1
|
Farnetani G, Fino MG, Cioppi F, Riera-Escamilla A, Tamburrino L, Vannucci M, Rosta V, Vinci S, Casamonti E, Turki L, Degl'Innocenti S, Spinelli M, Marchiani S, Lotti F, Muratori M, Krausz C. Long-term effect of cytotoxic treatments on sperm DNA fragmentation in patients affected by testicular germ cell tumor. Andrology 2023; 11:1653-1661. [PMID: 36932666 DOI: 10.1111/andr.13429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Testicular germ cell tumor is the most frequent neoplasia in men of reproductive age, with a 5-year survival rate of 95%. Antineoplastic treatments induce sperm DNA fragmentation, especially within the first year post-therapy. Data in the literature are heterogeneous concerning longer follow-up periods, and the large majority is limited to 2 years. OBJECTIVE To define the timing for the recovery of sperm DNA damage and the proportion of patients with severe DNA damage at 2 and 3 years from the end of therapy. MATERIALS AND METHODS Sperm DNA fragmentation was evaluated in 115 testicular germ cell tumor patients using terminal deoxynucleotidyl transferase dUTP nick end labeling assay coupled with flow cytometry before (T0 ) and 2 (T2 ) and 3 (T3 ) years post-treatment. Patients were divided based on the type of treatment: carboplatin, bleomycin-etoposide-cisplatin, and radiotherapy. For 24 patients, paired sperm DNA fragmentation data were available at all time-points (T0 -T2 -T3 ). Seventy-nine cancer-free, fertile normozoospermic men served as controls. Severe DNA damage was defined as the 95th percentile in controls (sperm DNA fragmentation = 50%). RESULTS Comparing patients versus controls, we observed: (i) no differences at T0 and T3 and (ii) significantly higher sperm DNA fragmentation levels (p < 0.05) at T2 in all treatment groups. Comparing pre- and post-therapy in the 115 patients, the median sperm DNA fragmentation values were higher in all groups at T2 , reaching significance (p < 0.05) only in the carboplatin group. While the median sperm DNA fragmentation values were also higher in the strictly paired cohort at T2 , about 50% of patients returned to baseline. The proportion of severe DNA damage in the entire cohort was 23.4% and 4.8% of patients at T2 and T3 , respectively. DISCUSSION Currently, testicular germ cell tumor patients are advised to wait 2 years post-therapy before seeking natural pregnancy. Our results suggest that this period may not be sufficient for all patients. CONCLUSION The analysis of sperm DNA fragmentation may represent a useful biomarker for pre-conception counseling following cancer treatment.
Collapse
Affiliation(s)
- Ginevra Farnetani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Francesca Cioppi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Antoni Riera-Escamilla
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Department of Andrology, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia, Spain
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Vannucci
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- University Hospital Careggi (AOUC), Florence, Italy
| | - Viktoria Rosta
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Serena Vinci
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elena Casamonti
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Leila Turki
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Matilde Spinelli
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sara Marchiani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesco Lotti
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- University Hospital Careggi (AOUC), Florence, Italy
| | - Monica Muratori
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Csilla Krausz
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- University Hospital Careggi (AOUC), Florence, Italy
| |
Collapse
|
2
|
Verebová V, Beneš J, Staničová J. Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules 2020; 25:E5666. [PMID: 33271809 PMCID: PMC7731333 DOI: 10.3390/molecules25235666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.
Collapse
Affiliation(s)
- Valéria Verebová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Jiří Beneš
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine & Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1, 121 08 Prague, Czech Republic;
| |
Collapse
|
3
|
Hembram KC, Chatterjee S, Sethy C, Nayak D, Pradhan R, Molla S, Bindhani BK, Kundu CN. Comparative and Mechanistic Study on the Anticancer Activity of Quinacrine-Based Silver and Gold Hybrid Nanoparticles in Head and Neck Cancer. Mol Pharm 2019; 16:3011-3023. [DOI: 10.1021/acs.molpharmaceut.9b00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene 2018; 37:2326-2342. [PMID: 29429988 PMCID: PMC5916918 DOI: 10.1038/s41388-017-0092-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023]
Abstract
Ubiquitin-specific protease 15 (USP15) is a widely expressed deubiquitylase that has been implicated in diverse cellular processes in cancer. Here we identify topoisomerase II (TOP2A) as a novel protein that is regulated by USP15. TOP2A accumulates during G2 and functions to decatenate intertwined sister chromatids at prophase, ensuring the replicated genome can be accurately divided into daughter cells at anaphase. We show that USP15 is required for TOP2A accumulation, and that USP15 depletion leads to the formation of anaphase chromosome bridges. These bridges fail to decatenate, and at mitotic exit form micronuclei that are indicative of genome instability. We also describe the cell cycle-dependent behaviour for two major isoforms of USP15, which differ by a short serine-rich insertion that is retained in isoform-1 but not in isoform-2. Although USP15 is predominantly cytoplasmic in interphase, we show that both isoforms move into the nucleus at prophase, but that isoform-1 is phosphorylated on its unique S229 residue at mitotic entry. The micronuclei phenotype we observe on USP15 depletion can be rescued by either USP15 isoform and requires USP15 catalytic activity. Importantly, however, an S229D phospho-mimetic mutant of USP15 isoform-1 cannot rescue either the micronuclei phenotype, or accumulation of TOP2A. Thus, S229 phosphorylation selectively abrogates this role of USP15 in maintaining genome integrity in an isoform-specific manner. Finally, we show that USP15 isoform-1 is preferentially upregulated in a panel of non-small cell lung cancer cell lines, and propose that isoform imbalance may contribute to genome instability in cancer. Our data provide the first example of isoform-specific deubiquitylase phospho-regulation and reveal a novel role for USP15 in guarding genome integrity.
