1
|
Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-Protein Interactions of Seryl-tRNA Synthetases with Emphasis on Human Counterparts and Their Connection to Health and Disease. Life (Basel) 2024; 14:124. [PMID: 38255739 PMCID: PMC10817482 DOI: 10.3390/life14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Seryl-tRNA synthetases (SerRSs), members of the aminoacyl-tRNA synthetase family, interact with diverse proteins, enabling SerRSs to enhance their role in the translation of the genetic message or to perform alternative functions in cellular processes beyond translation. Atypical archaeal SerRS interacts with arginyl-tRNA synthetase and proteins of the ribosomal P-stalk to optimize translation through tRNA channeling. The complex between yeast SerRS and peroxin Pex21p provides a connection between translation and peroxisome function. The partnership between Arabidopsis SerRS and BEN1 indicates a link between translation and brassinosteroid metabolism and may be relevant in plant stress response mechanisms. In Drosophila, the unusual heterodimeric mitochondrial SerRS coordinates mitochondrial translation and replication via interaction with LON protease. Evolutionarily conserved interactions of yeast and human SerRSs with m3C32 tRNA methyltransferases indicate coordination between tRNA modification and aminoacylation in the cytosol and mitochondria. Human cytosolic SerRS is a cellular hub protein connecting translation to vascular development, angiogenesis, lipogenesis, and telomere maintenance. When translocated to the nucleus, SerRS acts as a master negative regulator of VEGFA gene expression. SerRS alone or in complex with YY1 and SIRT2 competes with activating transcription factors NFκB1 and c-Myc, resulting in balanced VEGFA expression important for proper vascular development and angiogenesis. In hypoxia, SerRS phosphorylation diminishes its binding to the VEGFA promoter, while the lack of nutrients triggers SerRS glycosylation, reducing its nuclear localization. Additionally, SerRS binds telomeric DNA and cooperates with the shelterin protein POT1 to regulate telomere length and cellular senescence. As an antitumor and antiangiogenic factor, human cytosolic SerRS appears to be a promising drug target and therapeutic agent for treating cancer, cardiovascular diseases, and possibly obesity and aging.
Collapse
Affiliation(s)
| | | | | | | | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (M.D.); (V.G.-M.); (M.K.); (V.E.)
| |
Collapse
|
2
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
3
|
Yan C, Ma H, Yang Y, Mi Z. Metabolic Adaption of Flexor Carpi Radialis to Amplexus Behavior in Asiatic Toads ( Bufo gargarizans). Int J Mol Sci 2023; 24:10174. [PMID: 37373324 PMCID: PMC10299559 DOI: 10.3390/ijms241210174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Amplexus is a type of mating behavior among toads that is essential for successful external fertilization. Most studies have primarily focused on the behavioral diversity of amplexus, and less is known regarding the metabolic changes occurring in amplectant males. The aim of this study was to compare the metabolic profiles of amplectant Asiatic toad (Bufo gargarizans) males in the breeding period (BP group) and the resting males in the non-breeding period (NP group). A metabolomic analysis was conducted on the flexor carpi radialis (FCR), an essential forelimb muscle responsible for clasping during courtship. A total of 66 differential metabolites were identified between the BP and NP groups, including 18 amino acids, 12 carbohydrates, and 8 lipids, and they were classified into 9 categories. Among these differential metabolites, 13 amino acids, 11 carbohydrates, and 7 lipids were significantly upregulated in the BP group compared to the NP group. In addition, a KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis identified 17 significant metabolic pathways, including ABC transporters, aminoacyl-tRNA biosynthesis, arginine biosynthesis, pantothenate and CoA biosynthesis, and fructose and mannose metabolism. These results suggest that amplectant male toads are metabolically more active than those during the non-breeding period, and this metabolic adaptation increases the likelihood of reproductive success.
Collapse
Affiliation(s)
| | | | | | - Zhiping Mi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (C.Y.); (H.M.); (Y.Y.)
| |
Collapse
|
4
|
Negrutskii B, Shalak V, Novosylna O, Porubleva L, Lozhko D, El'skaya A. The eEF1 family of mammalian translation elongation factors. BBA ADVANCES 2022; 3:100067. [PMID: 37082266 PMCID: PMC10074971 DOI: 10.1016/j.bbadva.2022.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions. This variability is underlined by the difference in the spatial organization of eEF1A1 and eEF1A2, and also possibly by the differences in their post-translational modifications. Here, we review the data on the spatial organization and post-translation modifications of eEF1A1 and eEF1A2, and provide examples of their involvement in various processes in addition to translation. We also describe the structural models of eEF1B subunits, their organization in the subcomplexes, and the trimeric model of the entire eEF1B complex. We discuss the functional consequences of such an assembly into a complex as well as the involvement of individual subunits in non-translational processes.
