1
|
Partipilo M, Ewins EJ, Frallicciardi J, Robinson T, Poolman B, Slotboom DJ. Minimal Pathway for the Regeneration of Redox Cofactors. JACS AU 2021; 1:2280-2293. [PMID: 34984417 PMCID: PMC8717395 DOI: 10.1021/jacsau.1c00406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Effective metabolic pathways are essential for the construction of in vitro systems mimicking the biochemical complexity of living cells. Such pathways require the inclusion of a metabolic branch that ensures the availability of reducing equivalents. Here, we built a minimal enzymatic pathway confinable in the lumen of liposomes, in which the redox status of the nicotinamide cofactors NADH and NADPH is controlled by an externally provided formate. Formic acid permeates the membrane where a luminal formate dehydrogenase uses NAD+ to form NADH and carbon dioxide. Carbon dioxide diffuses out of the liposomes, leaving only the reducing equivalents in the lumen. A soluble transhydrogenase subsequently utilizes NADH for reduction of NADP+ thereby making NAD+ available again for the first reaction. The pathway is functional in liposomes ranging from a few hundred nanometers in diameter (large unilamellar vesicles) up to several tens of micrometers (giant unilamellar vesicles) and remains active over a period of 7 days. We demonstrate that the downstream biochemical process of reduction of glutathione disulfide can be driven by the transfer of reducing equivalents from formate via NAD(P)H, thereby providing a versatile set of electron donors for reductive metabolism.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eleanor J. Ewins
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jacopo Frallicciardi
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Tom Robinson
- Department
of Theory & Bio-Systems, Max Planck
Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bert Poolman
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Stein KT, Moon SJ, Nguyen AN, Sikes HD. Kinetic modeling of H2O2 dynamics in the mitochondria of HeLa cells. PLoS Comput Biol 2020; 16:e1008202. [PMID: 32925922 PMCID: PMC7515204 DOI: 10.1371/journal.pcbi.1008202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen peroxide (H2O2) promotes a range of phenotypes depending on its intracellular concentration and dosing kinetics, including cell death. While this qualitative relationship has been well established, the quantitative and mechanistic aspects of H2O2 signaling are still being elucidated. Mitochondria, a putative source of intracellular H2O2, have recently been demonstrated to be particularly vulnerable to localized H2O2 perturbations, eliciting a dramatic cell death response in comparison to similar cytosolic perturbations. We sought to improve our dynamic and mechanistic understanding of the mitochondrial H2O2 reaction network in HeLa cells by creating a kinetic model of this system and using it to explore basal and perturbed conditions. The model uses the most current quantitative proteomic and kinetic data available to predict reaction rates and steady-state concentrations of H2O2 and its reaction partners within individual mitochondria. Time scales ranging from milliseconds to one hour were simulated. We predict that basal, steady-state mitochondrial H2O2 will be in the low nM range (2-4 nM) and will be inversely dependent on the total pool of peroxiredoxin-3 (Prx3). Neglecting efflux of H2O2 to the cytosol, the mitochondrial reaction network is expected to control perturbations well up to H2O2 generation rates ~50 μM/s (0.25 nmol/mg-protein/s), above which point the Prx3 system would be expected to collapse. Comparison of these results with redox Western blots of Prx3 and Prx2 oxidation states demonstrated reasonable trend agreement at short times (≤ 15 min) for a range of experimentally perturbed H2O2 generation rates. At longer times, substantial efflux of H2O2 from the mitochondria to the cytosol was evidenced by peroxiredoxin-2 (Prx2) oxidation, and Prx3 collapse was not observed. A refined model using Monte Carlo parameter sampling was used to explore rates of H2O2 efflux that could reconcile model predictions of Prx3 oxidation states with the experimental observations.