Collapse
|
5
|
Baudoin NC, Cimini D. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma 2018; 127:215-227. [PMID: 29411093 DOI: 10.1007/s00412-018-0660-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Cell division is fundamental to life and its perturbation can disrupt organismal development, alter tissue homeostasis, and cause disease. Analysis of mitotic abnormalities provides insight into how certain perturbations affect the fidelity of cell division and how specific cellular structures, molecules, and enzymatic activities contribute to the accuracy of this process. However, accurate classification of mitotic defects is instrumental for correct interpretation of data and formulation of new hypotheses. In this article, we provide guidelines for identifying specific mitotic stages and for classifying normal and deviant mitotic phenotypes. We hope this will clarify confusion about how certain defects are classified and help investigators avoid misnomers, misclassification, and/or misinterpretation, thus leading to a unified and standardized system to classify mitotic defects.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Mariezcurrena A, Uhlmann F. Observation of DNA intertwining along authentic budding yeast chromosomes. Genes Dev 2017; 31:2151-2161. [PMID: 29208645 PMCID: PMC5749163 DOI: 10.1101/gad.305557.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
DNA replication of circular genomes generates physically interlinked or catenated sister DNAs. These are resolved through transient DNA fracture by type II topoisomerases to permit chromosome segregation during cell division. Topoisomerase II is similarly required for linear chromosome segregation, suggesting that linear chromosomes also remain intertwined following DNA replication. Indeed, chromosome resolution defects are a frequent cause of chromosome segregation failure and consequent aneuploidies. When and where intertwines arise and persist along linear chromosomes are not known, owing to the difficulty of demonstrating intertwining of linear DNAs. Here, we used excision of chromosomal regions as circular "loop outs" to convert sister chromatid intertwines into catenated circles. This revealed intertwining at replication termination and cohesin-binding sites, where intertwines are thought to arise and persist but not to a greater extent than elsewhere in the genome. Intertwining appears to spread evenly along chromosomes but is excluded from heterochromatin. We found that intertwines arise before replication termination, suggesting that replication forks rotate during replication elongation to dissipate torsion ahead of the forks. Our approach provides previously inaccessible insight into the topology of eukaryotic chromosomes and illuminates a process critical for successful chromosome segregation.
Collapse
Affiliation(s)
- Ainhoa Mariezcurrena
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
7
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
8
|
Park S, Kadayat TM, Jun KY, Thapa Magar TB, Bist G, Shrestha A, Lee ES, Kwon Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur J Med Chem 2017; 125:14-28. [DOI: 10.1016/j.ejmech.2016.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
|
9
|
Marchetti F, Massarotti A, Yauk CL, Pacchierotti F, Russo A. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:87-113. [PMID: 26581746 DOI: 10.1002/em.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alberto Massarotti
- Dipartimento Di Scienze Del Farmaco, Università Degli Studi Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | | |
Collapse
|
10
|
Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase. PLoS One 2016; 11:e0147420. [PMID: 26784746 PMCID: PMC4718638 DOI: 10.1371/journal.pone.0147420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/04/2016] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.
Collapse
|
11
|
Ryu H, Yoshida MM, Sridharan V, Kumagai A, Dunphy WG, Dasso M, Azuma Y. SUMOylation of the C-terminal domain of DNA topoisomerase IIα regulates the centromeric localization of Claspin. Cell Cycle 2015; 14:2777-84. [PMID: 26131587 PMCID: PMC4614044 DOI: 10.1080/15384101.2015.1066537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022] Open
Abstract
DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity.
Collapse
Affiliation(s)
- Hyunju Ryu
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
- Laboratory of Gene Regulation and Development; NICHD, National Institutes of Health; Bethesda, MD USA
- Current affiliation: Department of Biochemistry & Molecular Biology; Johns Hopkins University; Baltimore, MD USA
| | - Makoto M Yoshida
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Vinidhra Sridharan
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | - Akiko Kumagai
- Division of Biology and Biological Engineering; California Institute of Technology; Pasadena, CA USA
| | - William G Dunphy
- Division of Biology and Biological Engineering; California Institute of Technology; Pasadena, CA USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development; NICHD, National Institutes of Health; Bethesda, MD USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
12
|
Mosesso P, Pepe G, Ottavianelli A, Schinoppi A, Cinelli S. Cytogenetic evidence that DNA topoisomerase II is not involved in radiation induced chromsome-type aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:14-8. [PMID: 26520368 DOI: 10.1016/j.mrgentox.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
ICRF-187 (Cardioxane™, Chiron) is a catalytic inhibitor of DNA topoisomerase II (Topo II), proposed to act by blocking Topo II-mediated DNA cleavage without stabilizing DNA-Topo II-"cleavable complexes". In this study ICRF-187 was used to evaluate the potential involvement of DNA topoisomerase II in the formation of the radiation-induced chromosome-type aberrations in the G0 phase of the cell cycle in human lymphocytes from three healthy male donors. This is based on many evidences that DNA topoisomerases are involved in DNA recombination, mainly of illegitimate type (non-homologous) both in vitro and in vivo. The results obtained clearly indicated that ICRF-187 did not induce per se any chromosomal damage. When challenged with the non-catalytic Topo II poison VP-16 (etoposide), which acts by stabilizing the "cleavable complex" generating "protein concealed" DSB's and thus chromosomal aberrations, it completely abolished the significant induction of chromosome-type aberrations and formation of dicentric chromosomes. This indicates that ICRF-187 acts effectively as catalytic inhibitor of Topo II. On the other hand, when X-ray treatments were challenged with ICRF-187 using experimental conditions as for VP-16 treatments, no modification of the incidence of chromosome-type aberrations and dicentric chromosomes was observed. On this basis, we conclude that Topo II is not involved in the formation of X-ray-induced chromosome-type aberrations and dicentric chromosomes in human lymphocytes in the G0 phase of the cell cycle.
Collapse
Affiliation(s)
- P Mosesso
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - G Pepe
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - A Ottavianelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - A Schinoppi
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - S Cinelli
- Research Toxicology Centre, Via Tito Speri 12/14, 00040, Pomezia, Roma, Italy
| |
Collapse
|
13
|
Topoisomerase II is required for the proper separation of heterochromatic regions during Drosophila melanogaster female meiosis. PLoS Genet 2014; 10:e1004650. [PMID: 25340780 PMCID: PMC4207608 DOI: 10.1371/journal.pgen.1004650] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023] Open
Abstract
Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomerase II (Top2) by RNAi in the later stages of meiosis results in a specific defect in the separation of heterochromatic regions after spindle assembly. In Top2 RNAi-expressing oocytes, heterochromatic regions of both achiasmate and chiasmate chromosomes often failed to separate during prometaphase I and metaphase I. Heterochromatic regions were stretched into long, abnormal projections with centromeres localizing near the tips of the projections in some oocytes. Despite these anomalies, we observed bipolar spindles in most Top2 RNAi-expressing oocytes, although the obligately achiasmate 4th chromosomes exhibited a near complete failure to move toward the spindle poles during prometaphase I. Both achiasmate and chiasmate chromosomes displayed defects in biorientation. Given that euchromatic regions separate much earlier in prophase, no defects were expected or observed in the ability of euchromatic regions to separate during late prophase upon knockdown of Top2 at mid-prophase. Finally, embryos from Top2 RNAi-expressing females frequently failed to initiate mitotic divisions. These data suggest both that Topoisomerase II is involved in the resolution of heterochromatic DNA entanglements during meiosis I and that these entanglements must be resolved in order to complete meiosis. Proper chromosome segregation during egg and sperm development is crucial to prevent birth defects and miscarriage. During chromosome replication, DNA entanglements are created that must be resolved before chromosomes can fully separate. In the oocytes of the fruit fly Drosophila melanogaster, DNA entanglements persist between heterochromatic regions of the chromosomes until after spindle assembly and may facilitate the proper segregation of chromosomes during meiosis. Topoisomerase II enzymes can resolve DNA entanglements by cutting and untwisting tangled DNA. Decreasing Topoisomerase II (Top2) levels in the ovaries of fruit flies led to sterility. RNAi knockdown of the Top2 gene in oocytes resulted in chromosomes that failed to fully separate their heterochromatic regions during meiosis I and caused oocytes to arrest in meiosis I. These studies demonstrate that the Top2 enzyme is required for releasing DNA entanglements between homologous chromosomes before the onset of chromosome segregation during Drosophila female meiosis.