Collapse
Affiliation(s)
- B.S. Negrutskii
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
- Aarhus Institute of Advanced Sciences, Høegh-Guldbergs Gade 6B, DK–8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - V.F. Shalak
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - O.V. Novosylna
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - L.V. Porubleva
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - D.M. Lozhko
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - A.V. El'skaya
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| |
Collapse
|
5
|
Multimodal cotranslational interactions direct assembly of the human multi-tRNA synthetase complex. Proc Natl Acad Sci U S A 2022; 119:e2205669119. [PMID: 36037331 PMCID: PMC9457175 DOI: 10.1073/pnas.2205669119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amino acid ligation to cognate transfer RNAs (tRNAs) is catalyzed by aminoacyl-tRNA synthetases (aaRSs)-essential interpreters of the genetic code during translation. Mammalian cells harbor 20 cytoplasmic aaRSs, out of which 9 (in 8 proteins), with 3 non-aaRS proteins, AIMPs 1 to 3, form the ∼1.25-MDa multi-tRNA synthetase complex (MSC). The function of MSC remains uncertain, as does its mechanism of assembly. Constituents of multiprotein complexes encounter obstacles during assembly, including inappropriate interactions, topological constraints, premature degradation of unassembled subunits, and suboptimal stoichiometry. To facilitate orderly and efficient complex formation, some complexes are assembled cotranslationally by a mechanism in which a fully formed, mature protein binds a nascent partner as it emerges from the translating ribosome. Here, we show out of the 121 possible interaction events between the 11 MSC constituents, 15 are cotranslational. AIMPs are involved in the majority of these cotranslational interactions, suggesting they are not only critical for MSC structure but also for assembly. Unexpectedly, several cotranslational events involve more than the usual dyad of interacting proteins. We show two modes of cotranslational interaction, namely a "multisite" mechanism in which two or more mature proteins bind the same nascent peptide at distinct sites and a second "piggy-back" mechanism in which a mature protein carries a second fully formed protein and binds to a single site on an emerging peptide. Multimodal mechanisms of cotranslational interaction offer a diversity of pathways for ordered, piecewise assembly of small subcomplexes into larger heteromultimeric complexes such as the mammalian MSC.
Collapse
|
6
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
7
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Wu S, Zheng L, Hei Z, Zhou JB, Li G, Li P, Wang J, Ali H, Zhou XL, Wang J, Fang P. Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex. Cell Mol Life Sci 2022; 79:128. [PMID: 35133502 PMCID: PMC11072160 DOI: 10.1007/s00018-022-04158-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.
Collapse
Affiliation(s)
- Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Guang Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiayuan Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hamid Ali
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
9
|
On the Effects of Disordered Tails, Supertertiary Structure and Quinary Interactions on the Folding and Function of Protein Domains. Biomolecules 2022; 12:biom12020209. [PMID: 35204709 PMCID: PMC8961636 DOI: 10.3390/biom12020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
The vast majority of our current knowledge about the biochemical and biophysical properties of proteins derives from in vitro studies conducted on isolated globular domains. However, a very large fraction of the proteins expressed in the eukaryotic cell are structurally more complex. In particular, the discovery that up to 40% of the eukaryotic proteins are intrinsically disordered, or possess intrinsically disordered regions, and are highly dynamic entities lacking a well-defined three-dimensional structure, revolutionized the structure–function paradigm and our understanding of proteins. Moreover, proteins are mostly characterized by the presence of multiple domains, influencing each other by intramolecular interactions. Furthermore, proteins exert their function in a crowded intracellular milieu, transiently interacting with a myriad of other macromolecules. In this review we summarize the literature tackling these themes from both the theoretical and experimental perspectives, highlighting the effects on protein folding and function that are played by (i) flanking disordered tails; (ii) contiguous protein domains; (iii) interactions with the cellular environment, defined as quinary structures. We show that, in many cases, both the folding and function of protein domains is remarkably perturbed by the presence of these interactions, pinpointing the importance to increase the level of complexity of the experimental work and to extend the efforts to characterize protein domains in more complex contexts.