Collapse
Affiliation(s)
- Kassi T. Stein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Athena N. Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
3
|
Panday S, Talreja R, Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc Res 2020; 131:104010. [PMID: 32335268 DOI: 10.1016/j.mvr.2020.104010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Glutathione (GSH) and GSH/glutathione peroxidase (GPX) enzyme system is essential for normal intracellular homeostasis and gets disturbed under pathophysiologic conditions including endothelial dysfunction. Overproduction of reactive oxidative species (ROS) and reactive nitrogen species (RNS) including superoxide (O2•-), and the loss of nitric oxide (NO) bioavailability is a characteristic of endothelial dysfunction. The GSH/GPX system play an important role in eliminating ROS/RNS. Studies have provided important information regarding the interactions of ROS/RNS with the GSH/GPX in biological systems; however, it is not clear how this cross talk affect these reactive species and GSH/GPX enzyme system, under physiologic and oxidative/nitrosative stress conditions. In the present study, we developed a detailed endothelial cell kinetic model to understand the relationship amongst the key enzyme systems including GSH, GPX, peroxiredoxin (Prx) and reactive species, such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and dinitrogen trioxide (N2O3). Our simulation results showed that the alterations in the generation rates of O2•- and NO led to the formation of a wide range of ROS and RNS. Simulations performed by varying the ratio of O2•- to NO generation rates as well as GSH and GPX concentrations showed that the GPX reducing capacity was dependent on GSH availability, level of oxidative/nitrosative stress, and can be attributed to N2O3 levels, but not to H2O2 and ONOO-. Our results showed that N2O3 mediated switch-like depletion in GSH and the incorporation of Prx had no considerable effect on the ROS/RNS species other than ONOO- and H2O2. The analysis presented in this study will improve our understanding of vascular diseases in which the levels and oxidation states of GSH, GPX and/or Prx are significantly altered and pharmacological interventions show limited benefits.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Raghav Talreja
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
4
|
Husarcikova J, Schallmey A. Whole-cell cascade for the preparation of enantiopure β-O-4 aryl ether compounds with glutathione recycling. J Biotechnol 2019; 293:1-7. [PMID: 30703467 DOI: 10.1016/j.jbiotec.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Bacterial β-etherases and glutathione lyases are glutathione-dependent enzymes that catalyze the selective cleavage of β-O-4 aryl ether bonds found in lignin. Their glutathione (GSH) dependence is regarded as major limitation for their application in the production of aromatics from lignin polymer and oligomers, as stoichiometric glutathione amounts are required. Thus, recycling of the GSH cofactor by a NAD(P)H-dependent glutathione reductase was proposed previously. Herein, the use of a whole-cell catalyst was studied for efficient β-O-4 aryl ether bond cleavage with intracellular GSH supply and recycling. After optimization of the whole-cell catalyst as well as reaction conditions, up to 5 mM lignin model substrate 2,6-methoxyphenoxy-α-veratrylglycerone (2,6-MP-VG) were efficiently converted into 2,6-methoxyphenol (2,6-MP) and veratryl glycerone (VG) without addition of external GSH. Unexpectedly, no glucose supply was required for glutathione recycling within the cells up to this substrate concentration. To demonstrate the applicability of this whole-cell approach, a whole-cell cascade combining a stereoselective β-etherase (either LigE from Sphingobium sp. SYK-6 or LigF-NA from Novosphingobium aromaticivorans) and a glutathione lyase (LigG-TD from Thiobacillus denitrificans) was employed in the kinetic resolution of racemic 2,6-MP-VG. This way, enantiopure (S)- and (R)-2,6-MP-VG were obtained on semi-preparative scale without the need for external GSH supply.
Collapse
Affiliation(s)
- Jana Husarcikova
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
5
|
Manta B, Möller MN, Bonilla M, Deambrosi M, Grunberg K, Bellanda M, Comini MA, Ferrer-Sueta G. Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites. J Biol Chem 2018; 294:3235-3248. [PMID: 30593501 DOI: 10.1074/jbc.ra118.006366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.
Collapse
Affiliation(s)
- Bruno Manta
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Matías N Möller
- the Laboratorio de Fisicoquímica Biológica and.,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| | - Mariana Bonilla
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Matías Deambrosi
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Karin Grunberg
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Massimo Bellanda
- the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy
| | - Marcelo A Comini
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gerardo Ferrer-Sueta
- the Laboratorio de Fisicoquímica Biológica and .,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| |
Collapse
|
6
|
Grant J, Goudarzi SH, Mrksich M. High-Throughput Enzyme Kinetics with 3D Microfluidics and Imaging SAMDI Mass Spectrometry. Anal Chem 2018; 90:13096-13103. [DOI: 10.1021/acs.analchem.8b04391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
8
|
Ngamchuea K, Batchelor-McAuley C, Compton RG. Rapid Method for the Quantification of Reduced and Oxidized Glutathione in Human Plasma and Saliva. Anal Chem 2017; 89:2901-2908. [DOI: 10.1021/acs.analchem.6b04186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Lim JB, Huang BK, Deen WM, Sikes HD. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic Biol Med 2015; 89:47-53. [PMID: 26169725 DOI: 10.1016/j.freeradbiomed.2015.07.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a signaling molecule via its reactions with particular cysteine residues of certain proteins. Determining the roles of direct oxidation by H2O2 versus disulfide exchange reactions (i.e. relay reactions) between oxidized and reduced proteins of different identities is a current focus. Here, we use kinetic modeling to estimate the spatial and temporal localization of H2O2 and its most likely oxidation targets during a sudden increase in H2O2 above the basal level in the cytosol. We updated a previous redox kinetic model with recently measured parameters for HeLa cells and used the model to estimate the length and time scales of H2O2 diffusion through the cytosol before it is consumed by reaction. These estimates were on the order of one micron and one millisecond, respectively. We found oxidation of peroxiredoxin by H2O2 to be the dominant reaction in the network and that the overall concentration of reduced peroxiredoxin is not significantly affected by physiological increases in intracellular H2O2 concentration. We used this information to reduce the model from 22 parameters and reactions and 21 species to a single analytical equation with only one dependent variable, i.e. the concentration of H2O2, and reproduced results from the complete model. The reduced kinetic model will facilitate future efforts to progress beyond estimates and precisely quantify how reactions and diffusion jointly influence the distribution of H2O2 within cells.