Collapse
|
14
|
Hirota K, Tsuda M, Murai J, Takagi T, Keka IS, Narita T, Fujita M, Sasanuma H, Kobayashi J, Takeda S. SUMO-targeted ubiquitin ligase RNF4 plays a critical role in preventing chromosome loss. Genes Cells 2014; 19:743-54. [PMID: 25205350 DOI: 10.1111/gtc.12173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/08/2023]
Abstract
RING finger protein 4 (RNF4) represents a subclass of ubiquitin ligases that target proteins modified by the small ubiquitin-like modifier (SUMO) for ubiquitin-mediated degradation. We disrupted the RNF4 gene in chicken DT40 cells and found that the resulting RNF4(-/-) cells gradually lost proliferation capability. Strikingly, this compromised proliferation was associated with an unprecedented cellular effect: the gradual decrease in the number of intact chromosomes. In the 6 weeks after gene targeting, there was a 25% reduction in the DNA content of the RNF4(-/-) cells. Regarding trisomic chromosome 2, 60% of the RNF4(-/-) cells lost one homologue, suggesting that DNA loss was mediated by whole chromosome loss. To determine the cause of this chromosome loss, we examined cell-cycle checkpoint pathways. RNF4(-/-) cells showed a partial defect in the spindle assembly checkpoint, premature dissociation of sister chromatids, and a marked increase in the number of lagging chromosomes at anaphase. Thus, combined defects in SAC and sister chromatid cohesion may result in increased lagging chromosomes, leading to chromosome loss without accompanying chromosome gain in RNF4(-/-) cells. We therefore propose that RNF4 plays a novel role in preventing the loss of intact chromosomes and ensures the maintenance of chromosome integrity.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Era S, Abe T, Arakawa H, Kobayashi S, Szakal B, Yoshikawa Y, Motegi A, Takeda S, Branzei D. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment. Biochem Biophys Res Commun 2012; 426:310-6. [PMID: 22943854 DOI: 10.1016/j.bbrc.2012.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/15/2012] [Indexed: 11/25/2022]
Abstract
SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1(-/-) cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2α(+/-) mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2α is SUMOylated during mitosis, the TOP2α(+/-) mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1(-/-) cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.
Collapse
Affiliation(s)
- Saho Era
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vuong MC, Hasegawa LS, Eastmond DA. A comparative study of the cytotoxic and genotoxic effects of ICRF-154 and bimolane, two catalytic inhibitors of topoisomerase II. Mutat Res 2012; 750:63-71. [PMID: 23000430 DOI: 10.1016/j.mrgentox.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/16/2022]
Abstract
ICRF-154 and bimolane have been used for the treatment of cancer, psoriasis, and uveitis in humans. Previous reports have revealed that the two drugs are topoisomerase II catalytic inhibitors, and patients treated with these agents have developed unique types of secondary leukemia. A study published in 1984 by Camerman and colleagues proposed that the therapeutic effects of bimolane could be due to ICRF-154, an impurity present within the bimolane samples that may also be responsible for the toxic effects attributed to bimolane. To date, this hypothesis has not been evaluated. In addition, little is known about the potential cytotoxic and genotoxic effects of ICRF-154. In this study, a combination of in vitro tests in human TK6 lymphoblastoid cells has been used to characterize the cytotoxic and genotoxic effects of ICRF-154 and bimolane as well as to compare the results for the two chemicals. ICRF-154 and bimolane were both cytotoxic, exhibiting very similar effects in three measures of cytotoxicity and cell proliferation. In the cytokinesis-block micronucleus assay with CREST-antibody staining, the two agents similarly induced chromosome breakage and, to a lesser extent, chromosome loss. Intriguingly, both drugs resulted in the formation of binucleated cells, perhaps as a consequence of an interference with cytokinesis. To further investigate their aneugenic effects, flow cytometry and fluorescence in situ hybridization analyses revealed that both compounds also produced similar levels of non-disjunction and polyploidy. In each of the cellular and cytogenetic assays employed, the responses of the ICRF-154-treated cells were very similar to those observed with the bimolane, and generally occurred at equimolar test concentrations. Our results, combined with those from previous studies, strongly suggest that bimolane degrades to ICRF-154, and that ICRF-154 is most likely the chemical species responsible for the cytotoxic, genotoxic, and leukemogenic effects exerted by bimolane.
Collapse
Affiliation(s)
- Minh C Vuong
- Environmental Toxicology Graduate Program and Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
17
|
Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells. Cell Biol Int 2011; 35:735-40. [PMID: 21395557 DOI: 10.1042/cbi20100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.
Collapse
|
18
|
Gardner L, Malik R, Shimizu Y, Mullins N, ElShamy WM. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res 2011; 13:R53. [PMID: 21595939 PMCID: PMC3218940 DOI: 10.1186/bcr2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/16/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5' DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents. METHODS Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively. RESULTS We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin. CONCLUSIONS TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
Collapse
Affiliation(s)
- Lauren Gardner
- Cancer Institute, Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | | | | | |
Collapse
|
19
|
Yoo JM, Kim YJ, Lee SJ, Kim SH. Sequential administration of camptothecin sensitizes human colon cancer HCT116 cells to paclitaxel via p21Cip1/WAF1. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.555187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
20
|
Iwamatsu T. Chromosome formation during fertilization in eggs of the teleost Oryzias latipes. Methods Mol Biol 2011; 761:97-124. [PMID: 21755444 DOI: 10.1007/978-1-61779-182-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Upon fertilization, eggs shift their cell cycle from the meiotic to the mitotic pattern for embryogenesis. The information on chromosome formation has been accumulated by various experiments using inhibitors to affect formation and behavior of chromosomes in the cycle of cell proliferation. Based on experimental results on meiosis and early stages of development of the teleost Oryzias latipes, we discuss the roles of the activities of histone H1 kinase, microtubule-associated protein kinase, DNA polymerase, DNA topoisomerase, and other cytoplasmic factors that play a crucial role in formation and separation of chromosomes.