Collapse
|
10
|
Kim MH, Kang BS. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Subcell Biochem 2022; 99:199-233. [PMID: 36151377 DOI: 10.1007/978-3-031-00793-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Beom Sik Kang
- School of Life Sciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
11
|
tRNA Synthetases Are Recruited to Yeast Ribosomes by rRNA Expansion Segment 7L but Do Not Require Association for Functionality. Noncoding RNA 2021; 7:ncrna7040073. [PMID: 34842814 PMCID: PMC8628890 DOI: 10.3390/ncrna7040073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/03/2022] Open
Abstract
Protein biosynthesis is essential for any organism, yet how this process is regulated is not fully understood at the molecular level. During evolution, ribosomal RNA expanded in specific regions, referred to as rRNA expansion segments (ES). First functional roles of these expansions have only recently been discovered. Here we address the role of ES7La located in the large ribosomal subunit for factor recruitment to the yeast ribosome and the potential consequences for translation. Truncation of ES7La has only minor effects on ribosome biogenesis, translation efficiency and cell doubling. Using yeast rRNA deletion strains coupled with ribosome-specific mass spectrometry we analyzed the interactome of ribosomes lacking ES7La. Three aminoacyl-tRNA synthetases showed reduced ribosome association. Synthetase activities however remained unaltered suggesting that the pool of aminoacylated tRNAs is unaffected by the ES deletion. These results demonstrated that aminoacylation activities of tRNA synthetases per se do not rely on ribosome association. These findings suggest a role of ribosome-associated aminoacyl-tRNA synthetase beyond their core enzymatic functions.
Collapse
|
12
|
Cela M, Théobald-Dietrich A, Rudinger-Thirion J, Wolff P, Geslain R, Frugier M. Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip. Nucleic Acids Res 2021; 49:10618-10629. [PMID: 34530443 PMCID: PMC8501954 DOI: 10.1093/nar/gkab769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.
Collapse
Affiliation(s)
- Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Anne Théobald-Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| |
Collapse
|
13
|
Cui H, Kapur M, Diedrich JK, Yates JR, Ackerman SL, Schimmel P. Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. Nucleic Acids Res 2021; 49:3603-3616. [PMID: 33341895 PMCID: PMC8053116 DOI: 10.1093/nar/gkaa1183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Wang L, Zhong X, Wang S, Zhang H, Liu Y. A novel end-to-end method to predict RNA secondary structure profile based on bidirectional LSTM and residual neural network. BMC Bioinformatics 2021; 22:169. [PMID: 33789581 PMCID: PMC8011163 DOI: 10.1186/s12859-021-04102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Studies have shown that RNA secondary structure, a planar structure formed by paired bases, plays diverse vital roles in fundamental life activities and complex diseases. RNA secondary structure profile can record whether each base is paired with others. Hence, accurate prediction of secondary structure profile can help to deduce the secondary structure and binding site of RNA. RNA secondary structure profile can be obtained through biological experiment and calculation methods. Of them, the biological experiment method involves two ways: chemical reagent and biological crystallization. The chemical reagent method can obtain a large number of prediction data, but its cost is high and always associated with high noise, making it difficult to get results of all bases on RNA due to the limited of sequencing coverage. By contrast, the biological crystallization method can lead to accurate results, yet heavy experimental work and high costs are required. On the other hand, the calculation method is CROSS, which comprises a three-layer fully connected neural network. However, CROSS can not completely learn the features of RNA secondary structure profile since its poor network structure, leading to its low performance. Results In this paper, a novel end-to-end method, named as “RPRes, was proposed to predict RNA secondary structure profile based on Bidirectional LSTM and Residual Neural Network. Conclusions RPRes utilizes data sets generated by multiple biological experiment methods as the training, validation, and test sets to predict profile, which can compatible with numerous prediction requirements. Compared with the biological experiment method, RPRes has reduced the costs and improved the prediction efficiency. Compared with the state-of-the-art calculation method CROSS, RPRes has significantly improved performance.