Collapse
Affiliation(s)
- Joseph B Lim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beijing K Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William M Deen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Persch E, Bryson S, Todoroff NK, Eberle C, Thelemann J, Dirdjaja N, Kaiser M, Weber M, Derbani H, Brun R, Schneider G, Pai EF, Krauth-Siegel RL, Diederich F. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. ChemMedChem 2014; 9:1880-91. [PMID: 24788386 DOI: 10.1002/cmdc.201402032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 01/16/2023]
Abstract
The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Asymmetric synthesis of d-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol. Appl Microbiol Biotechnol 2012; 96:1243-52. [DOI: 10.1007/s00253-012-3885-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/01/2012] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
|
12
|
Enlightening the molecular basis of trypanothione specificity in trypanosomatids: Mutagenesis of Leishmania infantum glyoxalase II. Exp Parasitol 2011; 129:402-8. [DOI: 10.1016/j.exppara.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/03/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
|
13
|
Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. J Bacteriol 2011; 193:4904-13. [PMID: 21764916 DOI: 10.1128/jb.05231-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the aforementioned site-directed mutants. We interpreted and rationalized these results in terms of a mechanism of catalysis for 2-KPCC employing a unique hydrophobic active-site architecture promoting thioether bond cleavage and enolacetone formation not seen for other DSOR enzymes.
Collapse
|
14
|
Adimora NJ, Jones DP, Kemp ML. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal 2010; 13:731-43. [PMID: 20121341 PMCID: PMC2935341 DOI: 10.1089/ars.2009.2968] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrogen peroxide is appreciated as a cellular signaling molecule with second-messenger properties, yet the mechanisms by which the cell protects against intracellular H(2)O(2) accumulation are not fully understood. We introduce a network model of H(2)O(2) clearance that includes the pseudo-enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of thioredoxin and glutathione. Simulations reproduced experimental observations of the rapid and transient oxidation of glutathione and the rapid, sustained oxidation of thioredoxin on exposure to extracellular H(2)O(2). The model correctly predicted early oxidation profiles for the glutathione and thioredoxin redox couples across a range of initial extracellular [H(2)O(2)] and highlights the importance of cytoplasmic membrane permeability to the cellular defense against exogenous sources of H(2)O(2). The protein oxidation profile predicted by the model suggests that approximately 10% of intracellular protein thiols react with hydrogen peroxide at substantial rates, with a majority of these proteins forming protein disulfides as opposed to protein S-glutathionylated adducts. A steady-state flux analysis predicted an unequal distribution of the intracellular anti-oxidative burden between thioredoxin-dependent and glutathione-dependent antioxidant pathways, with the former contributing the majority of the cellular antioxidant defense due to peroxiredoxins and protein disulfides.
Collapse
Affiliation(s)
- Nnenna J Adimora
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
15
|
Trossini GHG, Malvezzi A, T.-do Amaral A, Rangel-Yagui CO, Izidoro MA, Cezari MHS, Juliano L, Chin CM, Menezes CMS, Ferreira EI. Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: investigation of a new target in Trypanosoma cruzi. J Enzyme Inhib Med Chem 2009; 25:62-7. [DOI: 10.3109/14756360902941058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Alberto Malvezzi
- Departamento de Química Fundamental, Instituto de Química, USP, São Paulo, Brazil
| | - Antonia T.-do Amaral
- Departamento de Química Fundamental, Instituto de Química, USP, São Paulo, Brazil
| | | | - Mario A. Izidoro
- Departamento de Biofísica, INFAR, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Maria Helena S. Cezari
- Departamento de Biofísica, INFAR, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, INFAR, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Chung Man Chin
- Faculdade de Ciências Farmacêutica, UNESP, São Paulo, Brazil
| | - Carla M. S. Menezes
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, USP, São Paulo, Brazil
| | | |
Collapse
|
16
|
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:9109-14. [PMID: 19451637 DOI: 10.1073/pnas.0900206106] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that approximately 65% of the total GR activity is attributed to GR1, whereas approximately 35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (E(GSH)) in the cytosol. Using this tool, it is shown that E(GSH) in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.