Collapse
|
21
|
Orta ML, Domínguez I, Pastor N, Cortés F, Mateos S. The role of the DNA hypermethylating agent Budesonide in the decatenating activity of DNA topoisomerase II. Mutat Res 2010; 694:45-52. [PMID: 20883705 DOI: 10.1016/j.mrfmmm.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022]
Abstract
Catenations between sister chromatids result from DNA replication and must be resolved to ensure proper chromatid segregation in mitosis. Functionally active Topoisomerase II (Topo II), through its mechanism of concerted breaking and rejoining of double stranded DNA, is required to carry out this fundamental process. In previous studies we have shown that modifications in DNA sequence by halogenated pyrimidines and by the demethylating agent 5-azacytidine leads to malfunction of Topo II that results in an increased yield of endorreduplicated cells as a result of segregation failure. In the present work we have evaluated the possible influence of the methylating agent Budesonide to modify the frequency of endoreduplicated cells in AA8 Chinese hamster cell population. Our results seem to indicate that when Budesonide was administered for two consecutive cell cycles did induce an increase in the yield of endoreduplicated cells, as previously observed for the hypomethylating agent 5-azaC. We have also examined the possible relationship between extensive hypermethylation induced by Budesonide in DNA and stabilization of cleavable complexes by m-AMSA. Taken as a whole, our results show that the degree of methylation in DNA correlates with the effectiveness of m-AMSA to stabilize the Topo II-DNA complexes and to induce DNA cleavage. These findings evidence for the first time the functional importance of DNA hyper- and hypomethylation changes as epigenetic factors able to modulate Topo II activity for proper chromosome segregation.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
22
|
Feeney KM, Wasson CW, Parish JL. Cohesin: a regulator of genome integrity and gene expression. Biochem J 2010; 428:147-61. [PMID: 20462401 DOI: 10.1042/bj20100151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following DNA replication, chromatid pairs are held together by a proteinacious complex called cohesin until separation during the metaphase-to-anaphase transition. Accurate segregation is achieved by regulation of both sister chromatid cohesion establishment and removal, mediated by post-translational modification of cohesin and interaction with numerous accessory proteins. Recent evidence has led to the conclusion that cohesin is also vitally important in the repair of DNA lesions and control of gene expression. It is now clear that chromosome segregation is not the only important function of cohesin in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Katherine M Feeney
- Bute Medical School, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland, U.K
| | | | | |
Collapse
|
23
|
Wang LHC, Mayer B, Stemmann O, Nigg EA. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci 2010; 123:806-13. [PMID: 20144989 DOI: 10.1242/jcs.058255] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sister chromatid cohesion is mediated by DNA catenation and proteinaceous cohesin complexes. The recent visualization of PICH (Plk1-interacting checkpoint helicase)-coated DNA threads in anaphase cells raises new questions as to the role of DNA catenation and its regulation in time and space. In the present study we show that persistent DNA catenation induced by inhibition of Topoisomerase-IIalpha can contribute to sister chromatid cohesion in the absence of cohesin complexes and that resolution of catenation is essential for abscission. Furthermore, we use an in vitro chromatid separation assay to investigate the temporal and functional relationship between cohesin removal and Topoisomerase-IIalpha-mediated decatenation. Our data suggest that centromere decatenation can occur only after separase activation and cohesin removal, providing a plausible explanation for the persistence of centromere threads after anaphase onset.
Collapse
Affiliation(s)
- Lily Hui-Ching Wang
- Department of Cell Biology, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
24
|
A comparative analysis of chromosomal aberrations in cultured human lymphocytes due to fluoroquinolone drugs at different expression periods. Arch Toxicol 2010; 84:411-20. [DOI: 10.1007/s00204-009-0509-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
25
|
Higgins JMG. Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 2009; 119:137-47. [PMID: 19997740 DOI: 10.1007/s00412-009-0250-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/20/2023]
Abstract
The haspins are divergent members of the eukaryotic protein kinase family that are conserved in many eukaryotic lineages including animals, fungi, and plants. Recently-solved crystal structures confirm that the kinase domain of human haspin has unusual structural features that stabilize a catalytically active conformation and create a distinctive substrate binding site. Haspin localizes predominantly to chromosomes and phosphorylates histone H3 at threonine-3 during mitosis, particularly at inner centromeres. This suggests that haspin directly regulates chromosome behavior by modifying histones, although it is likely that additional substrates will be identified in the future. Depletion of haspin by RNA interference in human cell lines causes premature loss of centromeric cohesin from chromosomes in mitosis and failure of metaphase chromosome alignment, leading to activation of the spindle assembly checkpoint and mitotic arrest. Haspin overexpression stabilizes chromosome arm cohesion. Haspin, therefore, appears to be required for protection of cohesion at mitotic centromeres. Saccharomyces cerevisiae homologues of haspin, Alk1 and Alk2, are also implicated in regulation of mitosis. In mammals, haspin is expressed at high levels in the testis, particularly in round spermatids, so it seems likely that haspin has an additional role in post-meiotic spermatogenesis. Haspin is currently the subject of a number of drug discovery efforts, and the future use of haspin inhibitors should provide new insight into the cellular functions of these kinases and help determine the utility of, for example, targeting haspin for cancer therapy.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Kinkley S, Staege H, Mohrmann G, Rohaly G, Schaub T, Kremmer E, Winterpacht A, Will H. SPOC1: a novel PHD-containing protein modulating chromatin structure and mitotic chromosome condensation. J Cell Sci 2009; 122:2946-56. [DOI: 10.1242/jcs.047365] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterize the molecular and functional features of a novel protein called SPOC1. SPOC1 RNA expression was previously reported to be highest in highly proliferating tissues and increased in a subset of ovarian carcinoma patients, which statistically correlated with poor prognosis and residual disease. These observations implied that SPOC1 might play a role in cellular proliferation and oncogenesis. Here we show that the endogenous SPOC1 protein is labile, primarily chromatin associated and its expression as well as localization are regulated throughout the cell cycle. SPOC1 is dynamically regulated during mitosis with increased expression levels and biphasic localization to mitotic chromosomes indicating a functional role of SPOC1 in mitotic processes. Consistent with this postulate, SPOC1 siRNA knockdown experiments resulted in defects in mitotic chromosome condensation, alignment and aberrant sister chromatid segregation. Finally, we have been able to show, using micrococcal nuclease (MNase) chromatin-digestion assays that SPOC1 expression levels proportionally influence the degree of chromatin compaction. Collectively, our findings show that SPOC1 modulates chromatin structure and that tight regulation of its expression levels and subcellular localization during mitosis are crucial for proper chromosome condensation and cell division.