Collapse
Affiliation(s)
- Linyu Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xiaodan Zhong
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1645-1660. [PMID: 33515434 DOI: 10.1007/s11427-020-1838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Khan K, Baleanu-Gogonea C, Willard B, Gogonea V, Fox PL. 3-Dimensional architecture of the human multi-tRNA synthetase complex. Nucleic Acids Res 2020; 48:8740-8754. [PMID: 32644155 PMCID: PMC7470956 DOI: 10.1093/nar/gkaa569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
In mammalian cells, eight cytoplasmic aminoacyl-tRNA synthetases (AARS), and three non-synthetase proteins, reside in a large multi-tRNA synthetase complex (MSC). AARSs have critical roles in interpretation of the genetic code during protein synthesis, and in non-canonical functions unrelated to translation. Nonetheless, the structure and function of the MSC remain unclear. Partial or complete crystal structures of all MSC constituents have been reported; however, the structure of the holo-MSC has not been resolved. We have taken advantage of cross-linking mass spectrometry (XL-MS) and molecular docking to interrogate the three-dimensional architecture of the MSC in human HEK293T cells. The XL-MS approach uniquely provides structural information on flexibly appended domains, characteristic of nearly all MSC constituents. Using the MS-cleavable cross-linker, disuccinimidyl sulfoxide, inter-protein cross-links spanning all MSC constituents were observed, including cross-links between eight protein pairs not previously known to interact. Intra-protein cross-links defined new structural relationships between domains in several constituents. Unexpectedly, an asymmetric AARS distribution was observed featuring a clustering of tRNA anti-codon binding domains on one MSC face. Possibly, the non-uniform localization improves efficiency of delivery of charged tRNA’s to an interacting ribosome during translation. In summary, we show a highly compact, 3D structural model of the human holo-MSC.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Kastan JP, Dobrikova EY, Bryant JD, Gromeier M. CReP mediates selective translation initiation at the endoplasmic reticulum. SCIENCE ADVANCES 2020; 6:eaba0745. [PMID: 32537501 PMCID: PMC7269655 DOI: 10.1126/sciadv.aba0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/13/2020] [Indexed: 05/16/2023]
Abstract
Eukaryotic protein synthesis control at multiple levels allows for dynamic, selective responses to diverse conditions, but spatial organization of translation initiation machinery as a regulatory principle has remained largely unexplored. Here we report on a role of constitutive repressor of eIF2α phosphorylation (CReP) in translation of poliovirus and the endoplasmic reticulum (ER)-resident chaperone binding immunoglobulin protein (BiP) at the ER. Functional, proximity-dependent labeling and cell fractionation studies revealed that CReP, through binding eIF2α, anchors translation initiation machinery at the ER and enables local protein synthesis in this compartment. This ER site was protected from the suppression of cytoplasmic protein synthesis by acute stress responses, e.g., phosphorylation of eIF2α(S51) or mTOR blockade. We propose that partitioning of translation initiation machinery at the ER enables cells to maintain active translation during stress conditions associated with global protein synthesis suppression.
Collapse
Affiliation(s)
- Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | | | | |
Collapse
|
18
|
Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA Lys. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1227-1239. [PMID: 32189241 DOI: 10.1007/s11427-019-1619-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitously expressed, essential enzymes, synthesizing aminoacyl-tRNAs for protein synthesis. Functional defects of aaRSs frequently cause various human disorders. Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases (LysRSs). Previously, two mutations (c.1129G>A and c.517T>C) were identified that led to hearing impairment; however, the underlying biochemical mechanism is unclear. In the present study, we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol, but affect the cytosolic LysRS level, its tertiary structure, and cytosolic tRNA aminoacylation in vitro. As for mitochondrial translation, the two mutations have little effect on the steady-state level, mitochondrial targeting, and tRNA binding affinity of mitochondrial LysRS. However, they exhibit striking differences in charging mitochondrial tRNALys, with the c.517T>C mutant being completely deficient in vitro and in vivo. We constructed two yeast genetic models, which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels. Overall, our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mei-Qin Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Kim MH, Kim S. Structures and functions of multi-tRNA synthetase complexes. Enzymes 2020; 48:149-173. [PMID: 33837703 DOI: 10.1016/bs.enz.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Human body is a finely-tuned machine that requires homeostatic balance based on systemically controlled biological processes involving DNA replication, transcription, translation, and energy metabolism. Ubiquitously expressed aminoacyl-tRNA synthetases have been investigated for many decades, and they act as cross-over mediators of important biological processes. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC) appears to be a central machinery controlling the complexity of biological systems. The structural integrity of MSC determined by the associated components is correlated with increasing biological complexity that links to system development in higher organisms. Although the role of the MSCs is still unclear, this chapter describes the current knowledge on MSC components that are associated with and regulate functions beyond their catalytic activities with focus on human MSC.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon, South Korea.
| |
Collapse
|
20
|
Yewdell JW, Dersh D, Fåhraeus R. Peptide Channeling: The Key to MHC Class I Immunosurveillance? Trends Cell Biol 2019; 29:929-939. [PMID: 31662235 DOI: 10.1016/j.tcb.2019.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA.