Collapse
|
17
|
Singh BK, Sarkar N, Jagannadham M, Dubey VK. Modeled structure of trypanothione reductase of Leishmania infantum. BMB Rep 2008; 41:444-7. [DOI: 10.5483/bmbrep.2008.41.6.444] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Orihuela D, Meichtry V, Pregi N, Pizarro M. Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism. J Inorg Biochem 2005; 99:1871-8. [PMID: 16084594 DOI: 10.1016/j.jinorgbio.2005.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/21/2005] [Accepted: 06/27/2005] [Indexed: 11/27/2022]
Abstract
To study the effects of aluminium (Al) on glutathione (GSH) metabolism in the small intestine, adult male Wistar rats were orally treated with AlCl3.6H2O at doses of 30, 60, 120 and 200 mg/kg body weight (b.w.) per day, during seven days. Controls received deionized water. At doses above 120 mg/kg b.w., Al produced both a significant reduction of GSH content and an increase of oxidized/reduced glutathione ratio (P < 0.05). The index of oxidative stress of the intestine mucosa in terms of lipid peroxidation evaluated by thiobarbituric acid reactive substances was significantly increased (52%) at higher Al dose used. The duodenal expression of the multidrug resistance-associated protein 2 in brush border membranes, determined by Western blot technique, was increased 2.7-fold in rats treated with 200mg AlCl3/kg b.w (P < 0.01). Intestine activities of both GSH-synthase (from 60 mg/kg b.w.) and GSSG-reductase (from 120 mg/kg b.w.) were significantly reduced (26% and 31%, respectively) while glutathione-S-transferase showed to be slightly modified in the Al-treated groups. Conversely, gamma-glutamyltranspeptidase activity was significantly increased (P < 0.05) due to the Al treatment. Al reduced in vitro mucosa-to-lumen GSH efflux (P < 0.05). A positive linear correlation between the intestine GSH depletion and reduction of in situ 45Ca intestinal absorption, both produced by Al, was found (r = 0.923, P = 0.038). Taking as a whole, these results show that Al would alter GSH metabolism in small intestine by decreasing its turnover, leading to an unbalance of redox state in the epithelial cells, thus contributing to deteriorate GSH-dependent absorptive functions.
Collapse
Affiliation(s)
- Daniel Orihuela
- Cátedra de Fisiología Humana, Laboratorio de Investigaciones Fisiológicas Experimentales, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina.
| | | | | | | |
Collapse
|
19
|
Chung MC, Güido RVC, Martinelli TF, Gonçalves MF, Polli MC, Botelho KCA, Varanda EA, Colli W, Miranda MTM, Ferreira EI. Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): a new nitrofurazone prodrug. Bioorg Med Chem 2004; 11:4779-83. [PMID: 14556793 DOI: 10.1016/j.bmc.2003.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mutual prodrugs of nitrofurazone with primaquine, using specific and nonspecific spacer groups, has been previously attempted seeking selective antichagasic agents. The intermediate reaction product, hydroxymethylnitrofurazone (NFOH-121), was isolated and tested in LLC-MK(2) culture cells infected with trypomastigotes forms of Trypanosoma cruzi showing higher trypanocidal activity than nitrofurazone and benznidazol in all stages. The mutagenicity tests showed that the prodrug was less toxic than the parent drug. Degradation assays were carried out in pH 1.2 and 7.4.
Collapse
Affiliation(s)
- Man-Chin Chung
- Lapdesf- Laboratório de Pesquisa e Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Caixa Postal 502, CEP 14.801-902, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Argyrou A, Blanchard JS. Flavoprotein Disulfide Reductases: Advances in Chemistry and Function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:89-142. [PMID: 15210329 DOI: 10.1016/s0079-6603(04)78003-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The flavoprotein disulfide reductases represent a family of enzymes that show high sequence and structural homology. They catalyze the pyridine-nucleotide-dependent reduction of a variety of substrates, including disulfide-bonded substrates (lipoamide dehydrogenase, glutathione reductase and functional homologues, thioredoxin reductase, and alkylhydroperoxide reductase), mercuric ion (mercuric ion reductase), hydrogen peroxide (NADH peroxidase), molecular oxygen (NADH oxidase), and the reductive cleavage of a carbonyl-activated carbon-sulfur bond followed by carboxylation (2-ketopropyl-coenzyme-M carboxylase?oxidoreductase). They use at least one nonflavin redox center to transfer electrons from reduced pyridine nucleotide to their substrate through flavin adenine dinucleotide. The nature of the nonflavin redox center located adjacent to the flavin varies and three types have been identified: an enzymic disulfide (most commonly), an enzymic cysteine sulfenic acid (NADH peroxidase and NADH oxidase), and a mixed Cys-S-S-CoA disulfide (coenzyme A disulfide reductase). Selection of the particular nonflavin redox center and utilization of a second, or even a third, nonflavin redox center in some cases presumably represents the most efficient strategy for reduction of the individual substrate.
Collapse
Affiliation(s)
- Argyrides Argyrou
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- T M Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, 135 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, USA.
| | | |
Collapse
|
22
|
Talwar R, Rao NA, Savithri HS. A change in reaction specificity of sheep liver serine hydroxymethyltransferase. Induction of NADH oxidation upon mutation of His230 to Tyr. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:929-34. [PMID: 10671998 DOI: 10.1046/j.1432-1327.2000.01085.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both serine hydroxymethyltransferase and aspartate aminotransferase belong to the alpha-class of pyridoxal-5'-phosphate (pyridoxalP)-dependent enzymes but exhibit different reaction and substrate specificities. A comparison of the X-ray structure of these two enzymes reveals that their active sites are nearly superimposable. In an attempt to change the reaction specificity of serine hydroxymethyltransferase to a transaminase, His 230 was mutated to Tyr which is the equivalent residue in aspartate aminotransferase. Surprisingly, the H230Y mutant was found to catalyze oxidation of NADH in an enzyme concentration dependent manner instead of utilizing L-aspartate as a substrate. The NADH oxidation could be linked to oxygen consumption or reduction of nitrobluetetrazolium. The reaction was inhibited by radical scavengers like superoxide dismutase and D-mannitol. The Km and kcat values for the reaction of the enzyme with NADH were 74 microM and 5. 2 x 10-3 s-1, respectively. This oxidation was not observed with either the wild type serine hydroxymethyltransferase or H230A, H230F or H230N mutants. Thus, mutation of H230 of sheep liver serine hydroxymethyltransferase to Tyr leads to induction of an NADH oxidation activity implying that tyrosyl radicals may be mediating the reaction.
