesis of biotinylated chitosan (Bio-CS) from chitosan using a nanomaterial skeleton with biotin and the successful targeting of the formulation in liver cancer cells. Bio-CS was validated by fourier transformed infrared spectroscopy and hydrogen-1 nuclear magnetic resonance spectroscopy. Bio-CS and plasmid DNA were used to construct Bio-CS/plasmid DNA nanoparticles according to the optimal molar ratio of 1:1 and the optimal pH-value of 5.5. Under these conditions, the parameters mean particle size, potential, encapsulation rate and drug loading, were 82.9 nm, +21.8 mV, 85.7% and 35.4%, respectively. Bio-CS exhibited an apparent liver cancer targeting effect in vitro and in vivo, as demonstrated by confocal laser scanning, green fluorescent protein transfection, and in vivo imaging assays. In addition, the Bio-CS/plasmid DNA nanoparticles significantly increased the survival period of the orthotropic liver cancer mouse model compared with the plasmid DNA, with no apparent side effects on the cells. Bio-CS nanomaterials stimulated an immune response in hepatoma cells via increased expression of GM-CSF, IL-21 and Rae-1 markers. The data suggest that Bio-CS increased the inhibition of liver cancer cell proliferation in vitro and the activation of the cellular immunity in vivo.
Collapse
|
21
|
Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers (Basel) 2017; 9:polym9040142. [PMID: 30970822 PMCID: PMC6432433 DOI: 10.3390/polym9040142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40⁻50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers.
Collapse
|
22
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Khorsand B, Nicholson N, Do AV, Femino JE, Martin JA, Petersen E, Guetschow B, Fredericks DC, Salem AK. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J Control Release 2017; 248:53-59. [PMID: 28069556 PMCID: PMC5305420 DOI: 10.1016/j.jconrel.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/07/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Bone fracture healing impairment related to systemic diseases such as diabetes can be addressed by growth factor augmentation. We previously reported that growth factors such as fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2) work synergistically to encourage osteogenesis in vitro. In this report, we investigated if BMP-2 and FGF-2 together can synergistically promote bone repair in a leporine model of diabetes mellitus, a condition that is known to be detrimental to union. We utilized two kinds of plasmid DNA encoding either BMP-2 or FGF-2 formulated into polyethylenimine (PEI) complexes. The fabricated nanoplexes were assessed for their size, charge, in vitro cytotoxicity, and capacity to transfect human bone marrow stromal cells (BMSCs). Using diaphyseal long bone radial defects in a diabetic rabbit model it was demonstrated that co-delivery of PEI-(pBMP-2+pFGF-2) embedded in collagen scaffolds resulted in a significant improvement in bone regeneration compared to PEI-pBMP-2 embedded in collagen scaffolds alone. This study demonstrated that scaffolds loaded with PEI-(pBMP-2+pFGF-2) could be an effective way of promoting bone regeneration in patients with diabetes.
Collapse
Affiliation(s)
- Behnoush Khorsand
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - Nate Nicholson
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Anh-Vu Do
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - John E Femino
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - James A Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Emily Petersen
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Brian Guetschow
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Douglas C Fredericks
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States.
| |
Collapse
|
24
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Qin Q, Ma X, Liao X, Yang B. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1028-1036. [DOI: 10.1016/j.msec.2016.11.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/13/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023]
|
26
|
Chuah JA, Matsugami A, Hayashi F, Numata K. Self-Assembled Peptide-Based System for Mitochondrial-Targeted Gene Delivery: Functional and Structural Insights. Biomacromolecules 2016; 17:3547-3557. [PMID: 27696822 DOI: 10.1021/acs.biomac.6b01056] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human mitochondrial dysfunction can lead to severe and often deadly diseases, for which there are no known cures. Although the targeted delivery of therapeutic gene to mitochondria is a promising approach to alleviate these disorders, gene carrier systems for the selective delivery of functional DNA into the mitochondria of living mammalian cells are currently unavailable. Here we rationally developed dual-domain peptides containing DNA-condensing/cell-penetrating/endosome-disruptive and mitochondria-targeting sequences. Secondary structures of the dual-domain peptides were analyzed, and variations in the physicochemical properties (stability, size, and ζ potential) of peptide/DNA complexes were studied as a function of peptide-to-DNA ratio and serum addition. An optimized formulation, identified through qualitative and quantitative studies, fulfills the fundamental prerequisites for mitochondria-specific DNA delivery, successfully transfecting a high proportion (82 ± 2%) of mitochondria in a human cell line with concomitant biocompatibility. Nuclear magnetic resonance studies confirmed the effectiveness of our bipartite peptide design with segregated functions: a helical domain necessary for mitochondrial import and an unstructured region for interaction with DNA involving lysine residues. Further analyses revealed that the lysine-specific interaction assisted the self-organization of the peptide and the DNA cargo, leading to a structural arrangement within the formed complex that is crucial for its biological efficiency. Thus the reported gene vector represents a new and reliable tool to uncover the complexity of mitochondrial transfection.