Collapse
Affiliation(s)
- Sarah Kinkley
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Hannah Staege
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Gerrit Mohrmann
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Gabor Rohaly
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Theres Schaub
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Center for Environmental Health (GmbH), Marchioninstrasse 25, 81377 Munich, Germany
| | | | - Hans Will
- Heinrich-Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| |
Collapse
|
27
|
Bendsen S, Oestergaard VH, Skouboe C, Brinch M, Knudsen BR, Andersen AH. The QTK loop is essential for the communication between the N-terminal atpase domain and the central cleavage--ligation region in human topoisomerase IIalpha. Biochemistry 2009; 48:6508-15. [PMID: 19485418 DOI: 10.1021/bi9005978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have characterized a human topoisomerase IIalpha enzyme with a deletion of the conserved QTK loop, which extends from the transducer domain to the ATP-binding pocket in the GHKL domain. The loop has been suggested to play a role for interdomain communication in type II topoisomerases. The mutant enzyme performs only very low levels of strand passage, although it is able to cleave and ligate DNA as well as close the N-terminal clamp. Cleavage is nearly unaffected by ATP and ATP analogues relative to the wild-type enzyme. Although the enzyme is able to close the clamp, the clamp has altered characteristics, allowing trapping of DNA also in the absence of an ATP analogue. The enzyme furthermore retains intrinsic levels of ATPase activity, but the activity is not stimulated by DNA. Our observations demonstrate that the QTK loop is an important player for the interdomain communication in human topoisomerase IIalpha. First, the loop seems to play a role in keeping the N-terminal clamp in an open conformation when no nucleotide is present. Once the nucleotide binds, it facilitates clamp closure, although it is not essential for this event. The QTK loop, in contrast, is essential for the DNA-stimulated ATPase activity of human topoisomerase IIalpha.
Collapse
Affiliation(s)
- Simon Bendsen
- Department of Molecular Biology, C. F. Moellers Alle, Building 1130, University of Aarhus, 8000 Arhus C, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
DNA topoisomerases are enzymes that disentangle the topological problems that arise in double-stranded DNA. Many of these can be solved by the generation of either single or double strand breaks. However, where there is a clear requirement to alter DNA topology by introducing transient double strand breaks, only DNA topoisomerase II (TOP2) can carry out this reaction. Extensive biochemical and structural studies have provided detailed models of how TOP2 alters DNA structure, and recent molecular studies have greatly expanded knowledge of the biological contexts in which TOP2 functions, such as DNA replication, transcription and chromosome segregation -- processes that are essential for preventing tumorigenesis.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
30
|
Yang SY, Jia XZ, Feng LY, Li SY, An GS, Ni JH, Jia HT. Inhibition of topoisomerase II by 8-chloro-adenosine triphosphate induces DNA double-stranded breaks in 8-chloro-adenosine-exposed human myelocytic leukemia K562 cells. Biochem Pharmacol 2008; 77:433-43. [PMID: 19014910 DOI: 10.1016/j.bcp.2008.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 11/15/2022]
Abstract
8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIalpha-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of gamma-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.
Collapse
Affiliation(s)
- Sheng-Yong Yang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Jonstrup AT, Thomsen T, Wang Y, Knudsen BR, Koch J, Andersen AH. Hairpin structures formed by alpha satellite DNA of human centromeres are cleaved by human topoisomerase IIalpha. Nucleic Acids Res 2008; 36:6165-74. [PMID: 18824478 PMCID: PMC2577340 DOI: 10.1093/nar/gkn640] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIα-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIα-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.
Collapse
Affiliation(s)
- Anette Thyssen Jonstrup
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Building 130 and Institute of Patology, University of Aarhus, Nørrebrogade 44, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Warsi TH, Navarro MS, Bachant J. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol Biol Cell 2008; 19:4421-33. [PMID: 18701701 DOI: 10.1091/mbc.e08-05-0547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore-spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.
Collapse
Affiliation(s)
- Tariq H Warsi
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
33
|
Kenney RD, Heald R. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts. J Cell Sci 2006; 119:5057-66. [PMID: 17158911 DOI: 10.1242/jcs.03277] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To facilitate their accurate distribution by the mitotic spindle, sister chromatids are tethered during DNA replication, attached by their kinetochores and bi-oriented on the spindle, and then simultaneously released at the metaphase to anaphase transition, allowing for their segregation to opposite spindle poles. The highly conserved cohesin complex is fundamental to this process, yet its role in mitosis is not fully understood. We show that depletion of cohesin from Xenopus egg extracts impairs sister chromatid cohesion and kinetochore-microtubule interactions, causing defective spindle attachments and chromosome alignment during metaphase and mis-segregation during anaphase. In the absence of cohesin, sister kinetochore pairing and centromeric localization of chromosomal passenger proteins INCENP and aurora B were lost upon bipolar spindle attachment. However, kinetochores remained paired with normal passenger localization if bipolar spindle formation was prevented by inhibiting the kinesin-5 motor (Eg5). These observations indicate that cohesin is not required to establish sister association, but is necessary to maintain cohesion in the presence of bipolar spindle forces. Co-depletion of cohesin together with another major SMC complex, condensin, revealed cumulative effects on spindle assembly and chromosome architecture. These data underscore the essential requirement for cohesin in sister chromatid cohesion, kinetochore and spindle function.
Collapse
Affiliation(s)
- Renée Deehan Kenney
- Department of Molecular and Cell Biology, 311 Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
34
|
Wang L, Roy SK, Eastmond DA. Differential cell cycle-specificity for chromosomal damage induced by merbarone and etoposide in V79 cells. Mutat Res 2006; 616:70-82. [PMID: 17174356 DOI: 10.1016/j.mrfmmm.2006.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.