Collapse
Affiliation(s)
- R Talwar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
23
|
Mouratou B, Kasper P, Gehring H, Christen P. Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature. J Biol Chem 1999; 274:1320-5. [PMID: 9880502 DOI: 10.1074/jbc.274.3.1320] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phenol-lyase (TPL), which catalyzes the beta-elimination reaction of L-tyrosine, and aspartate aminotransferase (AspAT), which catalyzes the reversible transfer of an amino group from dicarboxylic amino acids to oxo acids, both belong to the alpha-family of vitamin B6-dependent enzymes. To switch the substrate specificity of TPL from L-tyrosine to dicarboxylic amino acids, two amino acid residues of AspAT, thought to be important for the recognition of dicarboxylic substrates, were grafted into the active site of TPL. Homology modeling and molecular dynamics identified Val-283 in TPL to match Arg-292 in AspAT, which binds the distal carboxylate group of substrates and is conserved among all known AspATs. Arg-100 in TPL was found to correspond to Thr-109 in AspAT, which interacts with the phosphate group of the coenzyme. The double mutation R100T/V283R of TPL increased the beta-elimination activity toward dicarboxylic amino acids at least 10(4)-fold. Dicarboxylic amino acids (L-aspartate, L-glutamate, and L-2-aminoadipate) were degraded to pyruvate, ammonia, and the respective monocarboxylic acids, e.g. formate in the case of L-aspartate. The activity toward L-aspartate (kcat = 0.21 s-1) was two times higher than that toward L-tyrosine. beta-Elimination and transamination as a minor side reaction (kcat = 0.001 s-1) were the only reactions observed. Thus, TPL R100T/V283R accepts dicarboxylic amino acids as substrates without significant change in its reaction specificity. Dicarboxylic amino acid beta-lyase is an enzyme not found in nature.
Collapse
Affiliation(s)
- B Mouratou
- Biochemisches Institut der Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Montrichard F, Le Guen F, Laval-Martin DL, Davioud-Charvet E. Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. FEBS Lett 1999; 442:29-33. [PMID: 9923598 DOI: 10.1016/s0014-5793(98)01606-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two NADPH-dependent disulfide reductases, glutathione reductase and trypanothione reductase, were shown to be present in Euglena gracilis, purified to homogeneity and characterized. The glutathione reductase (Mr 50 kDa) displays a high specificity towards glutathione disulfide with a KM of 54 microM. The amino acid sequences of two peptides derived from the trypanothione reductase (Mr 54 kDa) show a high level of identity (81% and 64%) with sequences of trypanothione reductases from trypanosomatids. The trypanothione reductase is able to efficiently reduce trypanothione disulfide (KM 30.5 microM) and glutathionylspermidine disulfide (KM 90.6 microM) but not glutathione disulfide, nor Escherichia coli thioredoxin disulfide, nor 5,5'-dithiobis(2-nitrobenzoate) (DTNB). These results demonstrate for the first time (i) the existence of trypanothione reductase in a non-trypanosomatid organism and (ii) the coexistence of trypanothione reductase and glutathione reductase in E. gracilis.
Collapse
|
25
|
Chen S, Lin CH, Kwon DS, Walsh CT, Coward JK. Design, synthesis, and biochemical evaluation of phosphonate and phosphonamidate analogs of glutathionylspermidine as inhibitors of glutathionylspermidine synthetase/amidase from Escherichia coli. J Med Chem 1997; 40:3842-50. [PMID: 9371250 DOI: 10.1021/jm970414b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three phosphapeptides designed to mimic two distinct tetrahedral intermediates formed during either the synthesis or hydrolysis of glutathionylspermidine (Gsp) were synthesized and evaluated as inhibitors of the bifunctional enzyme Gsp synthetase/amidase. While the polyamine-containing phosphapeptides were determined to be potent and selective inhibitors, they selectively inhibit the synthetase activity over the amidase domain. A phosphonate-containing tetrahedral mimic is a reversible mixed-type inhibitor of Gsp synthetase with an inhibition constant of 6 microM for the inhibitor binding to the free enzyme (Ki) and 14 microM for the inhibitor binding to the enzyme-substrate complex (Ki'). The corresponding phosphonamidate is a slow-binding inhibitor with a Ki of 24 microM and a Ki* (isomerization inhibition constant) of 0.88 microM. A non-polyamine-containing phosphonamidate exhibits no significant inhibition of the synthetase or amidase activity.