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Robin Fåhraeus
- Inserm, 27 rue Juliette Dodu, 750 10 Paris, France; International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| |
Collapse
|
21
|
Hahn H, Park SH, Kim HJ, Kim S, Han BW. The DRS-AIMP2-EPRS subcomplex acts as a pivot in the multi-tRNA synthetase complex. IUCRJ 2019; 6:958-967. [PMID: 31576228 PMCID: PMC6760448 DOI: 10.1107/s2052252519010790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/01/2019] [Indexed: 05/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play essential roles in protein biosynthesis as well as in other cellular processes, often using evolutionarily acquired domains. For possible cooperativity and synergistic effects, nine ARSs assemble into the multi-tRNA synthetase complex (MSC) with three scaffold proteins: aminoacyl-tRNA synthetase complex-interacting multifunctional proteins 1, 2 and 3 (AIMP1, AIMP2 and AIMP3). X-ray crystallographic methods were implemented in order to determine the structure of a ternary subcomplex of the MSC comprising aspartyl-tRNA synthetase (DRS) and two glutathione S-transferase (GST) domains from AIMP2 and glutamyl-prolyl-tRNA synthetase (AIMP2GST and EPRSGST, respectively). While AIMP2GST and EPRSGST interact via conventional GST heterodimerization, DRS strongly interacts with AIMP2GST via hydrogen bonds between the α7-β9 loop of DRS and the β2-α2 loop of AIMP2GST, where Ser156 of AIMP2GST is essential for the assembly. Structural analyses of DRS-AIMP2GST-EPRSGST reveal its pivotal architecture in the MSC and provide valuable insights into the overall assembly and conditionally required disassembly of the MSC.
Collapse
Affiliation(s)
- Hyunggu Hahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
23
|
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat 2018; 40:131-141. [PMID: 30370994 DOI: 10.1002/humu.23677] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/06/2022]
Abstract
The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.
Collapse
Affiliation(s)
- Fiona McLachlan
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Anna Martinez Sires
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
24
|
Shetty S, Copeland PR. Molecular mechanism of selenoprotein P synthesis. Biochim Biophys Acta Gen Subj 2018; 1862:2506-2510. [PMID: 29656121 DOI: 10.1016/j.bbagen.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selenoprotein synthesis requires the reinterpretation of a UGA stop codon as one that encodes selenocysteine (Sec), a process that requires a set of dedicated translation factors. Among the mammalian selenoproteins, Selenoprotein P (SELENOP) is unique as it contains a selenocysteine-rich domain that requires multiple Sec incorporation events. SCOPE OF REVIEW In this review we elaborate on new data and current models that provide insight into how SELENOP is made. MAJOR CONCLUSIONS SELENOP synthesis requires a specific set of factors and conditions. GENERAL SIGNIFICANCE As the key protein required for proper selenium distribution, SELENOP stands out as a lynchpin selenoprotein that is essential for male fertility, proper neurologic function and selenium metabolism.
Collapse
Affiliation(s)
- Sumangala Shetty
- Department of Biochemistry and Molecular Biology, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, United States
| | - Paul R Copeland
- Department of Biochemistry and Molecular Biology, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, United States.