Collapse
Affiliation(s)
- Ling Wang
- Environmental Toxicology Graduate Program, 2109 Biological Sciences Building, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
35
|
Elsheikh AS, Takahashi Y, Katagiri S, Kanagawa H. Sucrose-exposed chemically enucleated mouse oocytes support blastocyst development of reconstituted embryos. Reprod Fertil Dev 2006; 18:697-701. [PMID: 16930516 DOI: 10.1071/rd05159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 04/02/2006] [Indexed: 11/23/2022] Open
Abstract
This study was carried out to test the ability of sucrose-exposed chemically enucleated mouse oocytes to support the development of reconstituted embryos in vitro. Cumulus-enclosed germinal-vesicle-stage mouse oocytes were matured in vitro to metaphase I stage and were chemically enucleated with 50 microg mL(-1) etoposide in tissue culture medium 199. The chemically enucleated oocytes were grouped into two groups. Group I was exposed to 0.75 M sucrose and group II was not exposed to sucrose. The zonae pellucidae of the chemically enucleated oocytes were removed with acid Tyrode's solution (pH 2.7). They were then aggregated into couplets with karyoplasts from pronuclear-stage embryos using phytohemagglutinin-P. The couplets were electrically fused to form reconstituted embryos. The reconstituted embryos were activated with 7% ethanol and cultured in vitro in simplex optimisation medium to test their developmental ability to the blastocyst stage. Some of the reconstituted embryos that developed to the blastocyst stage were used for chromosome counts to test their ploidy. The results of the present study showed that chemically enucleated oocytes exposed to sucrose supported the development of reconstituted embryos to the blastocyst stage (21.5%), whereas those not exposed to sucrose did not. The chromosome counts showed that the reconstituted embryos had normal ploidy (40 chromosomes). It is concluded that sucrose exposure improves the quality of chemically enucleated mouse oocytes. Thus they can be used as recipients for mouse embryo cloning and nucleocytoplasmic interaction studies.
Collapse
Affiliation(s)
- Adil Salim Elsheikh
- Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Khartoum, Shambat, PO Box 32, Sudan.
| | | | | | | |
Collapse
|
36
|
Cantero G, Mateos S, Pastor N, Cortés F. Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks. DNA Repair (Amst) 2006; 5:667-74. [PMID: 16406738 DOI: 10.1016/j.dnarep.2005.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/24/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
DNA topoisomerase II (topo II), a fundamental nuclear enzyme, cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported [F. Cortés, N. Pastor, S. Mateos, I. Domínguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726] that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication. The frequency of endoreduplicated cells paralleled the level of analogue substitution into DNA, lending support to the idea that thymidine analogue substitution into DNA is most likely responsible for the triggering of endoreduplication. Using the pulsed-field gel electrophoresis (PFGE) technique, we have now analyzed a possible protection provided by the incorporation of exogenous halogenated nucleosides against DNA breakage induced by the topo II poison m-AMSA. The result was that the different halogenated nucleosides were shown as able to protect DNA from double-strand breaks induced by m-AMSA depending such a protection upon the relative percent of incorporation of a given thymidine analogue into DNA. Our results clearly indicate that the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo II with DNA and thus the frequency with which cleavage can occur.
Collapse
Affiliation(s)
- Gloria Cantero
- Department of Cell Biology, Faculty of Biology, Avenida Reina Mercedes, 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
37
|
Kelly JM, McRobert L, Baker DA. Evidence on the chromosomal location of centromeric DNA in Plasmodium falciparum from etoposide-mediated topoisomerase-II cleavage. Proc Natl Acad Sci U S A 2006; 103:6706-11. [PMID: 16617116 PMCID: PMC1458945 DOI: 10.1073/pnas.0510363103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres are the chromosomal loci that facilitate segregation, and, in most eukaryotes, they encompass extensive regions of genomic DNA. Topoisomerase-II has been identified as a crucial regulator of segregation in a wide range of organisms and exhibits premitotic accumulation at centromeres. Consistent with this property, treatment of cells with the topoisomerase-II inhibitor etoposide promotes chromosomal cleavage at sites within centromeric DNA. In the case of the human malaria parasite Plasmodium falciparum, despite a completed genome sequence, there are no experimental data on the nature of centromeres. To address this issue, we have used etoposide-mediated topoisomerase-II cleavage as a biochemical marker to map centromeric DNA on all 14 parasite chromosomes. We find that topoisomerase-II activity is concentrated at single chromosomal loci and that cleavage sites extend over approximately 10 kb. A shared feature of these topoisomerase-II cleavage sites is the presence of an extremely AT-rich ( approximately 97%) domain with a strictly defined size limit of 2.3-2.5 kb. Repetitive arrays identified within the domains do not display interchromosomal conservation in terms of length, copy number, or sequence. These unusual properties suggest that P. falciparum chromosomes contain a class of "regional" centromere distinct from those described in other eukaryotes, including the human host.
Collapse
Affiliation(s)
- John M Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | |
Collapse
|
38
|
Cantero G, Pastor N, Mateos S, Campanella C, Cortés F. Cisplatin-induced endoreduplication in CHO cells: DNA damage and inhibition of topoisomerase II. Mutat Res 2006; 599:160-6. [PMID: 16574165 DOI: 10.1016/j.mrfmmm.2006.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/23/2006] [Accepted: 02/15/2006] [Indexed: 11/17/2022]
Abstract
It has been proposed that polyploid cells that arise during a variety of pathological conditions and as a result of exposure to genotoxicants, typically in the liver, become aneuploid through genetic instability. Aneuploidy contributes to, or even drives, tumour development. We have assessed the capacity of the drug cisplatin, one of the most commonly used compounds for the treatment of malignancies, to induce endoreduplication, a particular type of polyploidy, in cultured Chinese hamster AA8 cells. Taking into account that any interference with DNA topoisomerase II (topo II) function leads to endoreduplication, we have found that treatment of the cells with this platinum compound results in a dose-dependent inhibition of the catalytic activity of the enzyme. These observations are discussed on the basis of a possible dual action of cisplatin leading to a combined negative effect on normal segregation of chromosomes. On the one hand, through the drug capacity to efficiently inhibiting the catalytic activity of topo II itself and, on the other hand, as a consequence of changes in DNA such as base modifications and cross-links that result from cisplatin treatment, likely leading to a lack of recognition/binding of DNA by the enzyme. These observations support a model in which the involvement of topo II in different pathways leading to induced endoreduplication has been proposed, and seem to bear significance as to the possible origin of the development of secondary tumours as a result of cisplatin treatment of primary malignancies.