Collapse
Affiliation(s)
- Jo-Ann Chuah
- Enzyme Research Team, Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Akimasa Matsugami
- Systems and Structural Biology Center, Yokohama Institute, RIKEN , Tsurumi, 1-7-22 Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Systems and Structural Biology Center, Yokohama Institute, RIKEN , Tsurumi, 1-7-22 Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Presa-Soto D, Carriedo GA, de la Campa R, Presa Soto A. Formation and Reversible Morphological Transition of Bicontinuous Nanospheres and Toroidal Micelles by the Self-Assembly of a Crystalline-b-Coil Diblock Copolymer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Presa-Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Gabino A. Carriedo
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Raquel de la Campa
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| |
Collapse
|
28
|
Vanderkerken S, Vanheede T, Toncheva V, Schacht E, Wolfert MA, Seymour L, Urtti A. Synthesis and Evaluation of Poly(Ethylene Glycol)-Polylysine Block Copolymers as Carriers for Gene Delivery. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391150001500202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different types of poly(ethylene glycol)-poly(l-lysine) PEG-PLL block copolymers were examined for their ability to form polyelectrolyte complexes with DNA, their toxicity toward red blood cells and their in vitro transfection efficiency. The complexation of the polymers with DNA was studied using the ethidium bromide fluorescence technique. All polymers complexed DNA to form particles with sizes ranging from 80 nm to 150 nm. In most cases, smaller particles were also observed, and sometimes populations of even larger particles could be detected. In vitro toxicity toward red blood cells was low. Agglutination of red blood cells with some of the noncomplexed block copolymers was observed, but the aggregates were less dense than with polylysine. Transfection efficiency of 293 cells in vitro in the presence of chloroquine was dependent upon the charge ratio of polymer/DNA. Efficient transfection was achieved for the PEG-PLL block copolymers with linear PLL blocks. On the other hand, very low transfection efficiency was obtained from the PEG-PLL with a dendritic PLL block.
Collapse
Affiliation(s)
- S. Vanderkerken
- Polymer Materials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S-4bis, B-9000 Ghent, Belgium
| | - T. Vanheede
- Polymer Materials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S-4bis, B-9000 Ghent, Belgium
| | - V. Toncheva
- Polymer Materials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S-4bis, B-9000 Ghent, Belgium
| | - E. Schacht
- Polymer Materials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S-4bis, B-9000 Ghent, Belgium
| | - M. A. Wolfert
- CRC Institute for Cancer Studies, University of Birmingham School of Medicine, Edgbaston, Birmingham B15 2TT, UK
| | - L. Seymour
- CRC Institute for Cancer Studies, University of Birmingham School of Medicine, Edgbaston, Birmingham B15 2TT, UK
| | - A. Urtti
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
29
|
Presa-Soto D, Carriedo GA, de la Campa R, Presa Soto A. Formation and Reversible Morphological Transition of Bicontinuous Nanospheres and Toroidal Micelles by the Self-Assembly of a Crystalline-b-Coil Diblock Copolymer. Angew Chem Int Ed Engl 2016; 55:10102-7. [DOI: 10.1002/anie.201605317] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- David Presa-Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Gabino A. Carriedo
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Raquel de la Campa
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Facultad de Química, Química Orgánica e Inorgánica (IUQOEM); Universidad de Oviedo, Julián Clavería s/n; 33006 Oviedo Spain
| |
Collapse
|
30
|
Reinhard S, Wagner E. How to Tackle the Challenge of siRNA Delivery with Sequence-Defined Oligoamino Amides. Macromol Biosci 2016; 17. [PMID: 27328447 DOI: 10.1002/mabi.201600152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) as a mechanism of gene regulation provides exciting opportunities for medical applications. Synthetic small interfering RNA (siRNA) triggers the knockdown of complementary mRNA sequences in a catalytic fashion and has to be delivered into the cytosol of the targeted cells. The design of adequate carrier systems to overcome multiple extracellular and intracellular roadblocks within the delivery process has utmost importance. Cationic polymers form polyplexes through electrostatic interaction with negatively charged nucleic acids and present a promising class of carriers. Issues of polycations regarding toxicity, heterogeneity, and polydispersity can be overcome by solid-phase-assisted synthesis of sequence-defined cationic oligomers. These medium-sized highly versatile nucleic acid carriers display low cytotoxicity and can be modified and tailored in multiple ways to meet specific requirements of nucleic acid binding, polyplex size, shielding, targeting, and intracellular release of the cargo. In this way, sequence-defined cationic oligomers can mimic the dynamic and bioresponsive behavior of viruses.