| |
Collapse
|
25
|
A heterogeneous tRNA granule structure exhibiting rapid, bi-directional neuritic transport. Eur J Cell Biol 2018; 97:168-179. [PMID: 29482850 DOI: 10.1016/j.ejcb.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022] Open
Abstract
mRNA translation is regulated by diverse mechanisms that converge at the initiation and elongation steps to determine the rate, profile, and localization of proteins synthesized. A consistently relevant feature of these mechanisms is the spatial re-distribution of translation machinery, a process of particular importance in neural cells. This process has, however, been largely overlooked with respect to its potential role in regulating the local concentration of cytoplasmic tRNAs, even as a multitude of data suggest that spatial regulation of the tRNA pool may help explain the remarkably high rates of peptide elongation. Here, we report that Cy3/Cy5-labeled bulk tRNAs transfected into neural cells distribute into granule-like structures - "tRNA granules" - that exhibit dynamic mixing of tRNAs between granules and rapid, bi-directional vectorial movement within neurites. Imaging of endogenous tRNAgly and tRNAlys by fluorescent in situ hybridization revealed a similar granular distribution of tRNAs in somata and neurites; this distribution was highly overlapping with granules imaged by introduction of exogenous Cy5-tRNAthr and Cy3-tRNAval. A subset of tRNA granules located in the cell body, neurite branch points and growth cones displayed fluorescence resonance energy transfer (FRET) between Cy3 and Cy5-labeled tRNAs indicative of translation, and co-localization with elongation machinery. A population of smaller, rapidly trafficked granules in neurites lacked FRET and showed poor colocalization with translation initiation and elongation factors, suggesting that they are a translationally inactive tRNA transport particle. Our data suggest that tRNAs are packaged into granules that are rapidly transported to loci where translation is needed, where they may greatly increase the local concentration of tRNAs in support of efficient elongation. The potential implications of this newly described structure for channeling of elongation, local translation, and diseases associated with altered tRNA levels or function are discussed.
Collapse
|
26
|
Liu X, Formanek P, Voit B, Appelhans D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. Angew Chem Int Ed Engl 2017; 56:16233-16238. [DOI: 10.1002/anie.201708826] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/20/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Petr Formanek
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
27
|
Liu X, Formanek P, Voit B, Appelhans D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708826] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Petr Formanek
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
28
|
Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28975734 DOI: 10.1002/wrna.1448] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Matthew Hk Cheng
- International Max Planck Research School, Tuebingen, Germany.,Interfaculty Institute of Biochemistry, Tuebingen, Germany
| | | |
Collapse
|
29
|
Keam SP, Sobala A, Ten Have S, Hutvagner G. tRNA-Derived RNA Fragments Associate with Human Multisynthetase Complex (MSC) and Modulate Ribosomal Protein Translation. J Proteome Res 2016; 16:413-420. [PMID: 27936807 DOI: 10.1021/acs.jproteome.6b00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionality of small RNAs from abundant species of "housekeeping" noncoding RNAs (e.g., rRNA, tRNA, snRNA, snoRNA, etc.) remains a highly studied topic. The current state of research on short RNAs derived from transfer RNA (tRNA), called tRNA-derived fragments (tRFs), has been restricted largely to expression studies and limited functional studies. 5' tRFs are known translational inhibitors in mammalian cells, yet little is known about their functionality. Here we report on the first experimental evidence of the tRF protein interactome, identifying the mammalian multisynthetase complex as the primary interactor of the 5' tRF Gln19. We also present proteome-wide SILAC evidence that 5' tRFs increase ribosomal and poly(A)-binding protein translation.
Collapse
Affiliation(s)
- Simon P Keam
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney , Ultimo 2007, Australia
| | - Andrew Sobala
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee , Dundee DD1 4HN, United Kingdom
| | - Sara Ten Have
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee , Dundee DD1 4HN, United Kingdom
| | - Gyorgy Hutvagner
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney , Ultimo 2007, Australia
| |
Collapse
|
30
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
31
|
Plochowietz A, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Res 2016; 45:926-937. [PMID: 27625389 PMCID: PMC5314786 DOI: 10.1093/nar/gkw787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 07/29/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022] Open
Abstract
Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 μm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.
Collapse
Affiliation(s)
- Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Ian Farrell
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA.,Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Zeev Smilansky
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| |
Collapse
|
32
|
Santamaría-Gómez J, Ochoa de Alda JAG, Olmedo-Verd E, Bru-Martínez R, Luque I. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase. Front Microbiol 2016; 7:857. [PMID: 27375579 PMCID: PMC4893482 DOI: 10.3389/fmicb.2016.00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023] Open
Abstract
tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | | | - Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of AlicanteAlicante, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| |
Collapse
|
33
|
The importance of codon–anticodon interactions in translation elongation. Biochimie 2015; 114:72-9. [DOI: 10.1016/j.biochi.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
34
|
Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat Rev Mol Cell Biol 2015; 16:221-31. [PMID: 25735911 DOI: 10.1038/nrm3958] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pioneering electron microscopy studies defined two primary populations of ribosomes in eukaryotic cells: one freely dispersed through the cytoplasm and the other bound to the surface of the endoplasmic reticulum (ER). Subsequent investigations revealed a specialized function for each population, with secretory and integral membrane protein-encoding mRNAs translated on ER-bound ribosomes, and cytosolic protein synthesis was widely attributed to free ribosomes. Recent findings have challenged this view, and transcriptome-scale studies of mRNA distribution and translation have now demonstrated that ER-bound ribosomes also function in the translation of a large fraction of mRNAs that encode cytosolic proteins. These studies suggest a far more expansive role for the ER in transcriptome expression, where membrane and secretory protein synthesis represents one element of a multifaceted and dynamic contribution to post-transcriptional gene expression.