Collapse
Affiliation(s)
- Gloria Cantero
- Department of Cell Biology, Faculty of Biology of Seville, E-41012 Seville, Spain
| | | | | | | | | |
Collapse
|
39
|
Armstrong L, Lako M, Dean W, Stojkovic M. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 2005; 24:805-14. [PMID: 16282443 DOI: 10.1634/stemcells.2005-0350] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The recent high-profile reports of the derivation of human embryonic stem cells (ESCs) from human blastocysts produced by somatic cell nuclear transfer (SCNT) have highlighted the possibility of making autologous cell lines specific to individual patients. Cell replacement therapies have much potential for the treatment of diverse conditions, and differentiation of ESCs is highly desirable as a means of producing the ranges of cell types required. However, given the range of immunophenotypes of ESC lines currently available, rejection of the differentiated cells by the host is a potentially serious problem. SCNT offers a means of circumventing this by producing ESCs of the same genotype as the donor. However, this technique is not without problems because it requires resetting of the gene expression program of a somatic cell to a state consistent with embryonic development. Some remodeling of parental DNA does occur within the fertilized oocyte, but the somatic genome presented in a radically different format to those of the gametes. Hence, it is perhaps unsurprising that many genes are expressed aberrantly within "cloned" embryos and the ESCs derived from them. Epigenetic modification of the genome through DNA methylation and covalent modification of the histones that form the nucleosome is the key to the maintenance of the differentiated state of the cell, and it is this that must be reset during SCNT. This review focuses on the mechanisms by which this is achieved and how this may account for its partial failure in the "cloning" process. We also highlight the potential dangers this may introduce into ESCs produced by this technology.
Collapse
Affiliation(s)
- Lyle Armstrong
- Centre for Stem Cell Biology and Developmental Genetics, University of Newcastle, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK.
| | | | | | | |
Collapse
|
40
|
Pastor N, Cantero G, Campanella C, Cortés F. Endoreduplication induced in cultured Chinese hamster cells by different anti-topoisomerase II chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:11-9. [PMID: 15781205 DOI: 10.1016/j.mrgentox.2004.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/11/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
With the ultimate purpose of testing the hypothesis that, as shown in yeast mutants, any malfunction of DNA topoisomerase II might result in aberrant mitosis due to defective chromosome segregation, we have chosen three chemicals of different nature, recently reported to catalytically inhibit the enzyme. The endpoint selected to assess any negative effect on the ability of topoisomerase II to properly carry out decatenation of fully replicated chromosomes in the G2/M phase of the cell cycle was the presence of metaphases showing diplochromosomes as a result of endoreduplication, i.e. two successive rounds of DNA replication without intervening mitosis. The anti-topoisomerase drugs selected were the anthracycline antibiotic and antineoplastic agent aclarubicin, the respiratory venom sodium azide, and 9-aminoacridine, a chemical compound with planar topology capable of intercalation between DNA bases. Our results show that the three chemicals tested are able to induce endoreduplication to different degrees. These observations seem to lend support to the proposal that topoisomerase II plays a central role in chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
41
|
Watrin E, Legagneux V. Contribution of hCAP-D2, a non-SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis. Mol Cell Biol 2005; 25:740-50. [PMID: 15632074 PMCID: PMC543417 DOI: 10.1128/mcb.25.2.740-750.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Condensins are heteropentameric complexes that were first identified as structural components of mitotic chromosomes. They are composed of two SMC (structural maintenance of chromosomes) and three non-SMC subunits. Condensins play a role in the resolution and segregation of sister chromatids during mitosis, as well as in some aspects of mitotic chromosome assembly. Two distinct condensin complexes, condensin I and condensin II, which differ only in their non-SMC subunits, exist. Here, we used an RNA interference approach to deplete hCAP-D2, a non-SMC subunit of condensin I, in HeLa cells. We found that the association of hCAP-H, another non-SMC subunit of condensin I, with mitotic chromosomes depends on the presence of hCAP-D2. Moreover, chromatid axes, as defined by topoisomerase II and hCAP-E localization, are disorganized in the absence of hCAP-D2, and the resolution and segregation of sister chromatids are impaired. In addition, hCAP-D2 depletion affects chromosome alignment in metaphase and delays entry into anaphase. This suggests that condensin I is involved in the correct attachment between chromosome kinetochores and microtubules of the mitotic spindle. These results are discussed relative to the effects of depleting both condensin complexes.
Collapse
Affiliation(s)
- Erwan Watrin
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| | | |
Collapse
|
42
|
Mateos S, Domínguez I, Pastor N, Cantero G, Cortés F. The DNA demethylating 5-azaC induces endoreduplication in cultured Chinese hamster cells. Mutat Res 2005; 578:33-42. [PMID: 16202795 DOI: 10.1016/j.mrfmmm.2005.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/09/2005] [Accepted: 02/18/2005] [Indexed: 11/18/2022]
Abstract
We have investigated the possible influence of 5-azacytidine (5-azaC) substitution for cytidine into DNA on topoisomerase II (topo II) function in chromosome segregation. The endpoint chosen has been the induction of endoreduplicated cells at mitosis showing diplochromosomes. Experiments were performed in the presence and absence of the cytidine analogue to assess the degree of 5-azaC-induced DNA hypomethylation, using differential cutting by restriction endonucleases Hpa II and Msp I. Using the pulsed-field gel electrophoresis (PFGE) technique, we have also observed a protective effect provided by 5-azaC treatment against DNA breakage induced by the topo II poison m-AMSA. Concentrations of 5-azaC shown as able to induce extensive DNA hypomethylation and capable to protect DNA from double-strand breaks induced by m-AMSA were used for our cytogenetic experiments to analyze chromosome segregation. Our results seem to indicate that the presence of 5-azaC in DNA induces a dose-dependent increase in the yield of endoreduplicated cells that parallels the levels of hypomethylation observed.
Collapse
Affiliation(s)
- Santiago Mateos
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | | | |
Collapse
|
43
|
Cortés F, Mateos S, Pastor N, Domínguez I. Toward a comprehensive model for induced endoreduplication. Life Sci 2004; 76:121-35. [PMID: 15519359 DOI: 10.1016/j.lfs.2004.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 08/28/2004] [Indexed: 11/25/2022]
Abstract
Both the biological significance and the molecular mechanism of endoreduplication (END) have been debated for a long time by cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Mainly due to the fact that a wide variety of agents have been reported as able to induce endoreduplication and the diversity of cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. DNA topoisomerase II (topo II), plays a major role in mitotic chromosome segregation after DNA replication. The classical topo II poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage as well as END, while the true catalytic inhibitors, which are not cleavable-complex-stabilizers, do induce END without concomitant DNA and chromosome damage. Taking into account these observations on the induction of END by drugs that interfere with topo II, together with our recently obtained evidence that the nature of DNA plays an important role for chromosome segregation [Cortes, F., Pastor, N., Mateos, S., Dominguez, I., 2003. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair 2, 719-726.], a straightforward model is proposed in which the different mechanisms leading to induced END are considered.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology of Seville, Avenue Reina Mercedes 6, E-41012 Seville, Spain.
| | | | | | | |
Collapse
|
44
|
Carpenter AJ, Porter ACG. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol Biol Cell 2004; 15:5700-11. [PMID: 15456904 PMCID: PMC532048 DOI: 10.1091/mbc.e04-08-0732] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.