Collapse
Affiliation(s)
- Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig Maximilians University, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany
| |
Collapse
|
31
|
Marino D, Perković M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM, Mühlebach MD, Schumann GG, König R, Cichutek K, Häussinger D, Münk C. APOBEC4 Enhances the Replication of HIV-1. PLoS One 2016; 11:e0155422. [PMID: 27249646 PMCID: PMC4889046 DOI: 10.1371/journal.pone.0155422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022] Open
Abstract
APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters.
Collapse
Affiliation(s)
- Daniela Marino
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ananda A. Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henning Hofmann
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Michael D. Mühlebach
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- Product Testing of Immunological Medicinal Products for Veterinary Uses, Paul-Ehrlich-Institute, Langen, Germany
| | - Gerald G. Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
- Sanford Burnham Prebys Medical Discovery Institute, Immunity and Pathogenesis Program, La Jolla, California, United States of America
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
32
|
Affiliation(s)
- Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
33
|
Deng X, Zhang G, Zhang L, Feng Y, Li Z, Wu G, Yue Y, Li G, Cao Y, Zhu P. Developing a Novel Gene-Delivery Vector System Using the Recombinant Fusion Protein of Pseudomonas Exotoxin A and Hyperthermophilic Archaeal Histone HPhA. PLoS One 2015; 10:e0142558. [PMID: 26556098 PMCID: PMC4640596 DOI: 10.1371/journal.pone.0142558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.
Collapse
Affiliation(s)
- Xin Deng
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
| | - Guoli Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Ling Zhang
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yan Feng
- Key Laboratory for Molecular Enzymology, Jilin University, Changchun, Jilin, P.R.China
| | - Zehong Li
- Department Biology and Technology of the Agriculture University of Jilin, Changchun, Jilin, P.R.China
| | - GuangMou Wu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Yuhuan Yue
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| | - Gensong Li
- Experimental Center of the Functional Subjects, Basic Medical Scientific Research College, China Medical University, Shenyang, Liaoning, P.R.China
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Yu Cao
- Department of Physiology, China Medical University, Shenyang, Liaoning, P.R.China
| | - Ping Zhu
- Institute of Veterinary Medicine, The Academy of Military Medical Sciences of PLA, Changchun, Jilin, P.R. China
| |
Collapse
|
34
|
Reddy TL, Krishnarao PS, Rao GK, Bhimireddy E, Venkateswarlu P, Mohapatra DK, Yadav JS, Bhadra U, Bhadra MP. Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA. Int J Nanomedicine 2015; 10:6411-23. [PMID: 26491299 PMCID: PMC4608593 DOI: 10.2147/ijn.s86238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.
Collapse
Affiliation(s)
- Teegala Lakshminarayan Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - P Sivarama Krishnarao
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Garikapati Koteswara Rao
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - Eswar Bhimireddy
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - P Venkateswarlu
- Department of Chemistry, Sri Venkateswara University, Tirpupati, India
| | - Debendra K Mohapatra
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - J S Yadav
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Indian Institute of Chemical Technology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
35
|
Elangovan S, Khorsand B, Do AV, Hong L, Dewerth A, Kormann M, Ross RD, Sumner DR, Allamargot C, Salem AK. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release 2015; 218:22-8. [PMID: 26415855 DOI: 10.1016/j.jconrel.2015.09.050] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/11/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
There exists a dire need for improved therapeutics to achieve predictable bone regeneration. Gene therapy using non-viral vectors that are safe and efficient at transfecting target cells is a promising approach to overcoming the drawbacks of protein delivery of growth factors. Here, we investigated the transfection efficiency, cytotoxicity, osteogenic potential and in vivo bone regenerative capacity of chemically modified ribonucleic acid (cmRNA) (encoding BMP-2) complexed with polyethylenimine (PEI) and made comparisons with PEI complexed with conventional plasmid DNA (encoding BMP-2). The polyplexes were fabricated at an amine (N) to phosphate (P) ratio of 10 and characterized for transfection efficiency using human bone marrow stromal cells (BMSCs). The osteogenic potential of BMSCs treated with these polyplexes was validated by determining the expression of bone-specific genes, osteocalcin and alkaline phosphatase as well as through the detection of bone matrix deposition. Using a calvarial bone defect model in rats, it was shown that PEI-cmRNA (encoding BMP-2)-activated matrices promoted significantly enhanced bone regeneration compared to PEI-plasmid DNA (BMP-2)-activated matrices. Our proof of concept study suggests that scaffolds loaded with non-viral vectors harboring cmRNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, United States.