Collapse
Affiliation(s)
- S Chen
- Interdepartmental Program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Jennifer C. Ma
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
27
|
Scrutton NS, Raine AR. Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 1996; 319 ( Pt 1):1-8. [PMID: 8870640 PMCID: PMC1217726 DOI: 10.1042/bj3190001] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cation-pi bonds and amino-aromatic interactions are known to be important contributors to protein architecture and stability, and their role in ligand-protein interactions has also been reported. Many biologically active amines contain substituted ammonium moieties, and cation-pi bonding and amino-aromatic interactions often enable these molecules to associate with proteins. The role of organic cation-pi bonding and amino-aromatic interactions in the recognition of small-molecule amines and peptides by proteins is an important topic for those involved in structure-based drug design, and although the number of structures determined for proteins displaying these interactions is small, general features are beginning to emerge. This review explores the role of cation-pi bonding and amino-aromatic interactions in the biological molecular recognition of amine ligands. Perspectives on the design of ammonium-ligand-binding sites are also discussed.
Collapse
Affiliation(s)
- N S Scrutton
- Department of Biochemistry, University of Leicester, U.K
| | | |
Collapse
|
28
|
Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 A resolution. Protein Sci 1996; 5:52-61. [PMID: 8771196 PMCID: PMC2143246 DOI: 10.1002/pro.5560050107] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein unique to protozoan parasites from the genera Trypanosoma and Leishmania and is an important target for the design of improved trypanocidal drugs. We present details of the structure of TR from the human pathogen Trypanosoma cruzi, the agent responsible for Chagas' disease or South American trypanosomiasis. The structure has been solved by molecular replacement, using as the starting model the structure of the enzyme from the nonpathogenic Crithidia fasciculata, and refined to an R-factor of 18.9% for 53,868 reflections with F > or = sigma F between 8.0 and 2.3 A resolution. The model comprises two subunits (968 residues), two FAD prosthetic groups, two maleate ions, and 419 water molecules. The accuracy and geometry of the enzyme model is improved with respect to the C. fasciculata enzyme model. The new structure is described and specific features of the enzyme involved in substrate interactions are compared with previous models of TR and related glutathione reductases from human and Escherichia coli. Structural differences at the edge of the active sites suggest an explanation for the differing specificities toward glutathionylspermidine disulfide.
Collapse
Affiliation(s)
- Y Zhang
- Department of Chemistry, University of Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Smith K, Borges A, Ariyanayagam MR, Fairlamb AH. Glutathionylspermidine metabolism in Escherichia coli. Biochem J 1995; 312 ( Pt 2):465-9. [PMID: 8526857 PMCID: PMC1136285 DOI: 10.1042/bj3120465] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracellular levels of glutathione and glutathionylspermidine conjugates have been measured throughout the growth phases of Escherichia coli. Glutathionylspermidine was present in mid-log-phase cells, and under stationary and anaerobic growth conditions accounted for 80% of the total glutathione content. N1,N8-bis(glutathionyl)spermidine (trypanothione) was undetectable under all growth conditions. The catalytic constant kcat/Km of recombinant E. coli glutathione reductase for glutathionylspermidine disulphide was approx. 11,000-fold lower than that for glutathione disulphide. The much higher catalytic constant for the mixed disulphide of glutathione and glutathionylspermidine (11% that of GSSG), suggests a possible explanation for the low turnover of trypanothione disulphide by E. coli glutathione reductase, given the apparent lack of a specific glutathionylspermidine disulphide reductase in E. coli.
Collapse
Affiliation(s)
- K Smith
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, U.K
| | | | | | | |
Collapse
|
30
|
Bashir A, Perham RN, Scrutton NS, Berry A. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase. Biochem J 1995; 312 ( Pt 2):527-33. [PMID: 8526866 PMCID: PMC1136294 DOI: 10.1042/bj3120527] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In wild-type glutathione reductase from Escherichia coli residues Val421 and Ala422 are located in an alpha-helix in a densely packed and hydrophobic region of the dimer interface, with their side chains packed against those of residues Ala422' and Val421' in the second subunit. A series of mutant glutathione reductases was constructed in which the identities of the residues at positions 421 and 422 were changed. Mutations were designed so as to present like charges (mutants Val421-->Glu:Ala422-->Glu and Val421-->Lys:Ala422-->Lys) or opposite charges (mutant Val421-->Lys:Ala422-->Glu) across the dimer interface to assess the role of electrostatic interactions in dimer stability. A fourth mutant (Val421-->His:Ala422-->His) was also constructed to investigate the effects of introducing a potentially protonatable bulky side chain into a crowded region of the dimer interface. In all cases, an active dimeric enzyme was found to be assembled but each mutant protein was thermally destabilized. A detailed steady-state kinetic analysis indicated that each mutant enzyme no longer displayed the Ping Pong kinetic behaviour associated with the wild-type enzyme but exhibited what was best described as a random bireactant ternary complex mechanism. This leads, depending on the chosen substrate concentration, to apparent sigmoidal, hyperbolic or complex kinetic behaviour. These experiments, together with others reported previously, indicate that simple mutagenic changes in regions distant from the active site can lead to dramatic switches in steady-state kinetic mechanism.