Collapse
Affiliation(s)
- Adam J Carpenter
- Gene Targeting Group, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, London W12 ONN, United Kingdom
| | | |
Collapse
|
45
|
Savard C, Novak S, Saint-Cyr A, Moreau M, Pothier F, Sirard MA. Comparison of bulk enucleation methods for porcine oocytes. Mol Reprod Dev 2004; 67:70-6. [PMID: 14648876 DOI: 10.1002/mrd.20011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cloning of mammalian oocytes requires that the recipient oocyte is enucleated to remove all genetic material associated with the chromosomes. The procedure currently used in most species requires careful micromanipulation of oocytes treated with cytochalasin B to prevent structural damage. Although functional, this procedure requires time and limits the number of oocytes available for cloning, and our ability to understand the mechanisms of nuclear reprogramming. Therefore, this study aimed at evaluating different procedures to enucleate large pools of oocytes in a time-efficient manner. Two different approaches were tested. The first approach involved centrifugation of zona-free oocytes through a percoll gradient to separate the portion containing the chromatin from the cytoplasmic portion. The second used etoposide to prevent chromatin segregation at first metaphase and resulting in the expulsion of all chromosomes in the polar body. Using the chemical approach an average enucleation rate of 39.4 +/- 7.5% was obtained, while the centrifugation approach resulted in an average enucleation rate of 66.9 +/- 6. In terms of time efficiency, the control manipulation method takes 0.11 min and the centrifugation took an average of 0.52 min per oocyte. The MPF activity at the end of procedure was estimated through the measurement of H1 activity and as expected, the etoposide-cycloheximide treated oocytes had lower H1 activity which was restored by further incubation in the maturation medium for 5 hr while the centrifugation gave a nonsignificant intermediary result. In conclusion, the results presented suggest that both the chemical and the mechanical methods are usable alternatives to micromanipulation of oocytes to generate a large number of chromosome free cytoplasm for biochemical analysis. Mol. Reprod. Dev. 67: 70-76, 2004.
Collapse
Affiliation(s)
- Christian Savard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Sullivan M, Higuchi T, Katis VL, Uhlmann F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 2004; 117:471-82. [PMID: 15137940 DOI: 10.1016/s0092-8674(04)00415-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 02/03/2004] [Accepted: 03/03/2004] [Indexed: 11/15/2022]
Abstract
At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topologically entangled state. Separase, concomitantly with cleaving cohesin, activates the phosphatase Cdc14. We find that Cdc14 exerts two effects on rDNA, both mediated by the condensin complex. Lengthwise condensation of rDNA shortens the chromosome XII arm sufficiently for segregation. This condensation depends on the aurora B kinase complex. Independently of condensation, Cdc14 induces condensin-dependent resolution of cohesin-independent rDNA linkage. Cdc14-dependent sister chromatid resolution at the rDNA could introduce a temporal order to chromosome segregation.
Collapse
Affiliation(s)
- Matt Sullivan
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
47
|
Marchetti F, Wyrobek AJ. PAINT/DAPI analysis of mouse zygotes to detect paternally transmitted chromosomal aberrations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 518:131-45. [PMID: 12817682 DOI: 10.1007/978-1-4419-9190-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | |
Collapse
|
48
|
Cortés F, Pastor N, Mateos S, Domínguez I. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair (Amst) 2003; 2:719-26. [PMID: 12767350 DOI: 10.1016/s1568-7864(03)00044-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AA8 Chinese hamster ovary cells were treated with halogenated nucleosides analogues of thymidine, namely CldU, 5-iodo-2'-deoxyuridine (IdU), and 5-bromo-2'-deoxyuridine (BrdU), following different experimental protocols. The purpose was to see whether incorporation of exogenous pyrimidine analogues into DNA could interfere with normal chromosome segregation. The endpoint chosen was endoreduplication, that arises after aberrant mitosis when daughter chromatids segregation fails. Treatment with any of the halogenated nucleosides for two consecutive cell cycles resulted in endoreduplication, with a highest yield for CldU, intermediate for IdU, and lowest for BrdU. The frequency of endoreduplicated cells paralleled in all cases the level of analogue substitution into DNA. Our results seem to support that thymidine analogue substitution into DNA is responsible for the triggering of endoreduplication. Besides, the lack of any effect on endoreduplication when CldU was present for only one S-period strongly suggest that it is the nature of template, and not nascent DNA, that plays a major role in chromosome segregation. Taking into account that topoisomerase II cleaves DNA at preferred sequences within its recognition/binding sites, the likely involvement of the enzyme is discussed.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology, Avenida Reina Mercedes, 6. E-41012, Seville, Spain.
| | | | | | | |
Collapse
|
49
|
Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 2003; 88:673-83. [PMID: 12577301 DOI: 10.1002/jcb.10411] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Checkpoints suppress improper cell cycle progression to ensure that cells maintain the integrity of their genome. During mitosis, a metaphase checkpoint requires the integration of all chromosomes into a metaphase array in the mitotic spindle prior to mitotic exit. Still, mitotic errors occur in mammalian cells with a relatively high frequency. Metaphase represents the last point of control in mitosis. Once the cell commits to anaphase there are no checkpoints to sense segregation defects. In this context, we will explore our recent finding that non-transformed mammalian cells have a checkpoint that acts subsequent to mitotic errors to block the proliferation of cells that have entered G1 with tetraploid status. This arrest is dependent upon both p53 and pRb, and may represent an important function of both p53 and pRb as tumor suppressors. Further, we discuss the possibility that this mechanism may similarly impose G1 arrest in cells that become aneuploid through errors in mitosis.
Collapse
Affiliation(s)
- Robert L Margolis
- Institut de Biologie Structurale J-P Ebel (CEA-CNRS), 38027 Grenoble cedex 1, France.
| | | | | |
Collapse
|
50
|
Petronczki M, Siomos MF, Nasmyth K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 2003; 112:423-40. [PMID: 12600308 DOI: 10.1016/s0092-8674(03)00083-7] [Citation(s) in RCA: 537] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sexually reproducing organisms rely on the precise reduction of chromosome number during a specialized cell division called meiosis. Whereas mitosis produces diploid daughter cells from diploid cells, meiosis generates haploid gametes from diploid precursors. The molecular mechanisms controlling chromosome transmission during both divisions have started to be delineated. This review focuses on the four fundamental differences between mitotic and meiotic chromosome segregation that allow the ordered reduction of chromosome number in meiosis: (1) reciprocal recombination and formation of chiasmata between homologous chromosomes, (2) suppression of sister kinetochore biorientation, (3) protection of centromeric cohesion, and (4) inhibition of DNA replication between the two meiotic divisions.
Collapse
Affiliation(s)
- Mark Petronczki
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | |
Collapse
|