Collapse
|
35
|
Hadd A, Perona JJ. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases. J Mol Biol 2014; 426:3619-33. [PMID: 25149203 DOI: 10.1016/j.jmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNA(Gln) for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNA(Gln) and tRNA(Glu) with glutamate. This ancient GluRS also separately differentiated to exclude tRNA(Gln) as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNA(Gln) and tRNA(Glu) recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.
Collapse
Affiliation(s)
- Andrew Hadd
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - John J Perona
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA.
| |
Collapse
|
36
|
Salinas T, El Farouk-Ameqrane S, Ubrig E, Sauter C, Duchêne AM, Maréchal-Drouard L. Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Res 2014; 42:9937-48. [PMID: 25114051 PMCID: PMC4150812 DOI: 10.1093/nar/gku728] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Samira El Farouk-Ameqrane
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, associated with Strasbourg University, 15 rue René Descartes 67084 Strasbourg cedex, France
| | - Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, associated with Strasbourg University, 12 rue du Général Zimmer 67084 Strasbourg cedex, France
| |
Collapse
|
37
|
Shetty SP, Shah R, Copeland PR. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P. J Biol Chem 2014; 289:25317-26. [PMID: 25063811 DOI: 10.1074/jbc.m114.590430] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenoproteins are unique as they contain selenium in their active site in the form of the 21st amino acid selenocysteine (Sec), which is encoded by an in-frame UGA stop codon. Sec incorporation requires both cis- and trans-acting factors, which are known to be sufficient for Sec incorporation in vitro, albeit with low efficiency. However, the abundance of the naturally occurring selenoprotein that contains 10 Sec residues (SEPP1) suggests that processive and efficient Sec incorporation occurs in vivo. Here, we set out to study native SEPP1 synthesis in vitro to identify factors that regulate processivity and efficiency. Deletion analysis of the long and conserved 3'-UTR has revealed that the incorporation of multiple Sec residues is inherently processive requiring only the SECIS elements but surprisingly responsive to the selenium concentration. We provide evidence that processive Sec incorporation is linked to selenium utilization and that reconstitution of known Sec incorporation factors in a wheat germ lysate does not permit multiple Sec incorporation events, thus suggesting a role for yet unidentified mammalian-specific processes or factors. The relationship between our findings and the channeling theory of translational efficiency is discussed.
Collapse
Affiliation(s)
- Sumangala P Shetty
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ravi Shah
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Paul R Copeland
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
38
|
Godinic-Mikulcic V, Jaric J, Greber BJ, Franke V, Hodnik V, Anderluh G, Ban N, Weygand-Durasevic I. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs. Nucleic Acids Res 2014; 42:5191-201. [PMID: 24569352 PMCID: PMC4005694 DOI: 10.1093/nar/gku164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.
Collapse
Affiliation(s)
- Vlatka Godinic-Mikulcic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland, Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia, Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia and Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hirschmann WD, Westendorf H, Mayer A, Cannarozzi G, Cramer P, Jansen RP. Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast. Nucleic Acids Res 2014; 42:4043-55. [PMID: 24445806 PMCID: PMC3973333 DOI: 10.1093/nar/gkt1392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to >1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.
Collapse
Affiliation(s)
- Wolf D Hirschmann
- Interfaculty Institute for Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany, Gene Center Munich and Department of Biochemistry, LMU München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany, Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland and Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
41
|
Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 2013; 52:6396-411. [PMID: 23952479 DOI: 10.1021/bi400795e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. (19)F NMR studies of bound α-site substrate analogues, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in (19)F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformational states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of Biochemistry, University of California at Riverside , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Gowher A, Smirnov A, Tarassov I, Entelis N. Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. PLoS One 2013; 8:e66228. [PMID: 23799079 PMCID: PMC3683045 DOI: 10.1371/journal.pone.0066228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNA(Lys)(CUU) and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.