| | - Behnoush Khorsand
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States
| | - Liu Hong
- Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, IA, United States
| | - Alexander Dewerth
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Wilhelstr. 56, 72074 Tübingen, Germany
| | - Michael Kormann
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy, University of Tübingen, Wilhelstr. 56, 72074 Tübingen, Germany
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, IL, United States
| | - D Rick Sumner
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, IL, United States
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Aliasger K Salem
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, United States; Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA, United States.
| |
Collapse
|
36
|
Zhang W, Rödl W, He D, Döblinger M, Lächelt U, Wagner E. Combination of sequence-defined oligoaminoamides with transferrin-polycation conjugates for receptor-targeted gene delivery. J Gene Med 2015; 17:161-72. [DOI: 10.1002/jgm.2838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Zhang
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Dongsheng He
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Markus Döblinger
- Department of Chemistry; Ludwig-Maximilians-Universität Munich; Munich Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Centre for System-Based Drug Research; Ludwig-Maximilians-Universität Munich; Munich Germany
- Nanosystems Initiative Munich; Munich Germany
| |
Collapse
|
37
|
Leng Q, Chou ST, Scaria PV, Woodle MC, Mixson AJ. Increased tumor distribution and expression of histidine-rich plasmid polyplexes. J Gene Med 2015; 16:317-28. [PMID: 25303767 PMCID: PMC4242722 DOI: 10.1002/jgm.2807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Background Selecting nonviral carriers for in vivo gene delivery is often dependent on determining the optimal carriers from transfection assays in vitro. The rationale behind this in vitro strategy is to cast a net sufficiently wide to identify the few effective carriers of plasmids for in vivo studies. Nevertheless, many effective in vivo carriers may be overlooked by this strategy because of the marked differences between in vitro and in vivo assays. Methods After solid-phase synthesis of linear and branched histidine/lysine (HK) peptides, the two peptide carriers were compared for their ability to transfect MDA-MB-435 tumor cells in vitro and then in vivo. Results By contrast to their transfection activity in vitro, the linear H2K carrier of plasmids was far more effective in vivo compared to the branch H2K4b. Surprisingly, negatively-charged polyplexes formed by the linear H2K peptide gave higher transfection in vivo than did those with a positive surface charge. To examine the distribution of plasmid expression within the tumor from H2K polyplexes, we found widespread expression by immunohistochemical staining. With a fluorescent tdTomato expressing-plasmid, we confirmed a pervasive distribution and gene expression within the tumor mediated by the H2K polyplex. Conclusions Although mechanisms underlying the efficiency of gene expression are probably multifactorial, unpacking of the H2K polyplex within the tumor appears to have a significant role. Further development of these H2K polyplexes represents an attractive approach for plasmid-based therapies of cancer. © 2014 The Authors. The Journal of Gene Medicine published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Kodama Y, Yatsugi Y, Kitahara T, Kurosaki T, Egashira K, Nakashima M, Muro T, Nakagawa H, Higuchi N, Nakamura T, Sasaki H. Quaternary Complexes Modified from pDNA and Poly-l-Lysine Complexes to Enhance pH-Buffering Effect and Suppress Cytotoxicity. J Pharm Sci 2015; 104:1470-7. [DOI: 10.1002/jps.24364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
|
40
|
Revisiting phage therapy: new applications for old resources. Trends Microbiol 2015; 23:185-91. [PMID: 25708933 DOI: 10.1016/j.tim.2015.01.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
The success of phage therapy is dependent on the development of strategies able to overcome the limitations of bacteriophages as therapeutic agents, the creation of an adequate regulatory framework, the implementation of safety protocols, and acceptance by the general public. Many approaches have been proposed to circumvent phages' intrinsic limitations but none have proved to be completely satisfactory. In this review we present the major hurdles of phage therapy and the solutions proposed to circumvent them. A thorough discussion of the advantages and drawbacks of these solutions is provided and special attention is given to the genetic modification of phages as an achievable strategy to shape bacteriophages to exhibit desirable biological properties.