Collapse
Affiliation(s)
- A Bashir
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, U.K
| | | | | | | |
Collapse
|
31
|
Onuffer JJ, Kirsch JF. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci 1995; 4:1750-7. [PMID: 8528073 PMCID: PMC2143225 DOI: 10.1002/pro.5560040910] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although several high-resolution X-ray crystallographic structures have been determined for Escherichia coli aspartate aminotransferase (eAATase), efforts to crystallize E. coli tyrosine aminotransferase (eTATase) have been unsuccessful. Sequence alignment analyses of eTATase and eAATase show 43% sequence identity and 72% sequence similarity, allowing for conservative substitutions. The high similarity of the two sequences indicates that both enzymes must have similar secondary and tertiary structures. Six active site residues of eAATase were targeted by homology modeling as being important for aromatic amino acid reactivity with eTATase. Two of these positions (Thr 109 and Asn 297) are invariant in all known aspartate aminotransferase enzymes, but differ in eTATase (Ser 109 and Ser 297). The other four positions (Val 39, Lys 41, Thr 47, and Asn 69) line the active site pocket of eAATase and are replaced by amino acids with more hydrophobic side chains in eTATase (Leu 39, Tyr 41, Ile 47, and Leu 69). These six positions in eAATase were mutated by site-directed mutagenesis to the corresponding amino acids found in eTATase in an attempt to redesign the substrate specificity of eAATase to that of eTATase. Five combinations of the individual mutations were obtained from mutagenesis reactions. The redesigned eAATase mutant containing all six mutations (Hex) displays second-order rate constants for the transamination of aspartate and phenylalanine that are within an order of magnitude of those observed for eTATase. Thus, the reactivity of eAATase with phenylalanine was increased by over three orders of magnitude without sacrificing the high transamination activity with aspartate observed for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Onuffer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
32
|
Schirmer RH, Müller JG, Krauth-Siegel RL. Inhibitoren von Disulfid-Reduktasen als Chemotherapeutica – Design von Wirkstoffen gegen die Chagas-Krankheit und gegen die Malaria. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Rescigno M, Perham RN. Structure of the NADPH-binding motif of glutathione reductase: efficiency determined by evolution. Biochemistry 1994; 33:5721-7. [PMID: 8180198 DOI: 10.1021/bi00185a008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of the second glycine residue (Gly-176) of the conserved GXGXXA "fingerprint" motif in the NADPH-binding domain of Escherichia coli glutathione reductase has been studied by means of site-directed mutagenesis. This glycine residue occurs at the N-terminus of the alpha-helix in the beta alpha beta fold that characterizes the dinucleotide-binding domain, in close proximity to the pyrophosphate bridge of the bound coenzyme. Introducing an alanine residue (G176A), the minimum possible change, at this position virtually inactivated the enzyme, as did the introduction of valine, leucine, isoleucine, glutamic acid, histidine, or arginine residues. Only the replacement by serine--a natural substitute for this glycine residue in some forms of mercuric reductase, a related flavoprotein disulfide oxidoreductase--produced a mutant enzyme (G176S) that retained significant catalytic activity. It is conceivable that this is due to a favorable hydrogen bond being formed between the serine hydroxyl and a pyrophosphate oxygen atom. In most of the mutant enzymes, the Km for NADPH was substantially greater than that found for wild-type glutathione reductase, as expected, but this was accompanied by an unexpected decrease in the Km for GSSG. The latter can be explained by the observation that the reduction of the enzyme by NADPH, the first half-reaction of the ping-pong mechanism, had become a rate-limiting step of the overall reaction catalyzed, albeit poorly, by the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Rescigno
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
34
|
Mittl PR, Schulz GE. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Protein Sci 1994; 3:799-809. [PMID: 8061609 PMCID: PMC2142722 DOI: 10.1002/pro.5560030509] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The crystal structure of the dimeric flavoenzyme glutathione reductase from Escherichia coli was determined and refined to an R-factor of 16.8% at 1.86 A resolution. The molecular 2-fold axis of the dimer is local but very close to a possible crystallographic 2-fold axis; the slight asymmetry could be rationalized from the packing contacts. The 2 crystallographically independent subunits of the dimer are virtually identical, yielding no structural clue on possible cooperativity. The structure was compared with the well-known structure of the homologous enzyme from human erythrocytes with 52% sequence identity. Significant differences were found at the dimer interface, where the human enzyme has a disulfide bridge, whereas the E. coli enzyme has an antiparallel beta-sheet connecting the subunits. The differences at the glutathione binding site and in particular a deformation caused by a Leu-Ile exchange indicate why the E. coli enzyme accepts trypanothione much better than the human enzyme. The reported structure provides a frame for explaining numerous published engineering results in detail and for guiding further ones.