Collapse
Affiliation(s)
- Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
44
|
El'skaya AV, Negrutskii BS, Shalak VF, Vislovukh AA, Vlasenko DO, Novosylna AV, Lukash TO, Veremieva MV. Specific features of protein biosynthesis in higher eukaryotes. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.000818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. V. El'skaya
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - B. S. Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. F. Shalak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. A. Vislovukh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - D. O. Vlasenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. Novosylna
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - T. O. Lukash
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - M. V. Veremieva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
45
|
Citric acid cycle and the origin of MARS. Trends Biochem Sci 2013; 38:222-8. [PMID: 23415030 DOI: 10.1016/j.tibs.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.
Collapse
|
46
|
Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:119-44. [PMID: 24072587 DOI: 10.1007/128_2013_479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction occurs transiently or stably when two or more proteins bind together to mediate a wide range of cellular processes such as protein modification, signal transduction, protein trafficking, and structural folding. The macromolecules involved in protein biosynthesis such as aminoacyl-tRNA synthetase (ARS) have a number of protein-protein interactions. The mammalian multi-tRNA synthetase complex (MSC) consists of eight different enzymes: EPRS, IRS, LRS, QRS, MRS, KRS, RRS, and DRS, and three auxiliary proteins: AIMP1/p43, AIMP2/p38, and AIMP/p18. The distinct ARS proteins are also connected to diverse protein networks to carry out biological functions. In this chapter we first show the protein networks of the entire MSC and explain how MSC components interact with or can regulate other proteins. Finally, it is pointed out that the understanding of protein-protein interaction mechanism will provide insight to potential therapeutic application for diseases related to the MSC network.
Collapse
|
47
|
Taking AIM at the Start of Translation. J Mol Biol 2012; 423:473-4. [DOI: 10.1016/j.jmb.2012.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
49
|
Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, Hu GF, Anderson P, Pan T, Hatzoglou M. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 2012; 287:42708-25. [PMID: 23086926 DOI: 10.1074/jbc.m112.371799] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Certain stress conditions can induce cleavage of tRNAs around the anticodon loop via the use of the ribonuclease angiogenin. The cellular factors that regulate tRNA cleavage are not well known. In this study we used normal and eIF2α phosphorylation-deficient mouse embryonic fibroblasts and applied a microarray-based methodology to identify and compare tRNA cleavage patterns in response to hypertonic stress, oxidative stress (arsenite), and treatment with recombinant angiogenin. In all three scenarios mouse embryonic fibroblasts deficient in eIF2α phosphorylation showed a higher accumulation of tRNA fragments including those derived from initiator-tRNA(Met). We have shown that tRNA cleavage is regulated by the availability of angiogenin, its substrate (tRNA), the levels of the angiogenin inhibitor RNH1, and the rates of protein synthesis. These conclusions are supported by the following findings: (i) exogenous treatment with angiogenin or knockdown of RNH1 increased tRNA cleavage; (ii) tRNA fragment accumulation was higher during oxidative stress than hypertonic stress, in agreement with a dramatic decrease of RNH1 levels during oxidative stress; and (iii) a positive correlation was observed between angiogenin-mediated tRNA cleavage and global protein synthesis rates. Identification of the stress-specific tRNA cleavage mechanisms and patterns will provide insights into the role of tRNA fragments in signaling pathways and stress-related disorders.
Collapse
Affiliation(s)
- Mridusmita Saikia
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9:71-83. [PMID: 22292825 DOI: 10.1586/epr.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery. There are 97% homologous A1 and A2 isoforms of eEF1A; their expression in mammalian tissues is mutually exclusive and differentially regulated in development. The A2 isoform reveals proto-oncogenic properties and specifically interacts with some cellular proteins. Several tyrosine residues shown experimentally to be phosphorylated in eEF1A1 are hardly solution accessible, so their phosphorylation could be linked with structural rearrangement of the protein molecule. The possible role of tyrosine phosphorylation in providing the background for structural differences between the 'extended' A1 isoform and the compact oncogenic A2 isoform is discussed. The 'road map' for targeted analysis of any protein of interest using phosphoproteomics data is presented.
Collapse
Affiliation(s)
- Boris Negrutskii
- Institute of Molecular Biology & Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.
| | | | | |
Collapse
|