Collapse
|
41
|
Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep 2015; 5:7751. [PMID: 25583214 PMCID: PMC4291575 DOI: 10.1038/srep07751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/10/2014] [Indexed: 11/25/2022] Open
Abstract
Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.
Collapse
|
42
|
Nadithe V, Liu R, Killinger BA, Movassaghian S, Kim NH, Moszczynska AB, Masters KS, Gellman SH, Merkel OM. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery. Mol Pharm 2014; 12:362-74. [PMID: 25437915 PMCID: PMC4319696 DOI: 10.1021/mp5004724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Amphiphilic nucleic acid carriers
have attracted strong interest.
Three groups of nylon-3 copolymers (poly-β-peptides) possessing
different cationic/hydrophobic content were evaluated as siRNA delivery
agents in this study. Their ability to condense siRNA was determined
in SYBR Gold assays. Their cytotoxicity was tested by MTT assays,
their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly
in the presence and absence of uptake inhibitors was assessed by flow
cytometry, and their transfection efficacies were studied by luciferase
knockdown in a cell line stably expressing luciferase (H1299/Luc).
Endosomal release was determined by confocal laser scanning microscopy
and colocalization with lysotracker. All polymers efficiently condensed
siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected
in hydrodynamic diameters smaller than that at N/P 1. Although several
formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes
yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry.
Luciferase knockdown (20–65%) was observed after transfection
with polyplexes made of the high molecular weight polymers that were
the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA
intracellularly even at negative zeta potential implies that they
mediate transport across cell membranes based on their amphiphilicity.
The cellular uptake route was determined to strongly depend on the
presence of cholesterol in the cell membrane. These polymers are,
therefore, very promising for siRNA delivery at reduced surface charge
and toxicity. Our study identified nylon-3 formulations at low N/P
ratios for effective gene knockdown, indicating that nylon-3 polymers
are a new, promising type of gene delivery agent.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tay CY, Menon N, Leong DT, Tan LP. Molecular Architecture Governs Cytotoxicity and Gene Transfection Efficacy of Polyethylenimine Based Nanoplexes in Mammalian Cell Lines. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0135-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Jain A, Muntimadugu E, Domb AJ, Khan W. Cationic Polysaccharides in Gene Delivery. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Approval of Glybera®, a gene therapy to treat lipoprotein lipase deficiency, by the European Union Marketing Authorization, and more than 1800 clinical trials in over 31 countries for the treatment of many incurable diseases, narrates the successful journey of gene therapy in the biomedical field. However, the undesired side effects of gene therapy using viral and other vectors have overshadowed the success story of gene therapy. Non-viral vectors, and more particularly cationic polysaccharides due to their non-toxicity, water solubility, biodegradability and excellent compatibility with body systems, provide an excellent alternative for gene delivery. This chapter highlights significant contributions made by cationic polysaccharides in gene delivery.
Collapse
Affiliation(s)
- Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
| | - Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
| | - Abraham J. Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel 91120
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel 91120
| |
Collapse
|
45
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
46
|
Joubran S, Zigler M, Pessah N, Klein S, Shir A, Edinger N, Sagalov A, Razvag Y, Reches M, Levitzki A. Optimization of Liganded Polyethylenimine Polyethylene Glycol Vector for Nucleic Acid Delivery. Bioconjug Chem 2014; 25:1644-54. [DOI: 10.1021/bc500252a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Salim Joubran
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Maya Zigler
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Neta Pessah
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Shoshana Klein
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Alexei Shir
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Nufar Edinger
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Anna Sagalov
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Yair Razvag
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Meital Reches
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry and ‡Institute of Chemistry
and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
47
|
Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:83-91. [DOI: 10.3109/21691401.2014.913054] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Zheng C, Niu L, Pan W, Zhou J, Lv H, Cheng J, Liang D. Long-term kinetics of DNA interacting with polycations. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Hu X, Wang H, Yang J, Liu W, Wang W. Introducing primary and tertiary amino groups into a neutral polymer: A simple way to fabricating highly efficient nonviral vectors for gene delivery. J Appl Polym Sci 2014. [DOI: 10.1002/app.40468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiufeng Hu
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Hongbo Wang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Jianhai Yang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Wenguang Liu
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| | - Wei Wang
- Department of Polymer Materials; School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
50
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|