Collapse
Affiliation(s)
- P R Mittl
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | | |
Collapse
|
35
|
Lantwin CB, Schlichting I, Kabsch W, Pai EF, Krauth-Siegel RL. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Proteins 1994; 18:161-73. [PMID: 8159665 DOI: 10.1002/prot.340180208] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional structure of trypanothione reductase (TR) (EC 1.6.4.8) from Trypanosoma cruzi has been solved at 0.33 nm resolution by molecular replacement using the structure of C. fasciculata TR as a starting model. Elucidation of the T. cruzi TR structure represents the first step in the rational design of a drug against Chagas' disease. The structure of T. cruzi TR is compared with those of C. fasciculata TR as well as human and E. coli glutathione reductase (GR). In the FAD-binding domain, TR has two insertions, each about 10 residues long, which do not occur in GR. The first one is a rigid loop stabilizing the position of helix 91-117 which is responsible for the wider active site of TR as compared to GR. The second insertion does not occur where it is predicted by sequence alignment; rather the residues extend three strands of the 4-stranded beta-sheet by one or two residues each. This increases the number of hydrogen bonds within the sheet structure. The structure of the NADPH.TR complex has been solved at 0.33 nm resolution. The nicotinamide ring is sandwiched between the flavin ring and the side chain of Phe-198 which undergoes the same conformational change upon coenzyme binding as Tyr-197 in GR. In addition to Arg-222 and Arg-228, which are conserved in TR and GR, Tyr-221--the last residue of the second beta-sheet strand of the beta alpha beta dinucleotide binding fold--is in hydrogen bonding distance to the 2' phosphate group of NADPH.
Collapse
Affiliation(s)
- C B Lantwin
- Abteilung Biophysik, Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Bailey S, Smith K, Fairlamb AH, Hunter WN. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:67-75. [PMID: 8477734 DOI: 10.1111/j.1432-1033.1993.tb17734.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme trypanothione reductase has been identified as a prime target for the rational design of inhibitors which may have clinical use in the treatment of tropical diseases caused by the genera Trypanosoma and Leishmania. To aid the design or identification of new inhibitors of this enzyme we have elucidated the structural detail of a trypanothione reductase complexed with one of the naturally occurring substrates, N1-glutathionylspermidine disulphide, by single-crystal X-ray diffraction methods at 0.28-nm resolution. The model for the Crithidia fasciculata enzyme-substrate complex has an R-factor of 14.8% and root-mean-square deviations of 0.0015 nm and 3.3 degrees on bond lengths and angles respectively. Hydrogen bonding and van der Waals interactions between the enzyme and substrate are dominated by the amino acid side chains. The substrate binds in a rigid active site such that one glutathione moiety is in a V-shape, the other in an extended conformation. One spermidine moiety binds closely to a hydrophobic patch in the active site formed by a tryptophan and a methionine. Distances between the methionine S delta and the terminal N of this spermidine suggest that a hydrogen bond may supplement the hydrophobic interactions in this part of the active site.
Collapse
Affiliation(s)
- S Bailey
- Department of Chemistry, University of Manchester, England
| | | | | | | |
Collapse
|
37
|
Scrutton NS, Deonarain MP, Berry A, Perham RN. Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase. Science 1992; 258:1140-3. [PMID: 1439821 DOI: 10.1126/science.1439821] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When glycine418 of Escherichia coli glutathione reductase, which is in a closely packed region of the dimer interface, is replaced with a bulky tryptophan residue, the enzyme becomes highly cooperative (Hill coefficient 1.76) for glutathione binding. The cooperativity is lost when the mutant subunit is hybridized with a wild-type subunit to create a heterodimer. The mutation appears to disrupt atomic packing at the dimer interface, which induces a change of kinetic mechanism. A single mutation in a region of the protein remote from the active site can thus act as a molecular switch to confer cooperativity on an enzyme.
Collapse
Affiliation(s)
- N S Scrutton
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
38
|
Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT. Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem J 1992; 286 ( Pt 1):9-11. [PMID: 1355650 PMCID: PMC1133010 DOI: 10.1042/bj2860009] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trypanothione reductase, an essential component of the anti-oxidant defences of parasitic trypanosomes and Leishmania, differs markedly from the equivalent host enzyme, glutathione reductase, in the binding site for the disulphide substrate. Molecular modelling of this region suggested that certain tricyclic compounds might bind selectively to trypanothione reductase without inhibiting host glutathione reductase. This was confirmed by testing 30 phenothiazine and tricyclic antidepressants, of which clomipramine was found to be the most potent, with a K(i) of 6 microM, competitive with respect to trypanothione. Many of these compounds have been noted previously to have anti-trypanosomal and anti-leishmanial activity and thus they can serve as lead structures for rational drug design.
Collapse
Affiliation(s)
- T J Benson
- Department of Pharmacy, University of Manchester, U.K
| | | | | | | | | | | |
Collapse
|
39
|
Kuriyan J, Kong XP, Krishna TS, Sweet RM, Murgolo NJ, Field H, Cerami A, Henderson GB. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2.4-A resolution. Proc Natl Acad Sci U S A 1991; 88:8764-8. [PMID: 1924336 PMCID: PMC52590 DOI: 10.1073/pnas.88.19.8764] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidine conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. We report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from -2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4 degrees in the domains that form the site, with relative shifts of as much as 2-3 A in residue positions. These results provide a detailed view of the residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.
Collapse
Affiliation(s)
- J Kuriyan
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | | | | | | | | | | | | | | |
Collapse
|